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Abstract
In this paper, we prove that non-constant meromorphic functions of finite order and
their difference operators are identical, if they share four small functions “IM”, or share
two small functions and ∞ CM. Our results show that a conjecture posed by Chen–Yi
in 2013 is still valid for shared small functions, and improve some earlier results
obtained by Li–Yi, Lü et al. We also study the uniqueness of a meromorphic function
partially sharing three small functions with their difference operators.
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1 Introduction and main results
In this paper, a meromorphic function always means meromorphic in the complex plane.
We adopt the standard notations in Nevanlinna theory; see, e.g. [11, 21]. In addition, we
use the notations σ (f ),σ2(f ) to denote the order and the hyper-order of f (z), respectively,
where

σ (f ) = lim sup
r→∞

log+ T(r, f )
log r

, σ2(f ) = lim sup
r→∞

log+ log+ T(r, f )
log r

.

A meromorphic function α(�≡ ∞) is called a small function of f provided that T(r,α) =
o(T(r, f )) as r → ∞, possibly outside a set of r of finite logarithmic measure. We use S(f )
to denote the family of all meromorphic functions which are small functions of f , and
denote Ŝ(f ) = S(f ) ∪ {∞}.

Let f and g be two non-constant meromorphic functions, and let α be a meromorphic
function. We say that f and g share α CM (IM), provided that f – α and g – α have the
same zeros counting multiplicities (ignoring multiplicities). If 1

f and 1
g share 0 CM (IM),

then we say that f and g share ∞ CM (IM).
Nevanlinna’s four-value theorem shows that if two non-constant meromorphic func-

tions f and g share four distinct values CM, then f is a Möbius transformation of g . In [4],
Gundersen constructed a counterexample to show that four-value theorem is not valid if 4
CM is replaced by 4 IM. But when g is the derivative of f , Gundersen and Mues–Steinmetz,
respectively, obtained the following result.
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Theorem A ([5, 18]) If a non-constant meromorphic function f and its derivative f ′ share
three distinct finite values a1, a2, a3 IM, then f ≡ f ′.

Remark 1.1 Observe that a meromorphic function f and f ′ trivially share ∞ IM. So, in
this sense, the four-value theorem is valid for f and f ′ sharing four values IM.

Furthermore, Gundersen and Mues–Steinmetz improved Theorem A as follows.

Theorem B ([6, 19]) If a non-constant meromorphic function f and its derivative f ′ share
two distinct finite values a1, a2 CM, then f ≡ f ′.

Recently, the difference analog of Nevanlinna theory has been established; see, e.g. [2,
7–10, 14]. Many researchers ([1, 12, 13, 15–17], etc.) started to consider the uniqueness of
meromorphic functions sharing values with their shifts or their difference operators. For
a nonzero finite value η, f (z + η) is called a shift of f (z), its difference operators are defined
as

�ηf (z) = f (z + η) – f (z) and �n
ηf (z) = �n–1

η

(
�ηf (z)

)
, n ∈ N, n ≥ 2.

It is well known that �ηf can be regarded as the difference counterpart of f ′. So, consid-
ering the difference analog of Theorems A and B, the following results are obtained.

Theorem C ([15]) Let f be a non-constant meromorphic function of σ (f ) < ∞. If f and
�ηf share four distinct values a1, a2, a3, a4 IM, then f ≡ �ηf .

Theorem D ([1]) Let f be a transcendental meromorphic function such that σ (f ) is finite
but not an integer. If f and �ηf (�≡ 0) share three distinct values a1, a2,∞ CM, then f ≡ �ηf .

In [1], the authors conjecture that the condition “order of growth σ (f ) is not an integer
or infinite” can be removed. Lü [17] considered this conjecture and obtained the following
result.

Theorem E ([17]) Let f be a transcendental meromorphic function of σ (f ) < ∞. If f and
�ηf share three distinct values a1, a2,∞ CM, then f ≡ �ηf .

It is natural to pose the question: what can be said on replacing shared values in Theo-
rems C–E by shared small functions. Concerning this question, we obtain the following
results which extend Theorems C–E. For the convenience of statement, we need the fol-
lowing definition; see [21].

Let f , g and α be three distinct meromorphic functions, N0(r,α, f , g) denote the counting
function of common zeros of f (z) – α(z) and g(z) – α(z), each counted only once. If

N
(

r,
1

f – α

)
– N0(r,α, f , g) = S(r, f )

and

N
(

r,
1

g – α

)
– N0(r,α, f , g) = S(r, g),
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where S(r, f ) = o(T(r, f )) as r → ∞, possibly outside a set of r of finite logarithmic measure,
then we say that f and g share α “IM”. Obviously, if f and g share α IM, then f and g share
α “IM”. But the reverse is not true.

Theorem 1.1 Let f be a transcendental meromorphic function of σ2(f ) < 1, αj ∈ S(f ) (j =
1, 2, 3, 4), and let η be a nonzero finite value. If f and �ηf share α1,α2,α3,α4 “IM”, then
f ≡ �ηf .

Remark 1.2 Obviously, Theorem 1.1 is an improvement of Theorem C.

Theorem 1.2 Let f be a non-constant meromorphic function of σ (f ) < ∞, α1,α2 ∈ S(f ),
and let η be a nonzero finite value. If f and �ηf share α1,α2,∞ CM, and if f and α1,α2

have no common poles with the same multiplicity, then f ≡ �ηf .

Remark 1.3 Obviously, Theorems D and E are direct results of Theorem 1.2.

By Theorem 1.2, we get the following corollary.

Corollary 1.1 Let f be a non-constant entire function of σ (f ) < ∞, α1,α2 ∈ S(f ), and let η

be a nonzero finite value. If f and �ηf share α1,α2 CM, then f ≡ �ηf .

We do not know whether Theorem 1.2 is valid, if f and �ηf share three distinct functions
α1,α2,α3 ∈ S(f ). But under some additional restriction on αj, we get the following result.

Theorem 1.3 Let f be a non-constant meromorphic function of σ2(f ) < 1, αj ∈ S(f ) (j =
1, 2, 3), and let η be a nonzero finite value. If, for j = 1, 2, 3,

E(αj, f ) ⊂ E(αj,�ηf ), �ηαj ≡ αj,

where E(αj, f ) is the set of zeros of f – αj, counting multiplicity, then f ≡ �ηf .

Remark 1.4 The condition �ηαj ≡ αj (j = 1, 2, 3) in Theorem 1.3 is necessary. For exam-
ple, let f (z) = 1

eπ iz+1 ,η = 1,α1 = 0,α2 = 1,α3 = 3
4 , it is obvious that E(αj, f ) ⊂ E(αj,�ηf ) (j =

1, 2, 3). But �ηαj �≡ αj (j = 2, 3), and �ηf (z) = 2eπ iz

1–e2π iz �≡ f (z).

2 Lemmas
Lemma 2.1 ([10]) Let f be a non-constant meromorphic function, ε > 0, and η be a finite
value. If f is of finite order, then there exists a set E = E(f , ε) satisfying

lim sup
r→∞

∫
E∩[1,r) dt/t

log r
≤ ε,

i.e. of logarithmic density at most ε, such that

m
(

r,
f (z + η)

f (z)

)
= O

(
log r

r
T(r, f )

)
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for all r outside the set E. If σ2(f ) < 1 and ε > 0, then

m
(

r,
f (z + η)

f (z)

)
= o

(
T(r, f )

r1–σ2(f )–ε

)

for all r outside of a set of finite logarithmic measure.

Lemma 2.2 ([10]) Let T : [0, +∞) → [0, +∞) be a non-decreasing continuous function and
let s > 0. If

lim sup
r→∞

log log T(r)
log r

= ς < 1

and δ ∈ (0, 1 – ς ), then

T(r + s) = T(r) + o
(

T(r)
rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

Let f be a meromorphic function, it is shown in [3], p. 66, that, for an arbitrary complex
number c �= 0, the inequalities

(
1 + o(1)

)
T

(
r – |c|, f (z)

) ≤ T
(
r, f (z + c)

) ≤ (
1 + o(1)

)
T

(
r + |c|, f (z)

)

hold as r → ∞. Similarly, we have

(
1 + o(1)

)
N

(
r – |c|, f (z)

) ≤ N
(
r, f (z + c)

) ≤ (
1 + o(1)

)
N

(
r + |c|, f (z)

)
, (r → ∞).

So combining the above inequalities and Lemma 2.2, we get the following result.

Lemma 2.3 Let f be a non-constant meromorphic function of σ2(f ) < 1. Then, for an arbi-
trary complex number c �= 0,

T
(
r, f (z + c)

)
= T

(
r, f (z)

)
+ S(r, f ), N

(
r, f (z + c)

)
= N

(
r, f (z)

)
+ S(r, f ).

Lemma 2.4 ([20]) Let f be a transcendental meromorphic function and αj (j = 1, . . . , q) be
q distinct small functions of f . Then, for ε > 0,

(q – 2 – ε)T(r, f ) ≤
q∑

j=1

N
(

r,
1

f – αj

)
+ o

(
T(r, f )

)

as r /∈ E → ∞ for a set E of finite linear measure.

Remark 2.1 In [23], Zheng pointed out that the ε in the above inequality can be removed.

Using a similar argument to that of [21], Theorem 4.4, we obtain the following result.

Lemma 2.5 Let f and g be non-constant meromorphic functions, and share four distinct
functions αj ∈ S(f ) ∩ S(g) (j = 1, 2, 3, 4) “IM”. If f �≡ g , then
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(i) T(r, f ) = T(r, g) + S(r, f ), T(r, g) = T(r, f ) + S(r, g).
(ii)

∑4
j=1 N(r, 1

f –αj
) = 2T(r, f ) + S(r, f ).

Lemma 2.6 ([22]) Let f and g be non-constant meromorphic functions and let αj (j =
1, . . . , 5) be five distinct elements in Ŝ(f ) ∩ Ŝ(g). If f �≡ g , then

N0(r,α5, f , g) ≤
4∑

j=1

N12(r,αj, f , g) + S(r, f ) + S(r, g),

where N12(r,α, f , g) = N(r, 1
f –α

) + N(r, 1
g–α

) – 2N0(r,α, f , g).

Lemma 2.7 ([21]) Let f1, . . . , fn (n ≥ 2) be meromorphic functions, and g1, . . . , gn be entire
functions satisfying the following conditions.

(i)
∑n

j=1 fj(z)egj(z) ≡ 0.
(ii) gj(z) – gk(z) are not constants for 1 ≤ j < k ≤ n.

(iii) For 1 ≤ j ≤ n, 1 ≤ t < k ≤ n, T(r, fj) = o(T(r, egt–gk )) (r → ∞, r /∈ E), where E ⊂ (1,∞)
has finite linear measure or finite logarithmic measure.

Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.8 Let α(�≡ 0) be a meromorphic function, and let c,η be nonzero finite values. If
α(z + η) = cα(z), then T(r,α) ≥ dr – O(1) holds for sufficiently large r, where d is a positive
number.

Proof It follows from α(z + η) = cα(z) that α(z) is transcendental. If 0,∞ are the Picard
exceptional values of α(z), then there exists a non-constant entire function h(z), such that
α(z) = eh(z). This implies that T(r,α) ≥ dr – O(1) holds for sufficiently large r and some
positive number d. If α(z) has at least one zero or one pole z0, then z0 + jη, j ∈ Z are zeros
or poles of α(z). This implies that N(r, 1

α
) ≥ dr or N(r,α) ≥ dr holds for sufficiently large r

and some positive number d. So we get T(r,α) ≥ dr – O(1) holds for sufficiently large r. �

Lemma 2.9 ([9]) Let M be the set of all meromorphic functions in the complex plane, N
be a subfield of M, and let f ∈N \ker(L), where L : M→M is a linear operator such that
m(r, L(f )

f ) = S(r, f ). If a1, . . . , aq are q ≥ 1 different elements of ker(L) ∩ S(f ), then

(q – 1)T(r, f ) + NL(f )(r, f ) ≤ N(r, f ) +
q∑

j=1

N
(

r,
1

f – aj

)
+ S(r, f ),

where NL(f )(r, f ) = 2N(r, f ) – N(r, L(f )) + N(r, 1
L(f ) ).

3 Proofs of the results

Proof of Theorem 1.1 Suppose that f �≡ �ηf , from the fact that f and �ηf share α1,α2,α3,α4

“IM” and Lemma 2.5, we get

T(r, f ) = T(r,�ηf ) + S(r, f ), T(r,�ηf ) = T(r, f ) + S(r,�ηf ),
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from which we deduce that �ηf is transcendental and

S(r,�ηf ) = S(r, f ). (1)

By Lemmas 2.4 and 2.5, we get

3T(r, f ) ≤ N(r, f ) +
4∑

j=1

N
(

r,
1

f – αj

)
+ S(r, f )

≤ N(r, f ) + 2T(r, f ) + S(r, f )

≤ N(r, f ) + 2T(r, f ) + S(r, f ),

from which we deduce that

T(r, f ) = N(r, f ) + S(r, f ) = N(r, f ) + S(r, f ). (2)

Since n(2)(r, f ) ≤ 2(n(r, f ) – n(r, f )), it follows from (2) that

N(2)(r, f ) = S(r, f ), (3)

where n(2)(r, f ) denotes the number of multiple poles of f in |z| ≤ r, counting multiplicity,
N(2)(r, f ) denotes its corresponding counting function. Similarly, we get

N(2)(r,�ηf ) = S(r,�ηf ) = S(r, f ). (4)

On the other hand, from the fact that f and �ηf share α1,α2,α3,α4 “IM” and Lemma 2.6,
(1), we get

N0(r,∞; f ,�ηf ) ≤
4∑

j=1

N12(r,αj; f ,�ηf ) + S(r, f ) + S(r,�ηf ) = S(r, f ). (5)

Let N(r, f (z) = a, g(z) �= b) denote the reduced counting function of those points in |z| ≤ r,
which are a-points of f , not b-points of g(z), (5) and Lemma 2.3 imply that

N(r,�ηf – f ) ≤ N
(
r,�ηf = ∞, f (z) �= ∞)

+ N
(
r, f (z) = ∞,�ηf �= ∞)

+ N0(r,∞; f ,�ηf )

= N
(
r, f (z + η) = ∞, f (z) �= ∞)

+ N
(
r, f (z) = ∞,�ηf �= ∞)

+ S(r, f )

≤ N
(
r, f (z) = ∞,�ηf �= ∞)

+ S(r, f )

≤ N(r, f ) + S(r, f ). (6)

Hence by (3), (4) and (6), we get

N(r,�ηf – f ) ≤ N(r,�ηf – f ) + N(2)(r,�ηf – f )

≤ N(r, f ) + N(2)(r,�ηf ) + N(2)(r, f ) + S(r, f )
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≤ N(r, f ) + S(r, f ). (7)

Then, by Lemma 2.1, Lemma 2.4 and (7), we get

3T(r, f ) ≤ N(r, f ) +
4∑

j=1

N
(

r,
1

f – αj

)
+ S(r, f )

≤ N(r, f ) + N
(

r,
1

f – �ηf

)
+ S(r, f )

≤ N(r, f ) + N(r, f – �ηf ) + m(r, f – �ηf ) + S(r, f )

≤ 2N(r, f ) + m(r, f ) + S(r, f )

≤ 2T(r, f ) + S(r, f ),

which implies T(r, f ) = S(r, f ). This is absurd. So we get f ≡ �ηf . �

Proof of Theorem 1.2 It follows from Lemma 2.3 that �ηf is of finite order. Since f and
�ηf share α1,α2,∞ CM, we get

�ηf – α1

f – α1
= eP,

�ηf – α2

f – α2
= eQ, (8)

where P, Q are polynomials.
Suppose that �ηf �≡ f , then eP �≡ 1, eQ �≡ 1 and eP �≡ eQ. By (8), we get

f (z) = α1(z) +
(
α2(z) – α1(z)

) eQ(z) – 1
eQ(z) – eP(z) (9)

and

�ηf (z) = α1(z) +
(
α2(z) – α1(z)

)eP(z)+Q(z) – ep(z)

eQ(z) – eP(z) . (10)

On the other hand, (9) also implies

�ηf (z) = �ηα1(z) +
(
α2(z + η) – α1(z + η)

) eQ(z+η) – 1
eQ(z+η) – eP(z+η)

–
(
α2(z) – α1(z)

) eQ(z) – 1
eQ(z) – eP(z) . (11)

Now we discuss the following three cases.
Case 1. Suppose that both eP and eQ are constants, then, by (9), we get T(r, f ) = S(r, f ).

This is absurd.
Case 2. Suppose that only one between eP and eQ is a constant, without loss of generality,

we assume that eP ≡ c, by (9), we get

T(r, f ) = T
(
r, eQ)

+ S(r, f ), S(r, f ) = S
(
r, eQ)

. (12)

Subcase 2.1. If eQ(z+η) ≡ eQ(z), then deg Q = 1. (10) and (11) imply that

{
(1 – c)α1(z) + cα2(z) – �ηα2(z)

}
eQ(z) = (1 – c)�ηα1(z) + cα2(z) – �ηα2(z). (13)
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By (12) and (13), we get

(1 – c)α1(z) + cα2(z) – �ηα2(z) ≡ 0, (1 – c)�ηα1(z) + cα2(z) – �ηα2(z) ≡ 0. (14)

Solving (14) implies �ηα1(z) ≡ α1(z), that is,

α1(z + η) ≡ 2α1(z). (15)

Then, by Lemma 2.8, (12), deg Q = 1 and (15), we get lim infr→∞ T(r,α1)
T(r,f ) > 0, which contra-

dicts that α1 is a small function of f .
Subcase 2.2. If eQ(z+η) �≡ eQ(z), let z0 be a zero of eQ(z) – c

eQ(z+η)–Q(z) , then z0 is a zero of
eQ(z+η) – c. So by (11), we know that one of the following cases must occur.

(i) z0 is a pole of �ηf (z). Since �ηf and f share ∞ CM, by (9), we know that if z0 is not
a pole of α1 or α2, then z0 must be a zero of eQ(z) – c. This implies that z0 is a zero of
eQ(z+η)–Q(z) – 1.

(ii) z0 is not a pole of �ηf (z). By (11), we know that if z0 is not a pole of �ηα1 or α2 – α1,
then z0 is either a zero of α2(z + η) – α1(z + η), or a zero of eQ(z) – c. For the latter, z0

must be a zero of eQ(z+η)–Q(z) – 1. While if z0 is a pole of �ηα1 or α2 – α1, then, by
(12), we get

N
(
r, eQ(z+η) = c,�ηα1 = ∞) ≤ N(r,�ηα1) = S(r, f ) = S

(
r, eQ)

,

where N(r, eQ(z+η) = c,�ηα1 = ∞) denotes the reduced counting function of those points in
|z| ≤ r, which are c-points of eQ(z+η) and poles of �ηα1(z). Similarly, we have N(r, eQ(z+η) =
c,α2 – α1 = ∞) = S(r, eQ).

From the above analyses, (12) and Lemma 2.3, we get

N
(

r,
1

eQ(z) – c
eQ(z+η)–Q(z)

)
= N

(
r,

1
eQ(z+η) – c

)

≤ N
(

r,
1

eQ(z+η)–Q(z) – 1

)
+ S

(
r, eQ)

= S
(
r, eQ)

. (16)

So from the second main theorem related to small functions and (16), we get T(r, eQ) =
S(r, eQ). This is absurd.

Case 3. Suppose that both eP and eQ are not constants, by (10) and (11), we get

H2pe2P + H2p+qe2P+Q + Hp+2qeP+2Q + H2qe2Q + Hp+qeP+Q + HpeP + HqeQ = 0, (17)

where

H2p = (α2 – �ηα1)e�ηP, H2p+q = (α1 – α2)e�ηP, Hp+2q = (α2 – α1)e�ηQ,

H2q = (α1 – �ηα2)e�ηQ, Hp+q = (�ηα2 – α1)e�ηQ + (�ηα1 – α2)e�ηp,

Hp(z) =
(
α2(z) – α1(z)

)
e�ηP(z) – α2(z + η) + α1(z + η),

Hq(z) =
(
α1(z) – α2(z)

)
e�ηQ(z) + α2(z + η) – α1(z + η).

(18)
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Subcase 3.1. deg P > deg Q. By (9) we get

S(r, f ) = S
(
r, eP)

. (19)

Equation (17) implies that

ψ1e2P + ψ2eP = ψ3, (20)

where

ψ1 = H2p + H2p+qeQ, ψ2 = Hp+2qe2Q + Hp+qeQ + Hp, ψ3 = –H2qe2Q – HqeQ,

such that T(r,ψj) = S(r, eP) (j = 1, 2, 3). Then, by (20) and Lemma 2.7, we get ψj ≡ 0 (j =
1, 2, 3). From this and (18), we get

⎧
⎨

⎩
(α2 – �ηα1) – (α2 – α1)eQ = 0,

(α2 – α1)e�ηQ+2Q + (�ηα1 – α2)e�ηP+Q + (α2 – α1)e�ηP = (α2 – α1)e�ηQ.
(21)

Solving (21) deduce

(α1 – �ηα1)(2α2 – α1 – �ηα1)
(
e�ηQ – e�ηP) ≡ 0.

Since deg(�ηP) = deg P – 1 > deg Q – 1 = deg(�ηQ), we get α1 ≡ �ηα1 or �ηα1 ≡ 2α2 – α1.
From this and (21), we get eQ ≡ 1 or eQ ≡ –1, which contradicts that eQ is not a constant.

Subcase 3.2. deg P < deg Q. By (9) we get S(r, f ) = S(r, eQ). Using a similar argument to
subcase 3.1, we get eP ≡ 1 or eP ≡ –1, which contradicts that eP is not a constant.

Subcase 3.3. deg P = deg Q = m ≥ 1. By (9), we get

S(r, f ) = S
(
r, ezm)

. (22)

Set

P(z) = azm + am–1zm–1 + · · · + a0, Q(z) = bzm + bm–1zm–1 + · · · + b0, (23)

where a, am–1, . . . , a0, b, bm–1, . . . , b0 are constants such that ab �= 0. By (17) and (23), we get

∑

j∈Λ

ϕj(z)ejzm = 0, (24)

where

Λ = {2a, 2a + b, a + 2b, 2b, a + b, a, b},
ϕ2a = H2pγ

2, ϕ2a+b = H2p+qγ
2η, ϕa+2b = Hp+2qγ η2, ϕ2b = H2qη

2,

ϕa+b = Hp+qγ η, ϕa = Hpγ , ϕb = Hqη,

γ (z) = eP(z)–azm
, η(z) = eQ(z)–bzm
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such that

T(r,ϕj) = S
(
r, ezm)

, (j ∈ Λ). (25)

If a /∈ {b, b
2 , –b}, then 2a + b /∈ {2a, a + 2b, 2b, a + b, a, b}. So by (24), (25) and Lemma 2.7,

we get ϕ2a+b = H2p+qγ
2η ≡ 0. Combining this and (18), we get α2 ≡ α1. This is absurd.

If a = b, then, by (24), we get

(ϕ2a+b + ϕa+2b)e3bzm
+ (ϕ2a + ϕ2b + ϕa+b)e2bzm

+ (ϕa + ϕb)ebzm
= 0. (26)

Combining with (26) and Lemma 2.7, we get

H2p+qγ
2η + Hp+2qγ η2 ≡ 0, H2pγ

2 + H2qη
2 + Hp+qγ η ≡ 0, Hpγ + Hqη ≡ 0.

Then, by (18), we get

⎧
⎨

⎩
e�ηPγ = e�ηQη,

{(α2 – α1)e�ηP – α2(z + η) + α1(z + η)}γ = {(α2 – α1)e�ηQ – α2(z + η) + α1(z + η)}η.

Solving the above equation, we get {α2(z +η) –α1(z +η)}(γ –η) ≡ 0, which implies α2 ≡ α1

or eP ≡ eQ. This is absurd.
If a = b

2 , then, by (24), we get

ϕa+2be
5
2 bzm

+ (ϕ2a+b + ϕ2b)e2bzm
+ ϕa+be

3
2 bzm

+ (ϕ2a + ϕb)ebzm
+ ϕae

b
2 zm

= 0. (27)

Combining with (27) and Lemma 2.7, we get ϕa+2b ≡ 0. Then, by (18), we get α2 ≡ α1. This
is absurd.

If a = –b, then, by (24), we get

ϕ2ae–2bzm
+ (ϕ2a+b + ϕa)e–bzm

+ (ϕa+2b + ϕb)ebzm
+ ϕ2be2bzm

= –ϕa+b. (28)

Combining with (28) and Lemma 2.7, we get ϕ2a ≡ 0,ϕ2b ≡ 0. Then, by (18), we get α2 ≡
�ηα1 and α1 ≡ �ηα2, which implies α2 ≡ α1. This is absurd. Theorem 1.2 is thus proved. �

Proof of Theorem 1.3 Suppose that f �≡ �ηf , let L(f (z)) = f (z + η) – 2f (z), then, by
Lemma 2.3, we get

N
(
r, L(f )

) ≤ N
(
r, f (z + η)

)
+ N

(
r, f (z)

)
= 2N(r, f ) + S(r, f ). (29)

Then, by (29) and Lemma 2.9, we get

2T(r, f ) ≤ N(r, f ) +
3∑

j=1

N
(

r,
1

f – αj

)
–

(
2N(r, f ) – N

(
r, L(f )

))

– N
(

r,
1

L(f )

)
+ S(r, f )
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≤ N(r, f ) + N
(

r,
1

f – �ηf

)
– N

(
r,

1
L(f )

)
+ S(r, f )

≤ N(r, f ) + S(r, f ),

which implies T(r, f ) = S(r, f ). This is absurd. Theorem 1.3 is thus proved. �
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