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Abstract
In this paper, we prove a new quantitative deformation lemma, and then gain a new
mountain pass theorem in Hilbert spaces. By using the new mountain pass theorem,
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1 Introduction and main results
It is well known that the classical mountain pass theorem of Ambrosetti–Rabinowitz [2]
has proved to be a powerful tool in applications of many areas to obtain the existence of
periodic solutions. We first recall the famous theorem.

Theorem 1.1 ([2]) Let X be a Banach space, ϕ ∈ C1(X, R). Suppose there exist e ∈ X and
two real numbers α > 0 and r > 0 such that ‖e‖ > r and

(i) ϕ(u) ≥ α > 0 on {u ∈ X | ‖u‖ ≤ r} \ {0};
(ii) ϕ(0) = ϕ(e) = 0;

(iii) if (un) ⊂ X with 0 < ϕ(un),ϕ(un) bounded above, and ϕ′(un) → 0, then (un)
possesses a convergent subsequence.

Then c := infγ∈Γ maxt∈[0,1] ϕ(γ (t)), where

Γ :=
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = 0,γ (1) = e

}
,

is a critical value of ϕ.

Since then, there have been many variant generalizations for the above mountain pass
theorem [3–5]. Elegant work was done by Willem [3]. When proving the mountain pass
theorem, we should introduce a quantitative deformation lemma first (also see [6, 7]).
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Lemma 1.1 (Quantitative deformation lemma [3]) Let X be a Hilbert space, ϕ ∈ C2(X, R),
c ∈ R, ε > 0. Assume that

∥∥ϕ′(u)
∥∥ ≥ 2ε, ∀u ∈ ϕ–1([c – 2ε, c + 2ε]

)
.

Then there exists η ∈ C(X, X), such that
(i) η(u) = u, ∀u /∈ ϕ–1([c – 2ε, c + 2ε]);

(ii) η(ϕc+ε) ⊂ ϕc–ε , where ϕc–ε := ϕ–1((–∞, c – ε]).

Using Lemma 1.1, Willem established the following mountain pass type theorem.

Theorem 1.2 ([3]) Let X be a Hilbert space, ϕ ∈ C2(X, R), c0 > c1, c :=
infγ∈Γ maxt∈[0,1] ϕ(γ (t)), where c1 := max{ϕ(0),ϕ(e)}, c0 := inf‖u‖=r ϕ(u) and

Γ :=
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = 0,γ (1) = e

}
.

Suppose
(i) ϕ satisfies the (P.S.) condition (ϕ is said to satisfy the (P.S.) condition, if any sequence

{u(k)} ⊂ X satisfying ϕ(u(k)) is bounded and ϕ′(u(k)) → 0 as k → +∞, possesses a
convergent subsequence);

(ii) there exist e ∈ X and r > 0 be such that ‖e‖ > r and c0 > ϕ(0) ≥ ϕ(e).
Then c is a critical value of ϕ.

Let c0 and c1 be stated in Theorem 1.2. We see that Theorems 1.1 and 1.2 hold for c0 > c1.
A few years later, this condition is relaxed to c0 ≥ c1 in [8] (also see [9]):

Theorem 1.3 ([8]) Let X be a Banach space and X has finite dimension, ϕ ∈ C1(X, R).
Suppose there exist e ∈ X and two real numbers a and r > 0 such that ‖e‖ > r and

(i) c0 ≥ a, ϕ(0) ≤ a, ϕ(e) ≤ a;
(ii) any sequence (un) in X such that ϕ(un) → limit ≥ a, and ϕ′(un) → 0 possesses a

convergent subsequence.
Then c is a critical value of ϕ.

Clearly, all above results are based upon the relationship between c0 and c1. Then an
interesting question is raised: can we obtain a mountain pass type theorem, which is inde-
pendent of c0? In this paper, we give a positive answer and the mountain pass type theorem
is given by:

Theorem 1.4 Let X be a Hilbert space, ϕ ∈ C2(X, R), e, e1 ∈ X, r > 0 be such that 0 < ‖e1‖ <
r and ‖e‖ > r, and ϕ(0) < ϕ(e) = ϕ(e1). Then, for each small enough ε > 0, there exists û ∈ X
such that

(i) ĉ – 2ε ≤ ϕ(û) ≤ ĉ + 2ε;
(ii) ‖ϕ′(û)‖ < 2ε,

where ĉ := infγ∈Γ̂ maxt∈[0,1] ϕ(γ (t)) and

Γ̂ :=
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = 0,γ

(
1
2

)
= e1,γ (1) = e

}
.
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Remark 1.1 The new mountain pass theorem is independent of c0, and if ϕ satisfies the
(P.S.) condition, there exists û ∈ X such that ϕ(û) = ĉ.

Now, we turn to an application of this mountain pass type theorem to the existence of
periodic solutions of discrete systems, which have been appeared in computer science,
economic, neural networks, ecology, cybernetics, etc. and which were extensively investi-
gated in [1, 10–18].

Let Z, N , R be the set of all integers, natural numbers and real numbers, respectively.
In [13], by critical point theory, Guo and Yu established the existence of two nontrivial
M-periodic solutions to the following discrete difference equations:

�2un–1 + f (n, un) = 0, n ∈ Z, (1.1)

where un = u(n) ∈ R and

f (n, un) = ∇un F(n, un), �un = un+1 – un, �2un = �(�un),

and F : Z×R → R, F(n, x) is continuously differentiable in x for every n ∈ Z and T-periodic
(0 < T ∈ N ) in n for all x ∈ R.

If un �≡ 0, ∀n ∈ Z, is a M-periodic solution of system (1.1), then we call un a nontrivial M-
periodic solution of system (1.1). It is well known that [13] is one of the original papers to
study the existence of nontrivial periodic solutions of system (1.1) for superlinear f (n, un)
at un (also see [12, 17]). When f (n, un) is sublinear in the second variable un, we refer the
reader to [14, 16], and for the case of f (n, un) is neither superlinear nor sublinear, we refer
to [1]. For more details in this direction, one consults to [10, 11, 15, 18]. It is remarked
that, in [1], under the assumptions described below:

(A1) F ≥ 0, F ∈ C1(R×R, R), and for every (n, x) ∈ Z×R, there is a positive integer M ≥ 3
such that F(n + M, x) = F(n, x);

(A2) there exist constants δ > 0, α ∈ (0, 1 – cos 2π
M ) such that

F(n, x) ≤ αx2 for n ∈ N , x ∈ R and |x| ≤ δ;

(A3) there exist constants w1 > 0, w2 > 0 and w3 ∈ (2, +∞) when M is even or w3 ∈ (1 +
cos π

M , +∞) when M is odd, such that

F(n, x) ≥ w3x2 – w2 for n ∈ N , |x| ≥ w1,

by using the linking theorem in [15], Zhou, Yu and Guo derived the existence of two non-
trivial M-periodic solutions for system (1.1), and they gave an example:

Example 1.1 Take F(t, x) = a(x2/2 + cos x – 1)(φ(t) + K) with x ∈ R, constant K > 0, where
constant a and positive integer M ≥ 3 satisfy

⎧
⎨

⎩
a > 2, when M is even,

a > 2(1 + cos π
M ), when M is odd,

φ(t) ∈ C1(R, R), and φ(t) is a M-periodic function satisfying |φ(t)| < K .
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Obviously, by conditions (A1) and (A2), we deduce that F(n, 0) = 0, ∀n ∈ Z. However,
the opposite conclusion does not hold. So, it is also natural to ask: if f (n, un) is neither
superlinear nor sublinear such that F(n, 0) = 0, ∀n ∈ Z, can we still obtain the existence of
two nontrivial periodic solutions?

Moreover, in the original paper [13], we note that F ∈ R but not F ≥ 0. So, another inter-
esting question is raised: for the case of f (n, un) is neither superlinear nor sublinear at un,
if we omit this nonnegative restriction on F , can we still obtain two nontrivial M-periodic
solutions for system (1.1)?

In this paper, by employing the mountain pass type theorem 1.4, for the case of f (n, un)
is neither superlinear nor sublinear, we will derive the new existence of two nontrivial
periodic solutions for second-order discrete system (1.1), and our result is the following.

Theorem 1.5 Let F ∈ C1(R × R, R) and for every n ∈ Z, F(n, x) is twice continuously differ-
entiable in x. Suppose that there is a positive integer M ≥ 3 satisfying condition (A3) and
the following conditions:

(W1) for every (n, x) ∈ Z × R, F(n + M, x) = F(n, x);
(W2) F(n, 0) = 0, ∀n ∈ Z,

hold. Then system (1.1) has at least two nontrivial M-periodic solutions.

Remark 1.2 For the case of f (n, un) is neither superlinear nor sublinear at un, by using
linking theorem in [15], Zhou–Yu–Guo [1] obtained two nontrivial M-periodic solutions
for system (1.1). Here, by using a different philosophy, i.e. an extension of the mountain
pass type theorem, we also obtain the existence of two nontrivial M-periodic solutions.

Remark 1.3 Theorem 1.5 is concerned with f (n, un) which is neither superlinear nor sub-
linear, and under condition (W1) of Theorem 1.5, we do not need F ≥ 0.

Remark 1.4 We only need F(n, 0) = 0, ∀n ∈ Z in Theorem 1.5 (W2), which is also weaker
than condition (A2).

Example 1.2 Let F(t, x) = a(x2/2 + x + cos x – 1)(φ(t) + K) with x ∈ R, K > 0 such that the
constant a and the positive integer M ≥ 3 satisfy

⎧
⎨

⎩
a > 2, when M is even,

a > 2(1 + cos π
M ), when M is odd.

Let φ(t) ∈ C1(R, R) so that φ(t) is a M-periodic function satisfying |φ(t)| < K . Then all
assumptions in Theorem 1.5 are satisfied. Thus (1.1) has at least two nontrivial M-periodic
solutions.

Example 1.3 Let F(t, x) = a(μx2 + x + cos x – 1)(φ(t) + K) with x ∈ R, μ ≥ 1/2, K > 0, such
that the constant a and the positive integer M ≥ 3 satisfy

⎧
⎨

⎩
a > 2, when M is even,

a > 2(1 + cos π
M ), when M is odd.
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φ(t) ∈ C1(R, R), and φ(t) is a M-periodic function satisfying |φ(t)| < K . Then F satisfies
all assumptions in Theorem 1.5. Therefore, (1.1) has at least two nontrivial M-periodic
solutions.

Remark 1.5 Obviously, F in Examples 1.1, 1.2 and 1.3 satisfy all the assumptions in The-
orem 1.5, but in Examples 1.2 and 1.3, F satisfies neither condition (A1) nor condition
(A2).

The paper is organized as follows: Sect. 2 is devoted to establishing a new quantitative
deformation lemma. In Sect. 3, by using the new quantitative deformation lemma, we
derive our new mountain pass theorem (Theorem 1.4). In Sect. 4, as an application of our
new mountain pass theorem, we prove Theorem 1.5.

2 New quantitative deformation lemma
Lemma 2.1 Let X be a Hilbert space and ε be a small enough positive number. Let ϕ ∈
C2(X, R), h ∈ R. Assume that

∥∥ϕ′(u)
∥∥ ≥ 2ε, ∀u ∈ ϕ–1([h – 2ε, h + 2ε]

)
.

Then there exists η ∈ C(X, X), such that
(i) η(u) = u, ∀u /∈ ϕ–1([h – 2ε, h + 2ε]) \ D, where D is any subset of X satisfying

D ⊂ ϕ–1([h – 1
3ε2, h + 1

3ε2]);
(ii) η(ϕ–1[h + 1

2ε2, h + ε2]) ⊂ ϕ–1([h – 3
2ε2, h – 1

2ε2]).

Proof Let us define

A := ϕ–1([h – 2ε, h + 2ε]
) \ D, B := ϕ–1

([
h – ε, h –

1
2
ε

])
,

C := ϕ–1
([

h +
1
2
ε2, h + ε2

])
,

ψ(u) :=
[dist(u, C) – dist(u, B)] dist(u, X \ A)

[dist(u, C) + dist(u, B)] dist(u, X \ A) + dist(u, B) dist(u, C)
.

Then ψ is a locally Lipschitz continuous function such that

ψ(u) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, u ∈ B,

–1, u ∈ C,

0, u ∈ X \ A.

(2.1)

Let us also define a locally Lipschitz continuous vector field

f (u) :=

⎧
⎨

⎩
ψ(u)‖ϕ′(u)‖–2ϕ′(u), u ∈ A,

0, u ∈ X \ A.
(2.2)
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It is clear that ‖f (u)‖ ≤ (2ε)–1 on X. For each u ∈ X, the Cauchy problem

⎧
⎨

⎩

d
dt σ (t, u) = f (σ (t, u)),

σ (0, u) = u,
(2.3)

has a unique solution σ (·, u) defined on R. Moreover, σ is continuous on R × X (see e.g.
[7]). By (2.2) and (2.3), then

d
dt

ϕ
(
σ (t, u)

)
=

(
ϕ′

σ

(
σ (t, u)

)
,

d
dt

σ (t, u)
)

=
(
ϕ′

σ

(
σ (t, u)

)
, f

(
σ (t, u)

))

= ψ
(
σ (t, u)

)
. (2.4)

On the other hand, with the help of (2.1), ψ = 0 on X\ A, so the map η defined on X by
η(u) := σ (2ε2, u) satisfies (i).

By (2.3), we have

σ (t, u) = σ (0, u) +
∫ t

0
f
(
σ (s, u)

)
ds = u +

∫ t

0
f
(
σ (s, u)

)
ds, ∀t ∈ [

0, 2ε2].

Combining ‖f (u)‖ ≤ (2ε)–1, we know

∥∥σ (t, u) – u
∥∥ =

∥∥∥∥

∫ t

0
f
(
σ (s, u)

)
ds

∥∥∥∥

≤
∫ t

0

∥∥f
(
σ (s, u)

)∥∥ds ≤ 2ε2 × 1
2ε

= ε. (2.5)

Let u ∈ ϕ–1([h+ 1
2ε2, h+ε2]) = C, then ψ(σ (0, u)) = ψ(u) = –1. Clearly, σ (·, u) is continuous

on R, ψ is locally Lipschitz continuous on σ , and ψ(σ (0, u)) = –1 for u ∈ C. Thus, by (2.5),
for ε is small enough, we have

ψ
(
σ (t, u)

) ≤ –
3
4

, ∀t ∈ [
0, 2ε2].

Therefore, it follows from (2.5) that

ϕ
(
σ
(
2ε2, u

))
= ϕ(u) +

∫ 2ε2

0

d
dt

ϕ
(
σ (t, u)

)
dt = ϕ(u) +

∫ 2ε2

0
ψ

(
σ (t, u)

)
dt

≤ h + ε2 +
(

–
3
4

)
× 2ε2 = h –

1
2
ε2

and

ϕ
(
σ
(
2ε2, u

))
= ϕ(u) +

∫ 2ε2

0

d
dt

ϕ
(
σ (t, u)

)
dt = ϕ(u) +

∫ 2ε2

0
ψ

(
σ (t, u)

)
dt

≥ h +
1
2
ε2 – 2ε2 = h –

3
2
ε2.

So, (ii) is proved. �
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Remark 2.1 The conclusion (ii) in Lemma 2.1 is different from conclusion (ii) in in
Lemma 1.1.

Now, by Lemma 2.1, we can prove our mountain pass type theorem which is indepen-
dent of c0.

3 Proof of Theorem 1.4
Conclusion (i) is obvious. Suppose that conclusion (ii) does not hold. Consider β = η ◦ γ ,
where η is given by Lemma 2.1, and then we need to check two cases.

Case 1. ϕ(0) < ϕ(e) = ϕ(e1) < ĉ.
By an analogous argument of conclusion (i) of Lemma 2.1, we have

β(0) = η
(
γ (0)

)
= η(0) = 0, β

(
1
2

)
= η

(
γ

(
1
2

))
= η(e1) = e1,

β(1) = η
(
γ (1)

)
= η(e) = e.

So, β ∈ Γ̂ . By the definition of ĉ, there exists γ ∈ Γ̂ such that

max
t∈[0,1]

ϕ
(
γ (t)

) ≤ ĉ + ε. (3.1)

Then, from conclusion (ii) of Lemma 2.1 and (3.1), we have ĉ ≤ maxt∈[0,1] ϕ(β(t)) ≤ ĉ – ε.
This is a contradiction.

Case 2. ϕ(0) < ϕ(e) = ϕ(e1) = ĉ.
Let us assume that maxt∈[0,1] ϕ(γ (t)) ≡ ĉ for every γ ∈ Γ̂ . Since ϕ(e1) = ĉ for every

0 < ‖e1‖ < r and ϕ ∈ C2(X, R), we see that conclusion (ii) holds. Thus, in the follow-
ing discussion, we only need to argue the case of maxt∈[0,1] ϕ(γ (t)) �≡ ĉ. Observing that
maxt∈[0,1] ϕ(γ (t)) ≥ ϕ(e1) = ĉ, there exists γ1 ∈ Γ̂ such that maxt∈[0,1] ϕ(γ1(t)) > ϕ(e1). Note
that γ1( 1

2 ) = e1, ϕ(e1) = ĉ (0 < ‖e1‖ < r), and γ1(t) ∈ C([0, 1], X) and ϕ ∈ C2(X, R), there exists
t1 ∈ [0, 1] such that

ĉ +
1
2
ε2 ≤ ϕ

(
γ1(t1)

)
) ≤ ĉ + ε2. (3.2)

Take D = {u ∈ X | h = ϕ(u) = ĉ} in Lemma 2.1. Then, by ϕ(0) < ϕ(e) = ϕ(e1) = ĉ and conclu-
sion (i) of Lemma 2.1, we have

β(0) = η
(
γ (0)

)
= η(0) = 0, β

(
1
2

)
= η

(
γ

(
1
2

))
= η(e1) = e1,

β(1) = η
(
γ (1)

)
= η(e) = e.

So, β ∈ Γ̂ . It follows from (3.2) and the conclusion (ii) of Lemma 2.1 that
maxt∈[0,1] ϕ(β(t)) ≤ ĉ – 1

2ε2. Combining with β(1) = e, we must have maxt∈[0,1] ϕ(β(t)) ≥
ϕ(e) = ĉ, which implies a contradiction.

Combining Case 1 and Case 2, the proof for our new mountain pass theorem is complete.
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4 Proof of Theorem 1.5
We divide the proof into eight steps.

Step 1: We introduce some notations.
• For a, b ∈ Z, define Z[a] = {a, a + 1, . . .}, Z[a, b] = {a, a + 1, . . . , b} for a ≤ b.
• Let the set of sequences S = {u = {un} = (. . . , u–n, . . . , u0, . . . , un, . . .), un ∈ R, n ∈ Z}. For

any given positive integer M, EM is defined as a subspace of S by

EM =
{

u = {un} ∈ S | un+M = un, n ∈ Z
}

.

• For x, y ∈ S, a, b ∈ R, ax + by is defined by

ax + by = {axn + byn}+∞
n=–∞,

then S is a vector space. Clearly, EM is isomorphic to RM , EM can be equipped with the
inner product

〈x, y〉EM =
M∑

s=1

xsys, ∀x, y ∈ EM,

then EM with the inner product given above is a finite dimensional Hilbert space and lin-
early homeomorphic to RM . And we denote the norm ‖x‖ = (

∑M
j=1 x2

j ) 1
2 .

• For a given matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

2 –1 0 · · · 0 –1
–1 2 –1 · · · 0 0
0 –1 2 · · · 0 0
...

...
. . .

...
...

...
–1 0 0 · · · –1 2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

M×M

,

in view of the results established in [1], all the eigenvalues of B are 0, λ1,λ2, . . . ,λM–1 and
λj > 0 for all j ∈ Z[1, M – 1]. Moreover,

λmin = 2
(

1 – cos
2π

M

)
, λmax =

⎧
⎨

⎩
4, when M is even,

2(1 + cos π
M ), when M is odd.

Step 2: Let the functional

ϕ(u) =
1
2

M∑

s=1

(�us)2 – F(n, un) – G, (4.1)

where

G = G(u1, u2, . . . , un–1, un+1, un+2, . . . , uM) = w3

[ n–1∑

s=1

|us|3 +
M∑

s=n+1

|us|3
]

.
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According to condition (A3), if we let

w = max
{∣∣F(n, x) – w3x2 + w2

∣∣ : n ∈ Z, |x| ≤ w1
}

and w̃ = w + w2, then

F(n, x) ≥ w3|x|2 – w̃.

Combining with the fact

M∑

s=1

(�us)2 =
M∑

s=1

(us+1 – us)2 =
M∑

s=1

(
2u2

s – 2usus+1
)
,

for all u ∈ EM , there exists a constant w′ > w̃ such that

ϕ(u) =
1
2

[ M∑

s=1

(�us)2

]

– F(n, un) – G

≤ 1
2

M∑

s=1

(
2u2

s – 2usus+1
)

– w3u2
n + w̃ – w3

n–1∑

s=1

|us|3 – w3

M∑

s=n+1

|us|3

≤ 1
2

M∑

s=1

(
2u2

s – 2usus+1
)

– w3u2
n + w′ – w3

n–1∑

s=1

u2
s – w3

M∑

s=n+1

u2
s

=
1
2

u�Bu – w3‖u‖2 + w′

≤ 1
2
λmax‖u‖2 – w3‖u‖2 + w′

=
(

1
2
λmax – w3

)
‖u‖2 + w′.

Notice that if M is even then w3 ∈ (2, +∞), and if M is odd, then w3 ∈ (1 + cos π
M , +∞), and

λmax =

⎧
⎨

⎩
4, when M is even,

2(1 + cos π
M ), when M is odd,

we have λmax/2 – w3 < 0, which implies that ϕ(u) ≤ w′. Therefore, ϕ(u) is bounded from
above on EM .

Step 3: Set c̃ = supu∈EM ϕ(u). From λmax/2 – w3 < 0 and

ϕ(u) ≤
(

λmax

2
– w3

)
‖u‖2 + w′,

we have ϕ(u) → –∞ as ‖u‖ → +∞, which implies –ϕ(u) → +∞ as ‖u‖ → +∞. Hence,
for every l > |c̃|, there is a constant P > 0 such that, for every ‖u‖ > P, –ϕ(u) > l > c̃. With
the help of the continuity of ϕ(u), there must be a point ū ∈ EM such that ϕ(ū) = c̃ =
supu∈EM ϕ(u) and ‖u‖ ≤ P. Therefore, ū is a critical point of the functional ϕ(u) on EM

with the critical value c̃.
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Next, let us search for the second critical point of the functional ϕ(u) on EM .
Step 4: Let u(k) ∈ EM , for all k ∈ N , be such that {ϕ(u(k))} is bounded. From Step 2, there

exists M1 > 0, such that

–M1 ≤ ϕ
(
u(k)) ≤

(
1
2
λmax – w3

)∥∥u(k)∥∥2 + w′,

which implies that

∥∥u(k)∥∥2 ≤
(

w3 –
1
2
λmax

)–1(
w′ + M1

)
.

That is, {u(k)} is bounded in EM . Since EM is finite dimensional, there exists a subsequence
of {u(k)} (not labeled), which is convergent in EM , so the (P.S.) condition is verified.

Step 5: Let f (t) = t2 – w3t3 for t ∈ [0, +∞]. Then f ′(t) = 2t – 3w3t2 = t(2 – 3w3t). So f is
increase on [0, 2/(3w3)] and decrease on (2/(3w3), 1/w3). Combining f (0) = 0 and f (1/w3) =
0, there exist ξ ∈ (0, 2/(3w3)) and ζ ∈ (2/(3w3), 1/w3), such that f (ξ ) = f (ζ ) > 0.

Step 6: By (4.1) and condition (W2), we have ϕ(0) = 0. Take

e =

⎧
⎨

⎩
un–1 = ξ ,

ui = 0, i = 1, 2, . . . , n – 2, n, n + 1, . . . , M,

and

e1 =

⎧
⎨

⎩
un–1 = ζ ,

ui = 0, i = 1, 2, . . . , n – 2, n, n + 1, . . . , M.

Then it is easy to verify that

ϕ(e) =
1
2

[ M∑

s=1

(�us)2

]

– F(n, un) – G

= u2
n–1 – w3|un–1|3 = ξ 2 – w3ξ

3 = f (ξ ),

and

ϕ(e1) =
1
2

[ M∑

s=1

(�us)2

]

– F(n, un) – G

= u2
n–1 – w3|un–1|3 = ζ 2 – w3ζ

3 = f (ζ ).

In view of the fact that f (ξ ) = f (ζ ) > 0, ‖e‖ = ξ and ‖e1‖ = ζ , we have ϕ(e) = ϕ(e1) > 0 = ϕ(0)
and ‖e‖ �= ‖e1‖. Moreover, all the assumptions in Theorem 1.4 are satisfied. Noticing that
ϕ(u) satisfies the (P.S.) condition, then, by Remark 1.1, there exists a critical point û such
that ϕ(û) = ĉ (ĉ is given in Theorem 1.4).

Step 7: In order to obtain two critical points, we also need to prove that û �= ū. Since
ϕ(û) = ĉ and ϕ(ū) = c̃, if we can prove ĉ �= c̃, that also implies û �= ū. So in the following,
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we are ready to prove that ĉ �= c̃. Since u ∈ EM and EM is linearly homeomorphic to RM , in
Theorem 1.4, we can take X = EM and construct

γ1(t) = (u1, . . . , un–2, un–1, un, un+1, . . . , uM+1)

= (0, . . . , 0, un–1, 0, 0, . . . , 0)

=
(
0, . . . , 0, (2ζ – 4ξ )t2 + (–ζ + 4ξ )t, 0, 0, . . . , 0

)
,

where un–1 = (2ζ – 4ξ )t2 + (–ζ + 4ξ )t, t ∈ [0, 1]. Obviously, γ1 ∈ C([0, 1]).
One computes that γ1(0) = (0, . . . , 0, 0, 0, 0, . . . , 0),

γ1

(
1
2

)
= (0, . . . , 0, un–1, 0, 0, . . . , 0) = (0, . . . , 0, ξ , 0, 0, . . . , 0) = e,

and

γ1(1) = (0, . . . , 0, un–1, 0, 0, . . . , 0) = (0, . . . , 0, ζ , 0, 0, . . . , 0) = e1.

Hence, γ1(t) ∈ Γ̂ where

Γ̂ :=
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = 0,γ

(
1
2

)
= e1,γ (1) = e

}
.

Let u = γ1(t), t ∈ [0, 1] be in (4.1). Since F(n, 0) = 0, we have

ϕ(u) = ϕ
(
γ1(t)

)
=

1
2

[ M∑

s=1

(�us)2

]

– F(n, un) – G

=
1
2
(
u2

n–1 + u2
n–1

)
– F(n, 0) – w3|un–1|3

= u2
n–1 – w3|un–1|3. (4.2)

Let |un–1| = y ∈ [0, +∞], then, by (4.2), we see that when y = 2/3w3, ϕ(γ1(t)) = y2 – w3y3

takes the maximum value 4/(27w2
3). We must point that when t ∈ [0, 1], |un–1| can take the

value of 2/3w3. In fact, when t = 0,

un–1 = (2ζ – 4ξ )t2 + (–ζ + 4ξ )t = 0,

and when t = 1,

un–1 = (2ζ – 4ξ )t2 + (–ζ + 4ξ )t = ζ .

Observing that ζ ∈ (2/(3w3), 1/w3), then, by the continuity of un–1 = (2ζ –4ξ )t2 +(–ζ +4ξ )t,
there exists t̃ ∈ [0, 1] such that un–1 = (2ζ – 4ξ )t̃2 + (–ζ + 4ξ )t̃ = 2/(3w3).

Since ĉ := infγ∈Γ̂ maxt∈[0,1] ϕ(γ (t)) and γ1(t) ∈ Γ̂ , we have ĉ ≤ 4/(27w2
3). In order to obtain

two critical point of ϕ(u) on EM , we will show that c̃ > 4/(27w2
3).

Since EM is linearly homeomorphic to RM and M ≥ 3, if we choose

u = (u1, . . . , un–2, un–1, un, un+1, . . . , uM+1) ∈ EM,
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then

u1 = · · · = un–2 = un = un+2 = · · · = uM = 0, un–1 = –un+1 = –
1

2w3
.

By (4.1) and F(n, 0) = 0, we have

ϕ(u) =
1
2

M∑

s=1

(�us)2 – F(n, un) – G

=
1
2
(
u2

n–1 + u2
n–1 + u2

n+1 + u2
n+1

)
– F(n, 0) – w3

(
u3

n–1 + u3
n+1

)

= 1/
(
2w2

3
)

– 0 – 1/
(
4w2

3
)

= 1/
(
4w2

3
)
.

Employing c̃ = supu∈EM , we have c̃ ≥ 1/(4w2
3) > 4/(27w2

3) ≥ ĉ. Combining ϕ(û) = ĉ, ϕ(ū) = c̃,
both û and ū are critical point of the functional ϕ, we obtain two different critical points
of ϕ.

Step 8: (1.1) has at least two nontrivial M-periodic solutions. Since ϕ ∈ C2(EM, R), for
any u = {un}n∈Z ∈ EM , according to u0 = uM , u1 = uM+1, one computes that

∂ϕ

∂un
= �2un–1 + ∇un F(n, un), ∀n ∈ Z.

Therefore, the existence of critical points of ϕ on EM implies the existence of periodic
solutions of system (1.1). Moreover, we obtained two different critical points of ϕ(u) on
EM in Step 7, so system (1.1) has two different M-periodic solutions.

Note that in (4.1), ϕ(0) = 0. But ϕ(û) = ĉ ≥ ϕ(e) > ϕ(0) = 0 and ϕ(ū) = c̃ = supu∈EM >
4/(27w2

3) ≥ ĉ ≥ ϕ(e) > 0, so any of the above periodic solutions û and ū is nontrivial. From
this, Theorem 1.5 is proved.

Remark 4.1 Let F(t, x) be stated in Example 1.2, from (4.1), we have

ϕ(u) =
1
2

[ M∑

s=1

(�us)2

]

– a
(
u2

n/2 + un + cos un – 1
)(

φ(n) + K
)

– w3

[ n–1∑

s=1

|us|3 +
M∑

s=n+1

|us|3
]

,

where u = (. . . , u–n, . . . , u0, . . .) ∈ EM . We notice that the value of inf‖u‖=r ϕ(u) is very diffi-
cult to compute, but fortunately the condition in our new mountain pass theorem (Theo-
rem 1.4) is independent of inf‖u‖=r ϕ(u), and we need not compute it.
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