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Abstract
We consider nonlocal PDEs driven by additive white noises on R

d . For Lq integrable
coefficients, we derive the existence and uniqueness, as well as Hölder continuity, of
mild solutions. Precisely speaking, the unique mild solution is almost surely Hölder
continuous with Hölder index 0 < θ < (1/2 – d/(qα))(1∧ α). Moreover, we show that
any order γ (< q) moment of Hölder normal for u on every bounded domain of
R+ ×R

d is finite.
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1 Introduction
Let (Ω ,F , {Ft}t≥0,P) be a filtered probability space that satisfies the usual hypotheses of
completeness and right continuity. {Wt}t≥0 is a one-dimensional standard Wiener process
on (Ω ,F , {Ft}t≥0,P). In this paper, we are concerned with the Hölder-estimates of mild
solutions for the following nonlocal stochastic partial differential equations (SPDEs for
short):

⎧
⎨

⎩

du(t, x) + (–�) α
2 u(t, x) dt = h(t, x) dt + f (t, x) dWt , t > 0, x ∈R

d,

u(t, x)|t=0 = 0, x ∈R
d,

(1.1)

where α ∈ (0, 2], (–�) α
2 is the fractional Laplacian on R

d .
When α = 2, these SPDEs have been studied widely. W k,2-theory was well established

by Pardoux [15] and Rozovskii [16]. A more general W 2,q-theory was founded by Krylov
[9–11] for 2 ≤ q < ∞. Krylov’s result was then generalized by Denis, Matoussi, and Stoica
[5] for q = ∞ to nonlinear SPDEs.

There is also some Hölder estimates for solutions of (1.1) when α = 2. As f (t, ·) belongs
to Lq with large enough q (or q = ∞), h vanishes and R

d is replaced by a bounded domain
(with smooth boundary), the space and time Hölder estimates have been discussed by
Kuksin, Nadirashvili, and Piatnitski [12, 13]. This result was further developed by Kim
[8] for general Hölder estimates for generalized solutions with Lp(Lq) coefficients. Using
a different philosophy, Hsu, Wang, and Wang [6] discussed (1.1) with α = 2 for general
f (u dependent). By applying a stochastic De Giorgi iteration technique, they built the
Hölder estimates for weak solutions on [T , 2T] × R

d (T > 0). Recently, by using the heat
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kernel estimate technique, Wei, Duan, and Lv [18] also derived the Hölder estimates for
stochastic transport-diffusion equations driven by Lévy noises.

When α ∈ (0, 2), Chang and Lee [4], Kim and Kim [7] studied the Lq (2 ≤ q < ∞) the-
ory for SPDE (1.1). When f is bounded measurable, by constructing stochastic BMO and
Morrey–Campanato spaces, Lv et al. [14] established the BMO and Hölder estimates for
solutions.

However, as far as we know, there have been very few papers dealing with the Hölder
estimates for (1.1) with Lq coefficients. In this paper, we will fill this gap and derive the
Hölder estimates for mild solutions. Here the mild solution of (1.1) is defined as follows.

Definition 1.1 Let α ∈ (0, 2) and Pt denote the forward heat semigroup generated by neg-
ative fractional Laplacian –(–�)α/2. Suppose that u is given by

u(t, x) =
∫ t

0
Pt–rh(r, ·)(x) dr +

∫ t

0
Pt–rf (r, ·)(x) dWr. (1.2)

We call u a mild solution of (1.1) if u ∈ L∞
loc([0,∞); L∞(Rd; L2(Ω))) which is Ft-adapted

and as a family of L2(Ω ,F ,P)-valued random variables is continuous.

Remark 1.1 Let p(t, x, y) be the transition density of symmetric α-stable process, then
p(t, x, y) = p(t, x – y) and

Ptϕ(x) =
∫

Rd
p(t, x – y)ϕ(y) dy, ϕ ∈ Lq(

R
d), q > 1. (1.3)

Moreover, p(t, ·) is smooth for t > 0 and from [4, Lemma 2.2] (also see [3, 19, 20]), we have
the following estimates:

p(t, x – y) ≈ t
|y – x|d+α

∧ t– d
α ,

∣
∣∇xp(t, x – y)

∣
∣ ≈ |y – x|

(
t

|y – x|d+2+α
∧ t– d+2

α

)

.
(1.4)

For every t > 0, by the scaling property, then p(t, x – y) = t– d
α p(1, (x – y)t–1/α), which implies

∣
∣∂tp(t, x – y)

∣
∣ ≤ C

(
1

|y – x|d+α
∧ t– d+α

α

)

. (1.5)

Our main result is the following.

Theorem 1.1 Let us consider the nonlocal SPDE (1.1) associated with α ∈ (0, 2). We
suppose that q > 2d/α ∨ 2, f , h ∈ L∞

loc(R+; Lq(Rd × Ω)) which are Ft-adapted. Let us set
ϑ = (1/2 – d/(qα))(1 ∧ α). Then there is a mild solution u of (1.1) and u ∈ L∞

loc(R+; L∞(Rd;
Lq(Ω))).

In addition, if q > 4(d + 1)/(1 ∧ α), u ∈ Cϑ–([0, t] × R
d; Lq(Ω)) ∩ Lq–(Ω ;Cϑ–

loc (R+ × R
d))

for every 0 < t < ∞. Moreover, for every t > 0, every 0 < θ < ϑ , every bounded domain Q ⊂
R

d , every 0 < γ < q, there exist two positive constants C(q,α, d, θ , t) and C(q,α, d,γ , θ , t, Q)
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(independent of h and f ) such that

‖u‖Cθ ([0,t]×Rd ;Lq(Ω)) ≤ C(q,α, d, θ , t)
[‖h‖L∞([0,t];Lq(Rd×Ω))

+ ‖f ‖L∞([0,t];Lq(Rd×Ω))
]

(1.6)

and

E‖u‖γ

Cθ ([0,t]×Q) ≤ C(q,α, d,γ , θ , t, Q)
[‖h‖L∞([0,t];Lq(Rd×Ω)) (1.7)

+ ‖f ‖L∞([0,t];Lq(Rd×Ω))
]γ , (1.8)

where

Cϑ–(
[0, t] ×R

d; Lq(Ω)
)

:=
⋂

0<θ<ϑ

Cθ
(
[0, t] ×R

d; Lq(Ω)
)

and

Lq–(
Ω ;Cϑ–

loc
(
R+ ×R

d)) :=
⋂

1≤p<q

Lp
(

Ω ;
⋂

0<θ<ϑ

Cθ
loc

(
R+ ×R

d)
)

.

Remark 1.2 (i) In [4] Chang and Lee discussed (1.1); under the assumptions that h ∈
Hk

q (T ,Rd), f ∈ Hk+ α
2 +δ

q (T ,Rd) (T > 0 is a given real number, 0 < δ < α/2), they founded the
Hk+α

q theory of solutions on R
d . As a direct consequence, if k = 0 and qα > d, the Hölder

estimate for solutions in space variable satisfies

E

∫ t

0

∥
∥u(s)

∥
∥γ

Cθ (Rd) ds < ∞, t > 0,

where θ is given by the Sobolev imbedding theorem. Different from [4], L∞(Lq) integra-
bility in space and time variables is enough to ensure the Hölder continuity of solutions in
space and time variables.

(ii) Our main idea comes from [13]. In [13], Kuksin, Nadirashvili, and Piatnitski argued
(1.1) with α = 2 on a bounded domain. By estimating the tail probability, they gained the
space and time Hölder estimates. Here, we study (1.1) on R

d with α ∈ (0, 2). By using
the techniques developed in [13], we gain the space and time Hölder estimates on every
bounded domain.

This paper is organized as follows. In Sect. 2, we present some useful lemmas, and Sect. 3
is devoted to giving the proof details.

Notations a ∧ b = min{a, b}, a ∨ b = max{a, b}. R+ = {r ∈ R, r ≥ 0}. The letter C will mean
a positive constant whose values may change in different places. For a parameter or a func-
tion �, C(�) means the constant is only dependent on �. N is the set of natural numbers,
and Z denotes the set of integral numbers. Let Q ⊂R

k (k ∈N) be a bounded domain. For
0 < θ < 1, we define Cθ (Q) to be the set of all continuous functions u on Q such that

‖u‖Cθ (Q) := sup
x∈Q

∣
∣u(x)

∣
∣ + sup

x,y∈Q,x =y

|u(x) – u(y)|
|x – y|θ < ∞.
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2 Useful lemmas
Lemma 2.1 Let ρ0 ∈ Lq(Rd × Ω). Consider the Cauchy problem

∂tρ(t, x) + (–�)
α
2 ρ(t, x) = 0, t > 0, x ∈R

d,ρ(t, x)|t=0 = ρ0(x). (2.1)

Then, for any 0 < β < 1, the unique mild solution (given by (1.3) if one replaces ϕ by ρ0) of
(2.1) meets the following estimates:

∥
∥ρ(t)

∥
∥
Cβ (Rd) ≤ Ct– β

α – d
qα ‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω , (2.2)

and

∣
∣ρ(t + δ, x) – ρ(t, x)

∣
∣ ≤ Ct–β– d

qα δβ‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω . (2.3)

Proof Obviously, the unique mild solution ρ of (2.1) can be represented by (1.3) if one
replaces ϕ by ρ0. Hence, for any t > 0,

∣
∣ρ(t, x)

∣
∣ ≤

∫

Rd

∣
∣p(t, x – y)ρ0(y)

∣
∣dy

≤
[∫

Rd

∣
∣p(t, y)

∣
∣

q
q–1 dy

] q–1
q

‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω . (2.4)

According to (1.4), then

∫

Rd

∣
∣p(t, y)

∣
∣

q
q–1 dy ≤ C

[∫

|y|≥t
1
α

∣
∣
∣
∣

t
|y|d+α

∧ t– d
α

∣
∣
∣
∣

q
q–1

dy +
∫

|y|<t
1
α

∣
∣
∣
∣

t
|y|d+α

∧ t– d
α

∣
∣
∣
∣

q
q–1

dy
]

≤ C
[∫

|y|≥t
1
α

∣
∣
∣
∣

t
|y|d+α

∣
∣
∣
∣

q
q–1

dy +
∫

|y|<t
1
α

(
t– d

α
) q

q–1 dy
]

= C
[

t
q

q–1

∫

|y|≥t
1
α

|y|– q(d+α)
q–1 dy + t– dq

(q–1)α

∫

|y|<t
1
α

dy
]

≤ C
[
t

q
q–1 |y|– q(d+α)

q–1 +d|
y=t

1
α

+ t– dq
(q–1)α |y|d|

y=t
1
α

]

= Ct– d
(q–1)α . (2.5)

Combining (2.4) and (2.5), then

∣
∣ρ(t, x)

∣
∣ ≤

∫

Rd

∣
∣p(t, x – y)ρ0(y)

∣
∣dy ≤ Ct– d

qα ‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω . (2.6)

Let us calculate ∇ρ and ∂tρ . For 1 ≤ i ≤ d, we manipulate that

∂xiρ(t, x) =
∫

Rd
∂xi p(t, x – y)ρ0(y) dy,

which suggests that

∣
∣∇ρ(t, x)

∣
∣ ≤

[∫

Rd

∣
∣∇p(t, y)

∣
∣

q
q–1 dy

] q–1
q

‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω .
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By virtue of (1.4) and analogue calculations for (2.5) imply that

∫

Rd

∣
∣∇p(t, y)

∣
∣

q
q–1 dy

≤ C
[∫

|y|≥t
1
α

∣
∣
∣
∣|y|

(
t

|y|d+2+α
∧ t– d+2

α

)∣
∣
∣
∣

q
q–1

dy +
∫

|y|<t
1
α

∣
∣
∣
∣|y|

(
t

|y|d+2+α
∧ t– d+2

α

)∣
∣
∣
∣

q
q–1

dy
]

≤ C
[∫

|y|≥t
1
α

t
q

q–1 |y|– q(d+1+α)
q–1 dy +

∫

|y|<t
1
α

|y| q
q–1 t– q(d+2)

(q–1)α dy
]

≤ C
[
t

q
q–1 |y|– q(d+1+α)

q–1 +d∣∣
y=t

1
α

+ t– (d+2)q
(q–1)α |y|d+ q

q–1
∣
∣
y=t

1
α

]

= Ct– d+q
(q–1)α .

Therefore, one arrives at

∣
∣∇ρ(t, x)

∣
∣ ≤ Ct– d

qα – 1
α ‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω . (2.7)

Applying the interpolation inequality

∥
∥ρ(t)

∥
∥
Cβ (Rd) ≤ C

∥
∥ρ(t)

∥
∥1–β

L∞(Rd)

∥
∥ρ(t)

∥
∥β

C1(Rd) (2.8)

to (2.6) and (2.7), (2.2) holds true.
Repeating the above calculations, and by virtue of (1.5), one derives that

∣
∣∂tρ(t, x)

∣
∣ ≤ Ct– d

qα –1‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω . (2.9)

The interpolation inequality (2.8) uses (2.6) and (2.9), for every t2 > t1 > 0, we get

∥
∥ρ(·, x)

∥
∥
Cβ ([t1,t2]) ≤ Ct

–β– d
qα

1 ‖ρ0‖Lq(Rd), P-a.s. ω ∈ Ω . (2.10)

From (2.10), inequality (2.3) is legitimate, and we finish the proof. �

Lemma 2.2 (Minkowski inequality [17]) Assume that (S1,F1,μ1) and (S2,F2,μ2) are two
measure spaces and that G : S1 × S2 → R is measurable. For given real numbers 1 ≤ p1 ≤
p2, we also assume that G ∈ Lp1 (S1; Lp2 (S2)). Then G ∈ Lp2 (S2; Lp1 (S1)) and

[∫

S2

(∫

S1

∣
∣G(x, y)

∣
∣p1

μ1(dx)
) p2

p1
μ2(dy)

] 1
p2

≤
[∫

S1

(∫

S2

∣
∣G(x, y)

∣
∣p2

μ2(dy)
) p1

p2
μ1(dx)

] 1
p1

. (2.11)

The next lemmas will play an important role in estimating stochastic integrals.

Lemma 2.3 (Interpolation inequality) Suppose that 1 ≤ p1 < p2 ≤ ∞. Let E be a Banach
space and F be a linear operator from Lp1 (Ω ; E) + Lp2 (Ω ; E) into the space Lp1 (Ω) + Lp2 (Ω).
If F is bounded from Lp1 (Ω ; E) into Lp1 (Ω) and also bounded from Lp2 (Ω ; E) into Lp2 (Ω),
then F is bounded from Lp3 (Ω ; E) into Lp3 (Ω) for every p1 ≤ p3 ≤ p2.
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Proof When E = R, this result can be recovered from the Marcinkiewicz interpolation
theorem [1, Theorem 2.58]. For a general Banach space E, what we should do is to replace
δu(τ ) [1, pp. 56–57] by δ‖u‖E (τ ), and then the lemma is proved. �

Lemma 2.4 Let F be given in the introduction, that g be an F ×B(R+) ×B(R+) ×B(Rd)-
measurable function. Suppose that {Mt(x)}t≥0 is a Brownian type integral of the form

Mt(x) =
∫ t

0
g(t, r, x) dWr , g(·, r, ·) is Fr-measurable.

Suppose that q ≥ 2 and

E

[∫ t

0

∣
∣g(t, r, x)

∣
∣2 dr

] q
2

< ∞ for almost everywhere x ∈R
d. (2.12)

There exists a positive constant C(q) > 0, which is independent of x, such that for each t ≥ 0,

E
[∣
∣Mt(x)

∣
∣q] ≤ C(q)E

[∫ t

0

∣
∣g(t, r, x)

∣
∣2 dr

] q
2

. (2.13)

Proof First, we assume that F has the following form:

g(t, r, x) =
k∑

j=1

gj(t, x)1(tj–1,tj](r), (2.14)

where k ∈ N, gj are (Ω × R+ × R
d;Ftj–1 × B(R+) × B(Rd))-measurable, and 0 = t0 < t1 <

t2 < · · · < tk = t.
For q = 2, by using the Itô isometry, we obtain

E
∣
∣Mt(x)

∣
∣2 = E

∣
∣
∣
∣
∣

k∑

j=1

(Wtj – Wtj–1 )gj(t, x)

∣
∣
∣
∣
∣

2

= E

∫ t

0

∣
∣g(t, r, x)

∣
∣2 dr. (2.15)

For q = 4, according to Burkholder’s inequality [2, Theorem 4.4.21], we also have

E
∣
∣Mt(x)

∣
∣4 = E

∣
∣
∣
∣
∣

k∑

j=1

(Wtj – Wtj–1 )gj(t, x)

∣
∣
∣
∣
∣

4

≤ CE

[∫ t

0

∣
∣g(t, r, x)

∣
∣2 dr

]2

. (2.16)

From (2.15) and (2.16), for every t > 0, the linear operator

F : g →
∫ t

0
g(t, r, x) dWr

is bounded from L2(Ω ; L2(0, t)) into L2(Ω) and also bounded from L4(Ω ; L2(0, t)) into
L4(Ω). According to Lemma 2.3, F is bounded from Lq(Ω ; L2(0, t)) into Lq(Ω) for every
2 ≤ q ≤ 4, i.e., (2.13) holds true if g has the form (2.14). Observing that the functions which
meet condition (2.13) can be approximated by the step functions, we thus complete the
proof for q ∈ [2, 4].
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Analogously, for every even number and every step function of the form (2.14), one can
prove that (2.16) holds. In view of Lemma 2.3, one derives an inequality of (2.13) for every
q > 4. Then, by an approximating argument, we accomplish the proof. �

Remark 2.1 When g(t, r, x) is a deterministic function, the Marcinkiewicz interpolation
inequality is not needed. Indeed, an Lq type interpolation inequality is enough.

Lemma 2.5 ([13, Lemma 4]) Let a function g satisfy the estimate

osc
J

g = sup
x,y∈J

∣
∣g(x) – g(y)

∣
∣ ≤ κn (2.17)

in any small cube J which is a mesh of the grid 2–n
Z

d+1, i.e., in any J = 2–nj + [0, 2–n]d+1,
where j ∈ Z

d+1. Then, for any � ∈R
d+1, one has

∣
∣g(y + �) – g(y)

∣
∣ ≤ 2κ[log2(1/�)], (2.18)

where [·] stands for the integer part.

3 Proof of Theorem 1.1

Proof The existence result follows by using the explicit formula

u(t, x) =
∫ t

0

∫

Rd
p(t – r, x – y)h(r, y) dy dr +

∫ t

0

∫

Rd
p(t – r, x – y)f (r, y) dy dWr ,

where p(t, x – y) fulfills (1.4) and (1.5). By this obvious representation, to prove u is
a mild solution, we need to show u ∈ L∞

loc(R+; L∞(Rd; L2(Ω))). Now let us verify that
u ∈ L∞

loc(R+; L∞(Rd; Lq(Ω))).
If one uses Lemma 2.4 for given q ≥ 2, then

E
∣
∣u(t, x)

∣
∣q ≤ C(q)E

∣
∣
∣
∣

∫ t

0

∫

Rd
p(t – r, x – z)h(r, z) dz dr

∣
∣
∣
∣

q

+ C(q)E
[∫ t

0

∣
∣
∣
∣

∫

Rd
p(t – r, x – z)f (r, z) dz

∣
∣
∣
∣

2

dr
] q

2
.

With the aid of Lemma 2.2 and the Hölder inequality, we arrive at

E
∣
∣u(t, x)

∣
∣q ≤ C(q)

∣
∣
∣
∣

∫ t

0

∫

Rd
p(t – r, x – z)

[
E

∣
∣h(r, z)

∣
∣q] 1

q dz dr
∣
∣
∣
∣

q

+ C(q)E
[∫ t

0

∣
∣
∣
∣

∫

Rd
p(t – r, x – z)

[
E

∣
∣f (r, z)

∣
∣q] 1

q dz
∣
∣
∣
∣

2

dr
] q

2

≤ C(q)
∣
∣
∣
∣

∫ t

0

[∫

Rd

∣
∣p(r, y)

∣
∣

q
q–1 dy

] q–1
q

dr
∣
∣
∣
∣

q

sup
0≤r≤t

E

∫

Rd

∣
∣h(r, z)

∣
∣q dz

+ C(q)
∣
∣
∣
∣

∫ t

0

[∫

Rd

∣
∣p(r, y)

∣
∣

q
q–1 dy

] 2(q–1)
q

dr
∣
∣
∣
∣

q
2

sup
0≤r≤t

E

∫

Rd

∣
∣f (r, z)

∣
∣q dz.
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By using inequality (2.5), one derives

E
∣
∣u(t, x)

∣
∣q ≤ C(q)

∣
∣
∣
∣

∫ t

0
r– d

qα dr
∣
∣
∣
∣

q

‖h‖q
L∞([0,t];Lq(Rd×Ω))

+ C(q)
∣
∣
∣
∣

∫ t

0
r– 2d

qα dr
∣
∣
∣
∣

q
2 ‖f ‖q

L∞([0,t];Lq(Rd×Ω)).

Observing that qα > 2d, therefore

E
∣
∣u(t, x)

∣
∣q ≤ C(q)

(
1 + tq– d

α
)[‖h‖q

L∞([0,t];Lq(Rd×Ω)) + ‖f ‖q
L∞([0,t];Lq(Rd×Ω))

]
. (3.1)

Now let us consider point-wise estimates for mild solutions of (1.1). By the scaling trans-
formations on space and time variables, to prove (1.6) and (1.7) are true for u, it is sufficient
to show that u meets (1.6) and (1.7) on [0, 1] × R

d and [0, 1]d+1, respectively. Initially, let
us check (1.6).

For every x1, x2 ∈R
d , t > 0,

u(t, x1) – u(t, x2) =
∫ t

0

[
Pt–rh(r, x1) – Pt–rh(r, x2)

]
dr

+
∫ t

0

[
Pt–rf (r, x1) – Pt–rf (r, x2)

]
dWr .

According to (2.13), one derives that

E
∣
∣u(t, x1) – u(t, x2)

∣
∣q ≤ C(q)

{

E

∣
∣
∣
∣

∫ t

0

[
Pt–rh(r, x1) – Pt–rh(r, x2)

]
dr

∣
∣
∣
∣

q

+ E

∣
∣
∣
∣

∫ t

0

[
Pt–rf (r, x1) – Pt–rf (r, x2)

]2 dr
∣
∣
∣
∣

q
2
}

. (3.2)

Let 0 < β < (1/2 – d/(qα))(1 ∧ α) be a real number. In view of Lemma 2.1 (2.2) and
Lemma 2.2 (2.11), from (3.2), one concludes that

E
∣
∣u(t, x1) – u(t, x2)

∣
∣q

≤ C(q)|x1 – x2|qβ‖h‖q
L∞([0,t];Lq(Rd×Ω))

∣
∣
∣
∣

∫ t

0
r– β

α – d
qα dr

∣
∣
∣
∣

q

+ C(q)|x1 – x2|qβ‖f ‖q
L∞([0,t];Lq(Rd×Ω))

∣
∣
∣
∣

∫ t

0
r– 2β

α – 2d
qα dr

∣
∣
∣
∣

q
2

≤ C(q,α, d,β , t)|x1 – x2|qβ
[‖h‖q

L∞([0,t];Lq(Rd×Ω)) + ‖f ‖q
L∞([0,t];Lq(Rd×Ω))

]
. (3.3)

Similarly, for every t > 0, δ > 0, one can define

u(t + δ, x) – u(t, x)

=
∫ t+δ

0
Pt+δ–rh(r, x) dr –

∫ t

0
Pt–rh(r, x) dr

+
∫ t+δ

0
Pt+δ–rf (r, x) dWr –

∫ t

0
Pt–rf (r, x) dWr
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=
∫ t+δ

t
Pt+δ–rh(r, x) dr +

∫ t

0

[
Pt+δ–rh(r, x) – Pt–rh(r, x)

]
dr

+
∫ t+δ

t
Pt+δ–rf (r, x) dWr +

∫ t

0

[
Pt+δ–rf (r, x) – Pt–rf (r, x)

]
dWr

=: J1 + J2 + J3 + J4.

Let us estimate J1, . . . , J4. To calculate J1, we use (2.5) to get

E|J1|q ≤ C(q)‖h‖q
L∞([0,t+δ];Lq(Rd×Ω))

∣
∣
∣
∣

∫ t+δ

t

[∫

Rd

∣
∣p(t + δ – r, y)

∣
∣

q
q–1 dy

] (q–1)
q

dr
∣
∣
∣
∣

q

≤ C(q)‖h‖q
L∞([0,t+δ];Lq(Rd×Ω))

∣
∣
∣
∣

∫ δ

0
r– d

qα dr
∣
∣
∣
∣

q

≤ C(q,α, d)‖h‖q
L∞([0,t+δ];Lq(Rd×Ω))δ

q– d
α . (3.4)

An analogue calculation also implies that

E|J3|q ≤ C(q)‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))

∣
∣
∣
∣

∫ t+δ

t

[∫

Rd

∣
∣p(t + δ – r, y)

∣
∣

q
q–1 dy

] 2(q–1)
q

dr
∣
∣
∣
∣

q
2

≤ C(q)‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))

∣
∣
∣
∣

∫ δ

0
r– 2d

qα dr
∣
∣
∣
∣

q
2

≤ C(q,α, d)‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))δ

q
2 – d

α . (3.5)

For J2, we use Lemma 2.1 (2.3), one concludes that

E|J2|q ≤ E

∣
∣
∣
∣

∫ t

0

∣
∣Pt+δ–rh(r, x) – Pt–rh(r, x)

∣
∣dr

∣
∣
∣
∣

q

≤ ‖h‖q
L∞([0,t+δ];Lq(Rd×Ω))δ

βq
∣
∣
∣
∣

∫ t

0
(t – r)–β– d

qα dr
∣
∣
∣
∣

q

≤ C(q,α, d,β , t)‖h‖q
L∞([0,t+δ];Lq(Rd×Ω))δ

βq. (3.6)

Similarly, one gains

E|J4|q ≤ E

∣
∣
∣
∣

∫ t

0

∣
∣Pt+δ–rf (r, x) – Pt–rf (r, x)

∣
∣2 dr

∣
∣
∣
∣

q
2

≤ C(q)‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))δ

βq
∣
∣
∣
∣

∫ t

0
(t – r)–2β– 2d

qα dr
∣
∣
∣
∣

q
2

≤ C(q,α, d,β , t)‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))δ

βq. (3.7)

Combining (3.4)–(3.7), one arrives at

E
∣
∣u(t + δ, x) – u(t, x)

∣
∣q

≤ C(q,α, d,β , t)
[‖h‖q

L∞([0,t+δ];Lq(Rd×Ω)) + ‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))

][
δq– d

α + δβq],
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which implies

E
∣
∣u(t + δ, x) – u(t, x)

∣
∣q

≤ C(q,α, d,β , t)
[‖h‖q

L∞([0,t+δ];Lq(Rd×Ω)) + ‖f ‖q
L∞([0,t+δ];Lq(Rd×Ω))

]
δβq (3.8)

if δ < 1.
Therefore, we accomplish from (3.3) and (3.8) that

E
∣
∣u(t2, x2) – u(t1, x1)

∣
∣q

≤ C(q,α, d,β)
[‖h‖q

L∞([0,t2];Lq(Rd×Ω)) + ‖f ‖q
L∞([0,t2];Lq(Rd×Ω))

]

× (|t2 – t1| + |x2 – x1|
)βq (3.9)

for every x1, x2 ∈R
d , 0 ≤ t1 ≤ t2 ≤ 1. According to (3.1) and (3.9), (1.6) is true.

Notice that q > 4(d + 1)/(1 ∧ α) and (3.9) holds for every 0 < β < (1/2 – d/(qα))(1 ∧ α).
For a given sufficiently large natural number 0 < m ∈ N, if one obtains

β =
m

1 + m

(
1
2

–
d

qα

)

(1 ∧ α), (3.10)

then

qβ = q
m

1 + m

(
1
2

–
d

qα

)

(1 ∧ α) >
m

1 + m
(d + 2) > d + 1. (3.11)

In view of (3.9) and (3.11), by using Kolmogorov’s theorem, u has a continuous version. It
remains to prove the Hölder estimate (1.7) on [0, 1]d+1, and for writing simplicity, we set

A = ‖h‖L∞([0,1];Lq(Rd×Ω)) + ‖f ‖L∞([0,1];Lq(Rd×Ω)).

One introduces a sequence of sets: Sn = {z ∈ Z
d+1|z2–n ∈ (0, 1)d+1}, 0 < n ∈ N. For an arbi-

trary e = (e1, . . . , ed+1) ∈N×Z
d such that ‖e‖∞ = max1≤i≤d+1 |ei| = 1, and every z, z + e ∈ Sn,

we define vn,e
z = |u((z + e)2–n) – u(z2–n)|. Then

E
∣
∣vn,e

z
∣
∣q ≤ C(q,α, d)Aq2–nβq.

For any τ > 0 and K > 0, one sets a number of events An,e
z,τ = {ω ∈ Ω|vn,e

z ≥ Kτ n} (z, z + e ∈
Sn), it yields that

P
(
An,e

z,τ
) ≤ E|vn,e

z |q
Kqτ qn ≤ C(q,α, d)Aq2–nβq

Kqτ qn .

Observe that, for each n, the total number of the events An,e
z,τ (z, z + e ∈ Sn) is not greater

than 2(d+1)n3d+1. Hence the probability of the union An
τ =

⋃
z,z+e∈Sn (

⋃
‖e‖∞=1 An,e

z,τ ) meets
the estimate

P
(
An

τ

) ≤ C(q,α, d)Aq 2–nβq

Kqτ qn 2(d+1)n ≤ C(q,α, d)AqK–q
(

2(d+1)

(2βτ )q

)n

.
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For m > 0 large enough (given in (3.10)), one takes β by (3.10), τ = 2–β/m, then the prob-
ability of the event A =

⋃
n≥1 An

τ can be calculated as follows:

P(A) ≤ C(q,α, d)AqK–q. (3.12)

For every point ξ = (t, x) ∈ (0, 1)d+1, we have ξ =
∑∞

i=0 ei2–i (‖ei‖∞ ≤ 1). Denote ξk =
∑k

i=0 ei2–i (ξ0 = 0). For any ω ∈A, we have |u(ξk+1) – u(ξk)| < Kτ k+1, which suggests that

∣
∣u(t, x)

∣
∣ ≤

∞∑

k=0

∣
∣u(ξk+1) – u(ξk)

∣
∣ < K

∞∑

k=1

τ k = K
τ

1 – τ
≤ K

(
2

β
m – 1

)–1. (3.13)

Set v1 = sup(t,x)∈(0,1)d+1 |u(t, x)|, then v1 = sup(t,x)∈[0,1]d+1 |u(t, x)| since u has a continuous
version. For any 0 < γ < q, it yields that

Evγ
1 = γ

∫ ∞

0
rγ –1

P(v1 ≥ r) dr

= γ

∫ cK

0
rγ –1

P(v1 ≥ r) dr + γ

∫ ∞

cK
rγ –1

P(v1 ≥ r) dr. (3.14)

If one chooses c ≥ (2
β
m – 1)–1, according to (3.12) and (3.13), from (3.14) one finishes at

Evγ
1 ≤ (cK)γ + C(q,α, d)Aqγ

∫ ∞

cK
rγ –1–q dr ≤ (cK)γ + C(q,α, d)Aqγ Kγ –q,

which hints that

Evγ
1 ≤ C(q,α, d,γ )Aγ (3.15)

if one chooses K = A.
Let us calculate the Hölder semi-norm of u. For a solution of (1.1) and for every ω ∈A,

inequality (2.17) holds for κn = Kτ n. With the help of Lemma 2.5 (2.18), one has

∣
∣u

(
(t, x) + �

)
– u(t, x)

∣
∣ ≤ 2Kτ–1|�|log2(1/τ )

for (t, x), (t, x) + � ∈ (0, 1)d+1.
Let β be described in (3.10). For any 0 < θ < β , if one has τ = 2–θ , we arrive at

∣
∣u

(
(t, x) + �

)
– u(t, x)

∣
∣ ≤ 4K |�|θ ,

which hints that

P
(
[u]Cθ ([0,1]d+1) ≥ 4K

) ≤ P(A) ≤ C(q,α, d, θ )AqK–q.

Finally, for any 0 < γ < q, analogue calculations of (3.14) and (3.15) imply that

E‖u‖γ

Cθ ([0,1]d+1) ≤ C(q,α, d,γ , θ )Aγ . (3.16)

From (3.15) and (3.16), and observing that m ∈N is arbitrary, the desired conclusion holds
true. �
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