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Abstract
A displacement function suitable for plane curved beam in polar coordinates is
introduced, and a partial differential governing equation of plane curved beam is
obtained by theoretical analysis. Then, the formulation of displacement components
and stress components is expressed by the displacement function. On this basis, a
finite difference scheme of the partial differential governing equation, displacement
components, and stress components of an elastic body in polar coordinates is
presented. Finally, the finite difference equations of theoretical formulation are
applied to analyze the stress distribution of curved rock, which will provide scientific
basis and reference for coal mining engineering.

Keywords: Displacement function; Elastic theory of curved beam; Finite difference
method; Curved rock

1 Introduction
The stress function method has been successfully applied to solve curved beam problems
in the theory of elasticity, such as the Lame solution of the ring or cylinder subjected to the
uniform pressure, the Guo solution of the curved beam bearing bending moment [1–7],
the Kirs solution of the stress concentration at the edge of circular hole, the Mitchell solu-
tion and the Gris solution and Li solution for the wedge body bearing surface force, and the
Flamant solution of the semi-planar body subjected to concentrated force on the bound-
ary [8–15]. The application of the stress function method has achieved certain results. The
stress function can be obtained by solving the compatible equation for the axisymmetric
problem or the simple non-axisymmetric problem [16–19]; however, the boundary condi-
tion can only be in terms of loading conditions. When the boundary restraint is in terms of
radial or circumferential displacement/strain conditions, the stress function method can-
not obtain satisfactory solution. On the other hand, the direct displacement parameters
method involves finding two displacement parameters (radial displacement and circum-
ferential displacement) from two partial differential equilibrium equations. However, it is
very difficult to obtain two displacement parameters from two second order partial differ-
ential equations with variable coefficients, especially when the boundary conditions are
in terms of mixed boundary with restrains and loadings. In practical applications, most
practical problems with mixed boundary-value type are mainly accomplished by numeri-
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cal calculation. The finite element method (FEM) and the finite difference method (FDM)
are the major numerical methods. The FEM has been widely used in many fields, especially
in the curve structure [20–23]. Gangan pointed out that the calculation error of a finite
element will increase with the increase of flexure deformation [24]. It has been proved that
the accuracy of FDM in stress analysis of structural members is higher than that of FEM
[25, 26].

The displacement function suitable for curved beam with mixed boundary conditions
in polar coordinates, which is defined in terms of radial and circumferential displacement
components, is introduced in the present paper. Moreover, the partial differential govern-
ing equation of curved beam and the expression of displacement components and stress
components are obtained in terms of displacement function. On this basis, the finite dif-
ference scheme of partial differential governing equation, displacement components, and
stress components of elastic body in polar coordinates is presented. Finally, the finite dif-
ference equations of theoretical formulation are applied to analyze the stress distribution
of curved rock.

2 Governing equations expressed by displacement components
With the elastic theory to a polar coordinate system (r, θ ), the equilibrium equations for
isotropic materials in terms of stress components σr , σθ , and τrθ under plane strain con-
ditions in the absence of body force are as follows:

∂σr

∂r
+

1
r

∂τrθ

∂θ
+

σr – σθ

r
= 0, (1a)

1
r

∂σθ
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+
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+

2
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τrθ = 0, (1b)

(
∂2

∂r2 +
1
r

∂

∂r
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1
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∂2

∂θ2

)
(σr + σθ ) = 0. (1c)

For the plane strain, the stress components can be expressed as [1, 2]
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(1 – 2μ)(1 + μ)

(
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μ
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E

2(1 + μ)

(
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∂ur
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+

∂uθ
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–

uθ

r

)
, (2c)

where E and μ are the elastic modulus and Poisson’s ratio of the material, respectively.
Taking the plane strain case as an example, the stress component expressions (2a)–(2c)

are substituted into Eqs. (1a)–(1c), and the formulations are obtained as follows:
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Equations (3a) and (3b) are derived by r and θ , respectively, and the expressions of ∂3ur
∂r3

and ∂3uθ

∂θ3 are obtained.
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Equations (4a) and (4b) are substituted into Eq. (3c), the final result is simplified as fol-
lows:

1
r
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Comparing Eqs. (3a) and (4c), it can be seen that the two equations have the same so-
lution. Thus, Eq. (3c) is redundant for Eqs. (3a) and (3b). Therefore, Eqs. (3a) and (3b) are
the governing equations for solving the plane elasticity problem with displacement com-
ponents in polar coordinates. The solution satisfying both Eqs. (3a), (3b) and boundary
conditions should be the exact solution. However, Eqs. (3a) and (3b) are elliptic partial dif-
ferential equations with variable coefficients. At the same time, boundary conditions are
often mixed modes of stress and displacement boundary conditions. Therefore, the exact
solution to this problem is not always an easy task theoretically. An alternative mathemat-
ical method is transforming the terms of two variables in partial differential equations into
a single variable with all possible modes of boundary conditions.

3 Governing equations expressed by displacement function
In order reduce the two variables ur(r, θ ) and uθ (r, θ ) in the control equation to a single
variable, a new displacement function ψ(r, θ ) is introduced in the present paper; it is de-
fined as follows:
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where the coefficient αi (i = 1, 2, 3, . . . , 12) is the material constants [27].
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Substituting Eqs. (5a) and (5b) into Eqs. (3a) and (3b), the governing equations expressed
by the displacement function are given as follows:
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Here, for solving the variable ψ(r, θ ) with two governing equations, it is necessary to
determine some coefficients αi (i = 1, 2, 3, . . . , 12) reasonably that make one of the two gov-
erning equations redundant. Mathematically, it is required that one equation of Eqs. (6a)–
(6b) can be satisfied under all circumstances. However, it is obvious that all the partial
derivatives of the displacement function ψ(r, θ ) as well as itself cannot be vanished only
when the coefficients of all the derivatives of ψ(r, θ ) as well as itself are zero.

3.1 Governing equation—Form I
It is assumed that Eq. (6a) is satisfied automatically, and Eq. (6b) is the governing equation
in terms of the displacement function ψ(r, θ ). Let the coefficients of ψ(r, θ ) as well as all
its derivatives in Eq. (6a) equate to zero, the coefficients αi (i = 1, 2, 3, . . . , 12) are obtained
as follows:

αi = 0 (i = 1, 3, 4, 6, 8, 11), (7a)

α2 = –
1

2(1 – μ)
, (7b)

α5 =
(5 – 4μ)
2(1 – μ)

, (7c)

α7 = 1, (7d)

α9 =
(1 – 2μ)
2(1 – μ)

, (7e)

α10 = –3, (7f)

α12 = 3. (7g)

And the governing equation in terms of the displacement function ψ(r, θ ) is

∂4ψ

∂r4 +
1
r4

∂4ψ
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∂r2∂θ2 –
2
r

∂3ψ
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9
r3

∂ψ

∂r
+

9
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Equation (8) gives the exact expression of the governing equation of the displacement
function for the plane elastic problem in polar coordinates. It is not difficult to conclude
that the displacement function governing equation is a partial differential equation that is
independent of the material constants such as elastic modulus E and Poisson’s ratio μ.

3.2 Governing equation—Form II
It is assumed that Eq. (6b) is satisfied automatically, and Eq. (6a) is the governing equation
in terms of the displacement function ψ(r, θ ). Let the coefficients of ψ(r, θ ) as well as all
its derivatives in Eq. (6b) equate to zero, the coefficients αi (i = 1, 2, 3, . . . , 12) are obtained
as follows:

αi = 0 (i = 2, 5, 7, 9, 10, 12), (9a)

α1 = –
(1 – 2μ)
(1 – 4μ)

, (9b)



Bu and Xu Advances in Difference Equations        (2019) 2019:141 Page 6 of 18

α3 = –
2(1 – μ)
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, (9c)
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, (9d)
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, (9e)
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And the control equation in terms of the displacement function ψ(r, θ ) is

∂4ψ
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1
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2
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It is obvious that the partial differential equations in terms of displacement function
given by Eq. (8) and (10) are identical, that is, the displacement function governing equa-
tions I and II are the same equation. That is, the governing equation expressed by the
displacement function ψ(r, θ ) is unique.

4 Displacement components and stress components expressed by
displacement function

To solve the displacement function governing Eqs. (8) or (10), it is necessary to know
the displacement boundary conditions or stress boundary conditions at each point on
the boundary. However, the displacement boundary conditions of the elastic body are of-
ten known displacements, and the stress boundary conditions are often known loadings.
Therefore, it is necessary to express the known displacement components and stress com-
ponents as the partial derivative in terms of the displacement function ψ(r, θ ).

The displacement components of the plane strain problem in polar coordinates are the
radial displacement ur(r, θ ) and the circumferential displacement uθ (r, θ ), and the stress
components are the radial stress σr , the circumferential stress σθ , and the shear stress τrθ .

Equations (5a)–(5b) is substituted into Eqs. (2a)–(2c), the stress components are ex-
pressed by the displacement function as follows in the case of plane strain:

σr =
E(1 – μ)

(1 – 2μ)(1 + μ)

×

⎡
⎢⎢⎢⎢⎣
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r ( μ
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⎤
⎥⎥⎥⎥⎦ , (11a)
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σθ =
E(1 – μ)
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τrθ =
E

2(1 + μ)

×
⎡
⎢⎣

α7
∂3ψ

∂r3 + 1
r (α1 + α8) ∂3ψ
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⎤
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4.1 Displacement and stress expressions—Form I
Substituting the values of αi in Eqs. (7a)–(7g) into Eqs. (5a)–(5b), the displacement com-
ponents expressions are as follows:

ur(r, θ ) = –
1

2r(1 – μ)
∂2ψ

∂r∂θ
+

(5 – 4μ)
2r2(1 – μ)

∂ψ

∂θ
, (12a)

uθ (r, θ ) =
∂2ψ
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3
r

∂ψ

∂r
+

3
r2 ψ . (12b)

Substituting the values of αi in Eqs. (7a)–(7g) into Eqs. (11a)–(11c), the stress compo-
nents expressions are as follows:

σr =
E

2(1 + μ)

[
–

1
r

∂3ψ

∂r2∂θ
+

μ
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∂θ

]
, (13a)
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E

2(1 + μ)

[
(2 – μ)
r(1 – μ)

∂3ψ

∂r2∂θ
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1
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9
r2

∂ψ

∂r
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9
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]
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4.2 Displacement and stress expressions—Form II
Substituting the values of αi in Eqs. (9a)–(9g) into Eqs. (5a)–(5b), the displacement com-
ponents expressions are as follows:

ur =
(1 – μ)

(1 – 4μ)

[
–

(1 – 2μ)
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∂r2 –
2
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∂r
–

3(1 – 2μ)
r2(1 – μ)

ψ

]
, (14a)

uθ =
(1 – μ)

(1 – 4μ)

[
1

r(1 – μ)
∂2ψ

∂r∂θ
+

(1 – 4μ)
r2(1 – μ)

∂ψ

∂θ

]
. (14b)

Substituting the values of αi in Eqs. (9a)–(9g) into Eqs. (11a)–(11c), the stress compo-
nents expressions are as follows:

σr =
E(1 – μ)

(1 + μ)(1 – 4μ)

[
– ∂3ψ

∂r3 – (2–μ)
r2(1–μ)

∂3ψ

∂r∂θ2 + (3–4μ)
r(1–μ)

∂2ψ

∂r2

+ (4–μ)
r3(1–μ)

∂2ψ

∂θ2 – 3(2–3μ)
r2(1–μ)

∂ψ

∂r + 3(2–3μ)
r3(1–μ) ψ

]
, (15a)
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σθ =
E(1 – μ)

(1 + μ)(1 – 4μ)

[
– μ

1–μ

∂3ψ

∂r3 + 1
r2

∂3ψ

∂r∂θ2 – (1–4μ)
r(1–μ)

∂2ψ

∂r2

– 1
r3

∂2ψ

∂θ2 + 3(1–3μ)
r2(1–μ)

∂ψ

∂r – 3(1–3μ)
r3(1–μ) ψ

]
, (15b)

τrθ =
E(1 – μ)

(1 + μ)(1 – 4μ)

×
[

μ

r(1 – μ)
∂3ψ

∂r2∂θ
–

1
r3

∂3ψ

∂θ3 +
1 – 5μ

r2(1 – μ)
∂2ψ

∂r∂θ
–

3(1 – 3μ)
r3(1 – μ)

∂ψ

∂θ

]
. (15c)

5 Finite difference scheme
In this section, the finite difference method is used to obtain the numerical solution of
nodal values of the displacement function satisfying the governing equation. It is obvious
that the governing equation in terms of the displacement function is a fourth-order ellip-
tical partial differential equation with variable coefficients. At the same time, the stress
expression expressed in terms of the displacement function is a third-order partial differ-
ential equation, and the displacement expression expressed in terms of the displacement
function is a second-order partial differential equation.

All of these partial differential equations are transformed into their corresponding alge-
braic equations by using the finite difference method. The numerical calculation process is
divided into three steps: Firstly, the values of the displacement function at each point of the
domain are solved by the algebraic equations of the governing equations and the boundary
conditions. Secondly, the partial derivative values of the displacement functions at each
point are obtained by their difference equations. Finally, the displacement components
and the stress components at each point are solved by the partial derivative values of the
displacement function and the values of the displacement function.

5.1 Difference scheme of governing equation
The governing equation in terms of displacement function is suitable for solving the inter-
nal mesh points of the domain. According to Eq. (8), the governing equation is composed
of total eight different partial derivatives of the displacement function of order ranging
from one to four together with the displacement function itself. All the individual deriva-
tives of the governing equation are replaced by their corresponding central difference ex-
pressions having local truncation errors of o(h2) and o(k2). The mesh length in r-direction
(i-direction) is recorded as h, and the mesh length in θ -direction (j-direction) is recorded
as k.

(
∂4ψ

∂r4

)
i,j

=
1
h4 [ψi+2,j – 4ψi+1,j + 6ψi,j – 4ψi–1,j + ψi–2,j], (16a)

(
∂4ψ

∂θ4

)
i,j

=
1
k4 [ψi,j+2 – 4ψi,j+1 + 6ψi,j – 4ψi,j–1 + ψi,j–2], (16b)

(
∂4ψ

∂r2∂θ2

)
i,j

=
1

h2k2

[
ψi+1,j+1 – 2ψi+1,j + ψi+1,j–1 – 2ψi,j+1 + 4ψi,j

– 2ψi,j–1 + ψi–1,j+1 – 2ψi–1,j + ψi–1,j–1

]
, (16c)

(
∂3ψ

∂r3

)
i,j

=
1

2h3 [ψi+2,j – 2ψi+1,j + 2ψi–1,j – ψi–2,j], (16d)

(
∂3ψ

∂r∂θ2

)
i,j

=
1

2hk2 [ψi+1,j+1 – 2ψi+1,j + ψi+1,j–1 – ψi–1,j+1 + 2ψi–1,j – ψi–1,j–1], (16e)
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(
∂2ψ

∂r2

)
i,j

=
1
h2 [ψi+1,j – 2ψi,j + ψi–1,j], (16f)

(
∂2ψ

∂θ2

)
i,j

=
1
k2 [ψi,j+1 – 2ψi,j + ψi,j–1], (16g)

(
∂ψ

∂r

)
i,j

=
1

2h
[ψi+1,j – ψi–1,j]. (16h)

Substituting Eqs. (16a)–(16h) into Eq. (8), the governing equation for solving the internal
mesh points of the domain is written in terms of nodal unknowns of the displacement
function ψas follows:

ξ1ψ(i + 2, j) + ξ2ψ(i + 1, j + 1) + ξ3ψ(i + 1, j) + ξ2ψ(i + 1, j – 1) + ξ4ψ(i, j + 2)

+ ξ5ψ(i, j + 1) + ξ6ψ(i, j) + ξ5ψ(i, j – 1) + ξ4ψ(i, j – 2) + ξ7ψ(i – 1, j + 1)

+ ξ8ψ(i – 1, j) + ξ7ψ(i – 1, j – 1) + ξ9ψ(i – 2, j) = 0, (17)

where

ξ1 = r3
i k4(ri – h),

ξ2 = rih2k2(2ri – 3h),

ξ3 = rik2[–4r3
i k2 – 4rih2 + 2r2

i hk2 + 6h3 + 5rih2k2 – 4.5h3k2],

ξ4 = h4,

ξ5 = 2h2(–2h2 – 2r2
i k2 + 5h2k2),

ξ6 = 6r4
i k4 + 6h4 + 8r2

i h2k2 – 10r2
i h2k2 – 20h4k2 + 9h4k4,

ξ7 = rih2k2(2ri + 3h),

ξ8 = rik2(–4r3
i k2 – 4rih2 – 2r2

i hk2 – 6h3 + 5rih2k2 + 4.5h3k2),

ξ9 = r3
i k4(ri + h).

The finite difference scheme of the governing equation at one node is symmetric about
both r- and θ -axes, and the computational domain at one node involves thirteen neighbor-
ing nodes. Obviously, when the node (i, j) is close to the real boundary, the computational
domain does not only involve the real boundary, but also involves a layer of imaginary
nodes. The boundary formed by a layer of imaginary nodes is called an imaginary layer
which is outside the real boundary.

5.2 Difference scheme of displacement components
It can be seen that the radial displacement component and the hoop displacement compo-
nent are the second-order partial derivatives of the displacement function. Unlike the case
of governing equations, the central difference method has been avoided for the displace-
ment components because most of time they are found to include nodes exterior to the
imaginary layer. Therefore, on the basis of keeping the order of local truncation error also
to be o(h2) or o(k2), different finite differencing schemes (for example, forward difference,
backward difference, and center difference) are adopted for different derivatives present
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in the displacement components. It should be noted that the expression of the displace-
ment component has two Forms (Form-I and Form-II), and in the following section, only
the difference formula of the displacement components in Form-I is given. The difference
formula of displacement components in Form-II is similar to that in Form-I.

For radial displacement, four different versions of finite difference formulas have been
developed for points on different regions of the boundary. These versions of finite differ-
ence formulas are obtained by adapting different combinations of forward and backward
differencing schemes in both r- and θ - directions. Here, the differential formulas of four
radial displacements are given. It is observed that the radial displacement component con-
tains nine nodes in the computational domain, but no nodes beyond the imaginary layer.

(a) r-forward difference, θ -forward difference:

ur(i, j) = a1ψ(i + 2, j + 2) – 4a1ψ(i + 2, j + 1) + 3a1ψ(i + 2, j)

– 4a1ψ(i + 1, j + 2) + 16a1ψ(i + 1, j + 1) – 12a1ψ(i + 1, j)

+ (3a1 – b1)ψ(i, j + 2) – (12a1 – 4b1)ψ(i, j + 1)

+ (9a1 – 3b1)ψ(i, j), (18)

where a1 = – 1
8rihk(1–μ) , b1 = 5–4μ

4r2
i k(1–μ) ;

(b) r-forward difference, θ -backward difference:

ur(i, j) = –3a1ψ(i + 2, j) + 4a1ψ(i + 2, j – 1) – a1ψ(i + 2, j – 2)

+ 12a1ψ(i + 1, j) – 16a1ψ(i + 1, j – 1) + 4a1ψ(i + 1, j – 2)

– (9a1 – 3b1)ψ(i, j) + (12a1 – 4b1)ψ(i, j – 1)

– (3a1 – b1)ψ(i, j – 2), (19)

where a1 = – 1
8rihk(1–μ) , b1 = 5–4μ

4r2
i k(1–μ) ;

(c) r-backward difference, θ -forward difference:

ur(i, j) = –(3a1 + b1)ψ(i, j + 2) + (12a1 + 4b1)ψ(i, j + 1) – (9a1 + 3b1)ψ(i, j)

+ 4a1ψ(i – 1, j + 2) – 16a1ψ(i – 1, j + 1) + 12a1ψ(i – 1, j)

– a1ψ(i – 2, j + 2) + 4a1ψ(i – 2, j + 1) – 3a1ψ(i – 2, j), (20)

where a1 = – 1
8rihk(1–μ) , b1 = 5–4μ

4r2
i k(1–μ) ;

(d) r-backward difference, θ -backward difference:

ur(i, j) = (9a1 + 3b1)ψ(i, j) – (12a1 + 4b1)ψ(i, j – 1) + (3a1 + b1)ψ(i, j – 2)

– 12a1ψ(i – 1, j) + 16a1ψ(i – 1, j – 1) – 4a1ψ(i – 1, j – 2)

+ 3a1ψ(i – 2, j) – 4a1ψ(i – 2, j – 1) + a1ψ(i – 2, j – 2), (21)

where a1 = – 1
8rihk(1–μ) , b1 = 5–4μ

4r2
i k(1–μ) .
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For the hoop displacement component in the computational domain, only five nodes
are involved, and the five node positions are symmetric about both r- and θ -directions.
Therefore, only one difference formula is given for the hoop displacement component in
the computational domain. It can be applied for points on any region of the boundary
without the inclusion of nodes exterior to the imaginary layer.

uθ (i, j) = (a2 + c2)ψ(i + 1, j) + b2ψ(i, j + 1) + (–2a2 – 2b2 + d2)ψ(i, j)

+ b2ψ(i, j – 1) + (a2 – c2)ψ(i – 1, j), (22)

where a2 = 1
h2 , b2 = 1–2μ

2r2
i k2(1–μ) , c2 = – 3

2rih
, d2 = 3

r2
i

.

5.3 Difference scheme of stress components
For the stress components, only the difference formula of the stress components in Form I
is given. Here, two different finite difference formulas have been developed using the var-
ious combinations of central difference, forward difference, and back difference schemes
for the individual derivatives. It should be mentioned that the difference schemes for stress
components are divided into four situations: r center difference–θ forward difference, r
center difference–θ backward difference, r forward difference–θ center difference, and r
backward difference–θ center difference. In order to ensure that the nodes involved in the
computational domain do not exceed the imaginary layer, the combination of different
difference schemes is also adopted for some partial derivatives.

For example, in the difference scheme of r center difference–θ forward difference, al-
though the forward difference in θ -direction is specified, the combination of center dif-
ference for a second-order derivative of the displacement function ψ(r, θ ) and the forward
difference for a first-order derivative of the displacement function ψ(r, θ ) is used for the
difference scheme for a third-order derivative of the displacement function ψ(r, θ ). This
can ensure that the number of difference algebraic equations is equal to the number of
nodes in the computational domain.

(1) Difference equations of radial stress component σr and circumferential stress
component σθ .
(a) r-center difference, θ -forward difference:

σr(i, j) = (–A1 – C1)ψ(i + 1, j + 2) + (4A1 + 4C1)ψ(i + 1, j + 1)

+ (–3A1 – 3C1)ψ(i + 1, j) – B1ψ(i, j + 3) + (2A1 + 6B1)ψ(i, j + 2)

+ (–8A1 – 12B1 + D1)ψ(i, j + 1) + (6A1 + 10B1)ψ(i, j)

+ (–3B1 – D1)ψ(i, j – 1) + (–A1 + C1)ψ(i – 1, j + 2)

+ (4A1 – 4C1)ψ(i – 1, j + 1) + (–3A1 + 3C1)ψ(i – 1, j), (23)

where A1 = – E
4rih2k(1+μ) , B1 = μE

4r3
i k3(1–μ2)

, C1 = E(6–5μ)
8r2

i hk(1–μ2) , D1 = – E(10–9μ)
4r3

i k(1–μ2)
,

σθ (i, j) = (–A2 – C2)ψ(i + 1, j + 2) + (4A2 + 4C2)ψ(i + 1, j + 1)

+ (–3A2 – 3C2)ψ(i + 1, j) – B2ψ(i, j + 3) + (2A2 + 6B2)ψ(i, j + 2)

+ (–8A2 – 12B2 + D2)ψ(i, j + 1) + (6A2 + 10B2)ψ(i, j)
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+ (–3B2 – D2)ψ(i, j – 1) + (–A2 + C2)ψ(i – 1, j + 2)

+ (4A2 – 4C2)ψ(i – 1, j + 1) + (–3A2 + 3C2)ψ(i – 1, j), (24)

where A2 = E(2–μ)
4rih2k(1–μ2) , B2 = E

4r3
i k3(1+μ)

, C2 = – E(7–5μ)
8r2

i hk(1–μ2) , D2 = E(11–9μ)
4r3

i k(1–μ2)
;

(b) r-center difference, θ -backward difference:

σr(i, j) = (3A1 + 3C1)ψ(i + 1, j) + (–4A1 – 4C1)ψ(i + 1, j – 1)

+ (A1 + C1)ψ(i + 1, j – 2) + (3B1 + D1)ψ(i, j + 1)

+ (–6A1 – 10B1)ψ(i, j) + (8A1 + 12B1 – D1)ψ(i, j – 1)

+ (–2A1 – 6B1)ψ(i, j – 2) + B1ψ(i, j – 3) + (3A1 – 3C1)ψ(i – 1, j)

+ (–4A1 + 4C1)ψ(i – 1, j – 1) + (A1 – C1)ψ(i – 1, j – 2), (25)

where A1 = – E
4rih2k(1+μ) , B1 = μE

4r3
i k3(1–μ2)

, C1 = E(6–5μ)
8r2

i hk(1–μ2) , D1 = – E(10–9μ)
4r3

i k(1–μ2)
,

σθ (i, j) = (3A2 + 3C2)ψ(i + 1, j) + (–4A2 – 4C2)ψ(i + 1, j – 1)

+ (A2 + C2)ψ(i + 1, j – 2) + (3B2 + D2)ψ(i, j + 1)

+ (–6A2 – 10B2)ψ(i, j) + (8A2 + 12B2 – D2)ψ(i, j – 1)

+ (–2A2 – 6B2)ψ(i, j – 2) + B2ψ(i, j – 3) + (3A2 – 3C2)ψ(i – 1, j)

+ (–4A2 + 4C2)ψ(i – 1, j – 1) + (A2 – C2)ψ(i – 1, j – 2), (26)

where A2 = E(2–μ)
4rih2k(1–μ2) , B2 = E

4r3
i k3(1+μ)

, C2 = – E(7–5μ)
8r2

i hk(1–μ2) , D2 = E(11–9μ)
4r3

i k(1–μ2)
;

(2) Difference equation of shear stress τrθ

(a) r-forward difference, θ -center difference:

τrθ (i, j) = –A3ψ(i + 3, j) – B3ψ(i + 2, j + 1) + (6A3 + 2B3)ψ(i + 2, j)

– B3ψ(i + 2, j – 1) + 4B3ψ(i + 1, j + 1)

+ (–12A3 – 8B3 + C3 + E3)ψ(i + 1, j) + 4B3ψ(i + 1, j – 1)

+ (–3B3 + D3)ψ(i, j + 1) + (10A3 + 6B3 – 2C3 – 2D3 + F3)ψ(i, j)

+ (–3B3 + D3)ψ(i, j – 1) + (–3A3 + C3 – E3)ψ(i – 1, j), (27)

where A3 = E
4h3(1+μ) , B3 = – μE

4r2
i hk2(1–μ2) , C3 = – 2E

rih2(1+μ) , D3 = E
2r3

i k2(1–μ)
,

E3 = 9E
4r2

i h(1+μ) , F3 = – 9E
2r3

i (1+μ)
;

(b) r-backward difference, θ -center difference:

τrθ (i, j) = (3A3 + C3 + E3)ψ(i + 1, j) + (3B3 + D3)ψ(i, j + 1)

+ (–10A3 – 6B3 – 2C3 – 2D3 + F3)ψ(i, j) + (3B3 + D3)ψ(i, j – 1)

– 4B3ψ(i – 1, j + 1) + (12A3 + 8B3 + C3 – E3)ψ(i – 1, j)

– 4B3ψ(i – 1, j – 1) + B3ψ(i – 2, j + 1) – (6A3 + 2B3)ψ(i – 2, j)

+ B3ψ(i – 2, j – 1) + A3ψ(i – 3, j), (28)



Bu and Xu Advances in Difference Equations        (2019) 2019:141 Page 13 of 18

where A3 = E
4h3(1+μ) , B3 = – μE

4r2
i hk2(1–μ2) , C3 = – 2E

rih2(1+μ) , D3 = E
2r3

i k2(1–μ)
,

E3 = 9E
4r2

i h(1+μ) , F3 = – 9E
2r3

i (1+μ)
.

6 The application in curved rock
According to the shape and stress field characteristics of the curved strata, a schematic
diagram of coal seam mining in the curved strata is set up as shown in Fig. 1. Here, the
shape of the curved rock is simplified to a circular arc shape. The research object in this
section is the overlying strata in the goaf, which is marked in red in Fig. 1.

6.1 Numerical calculation model
Figure 2 is a plane strain model for numerical calculation of curved strata. When the dis-
placement function method is used to solve the computational model, the nodes in the
computational domain should satisfy the governing equation for displacement function,
and the boundary conditions should satisfy the boundary conditions as shown in Table 1.
Special care has been taken to model the boundary conditions at the four corner nodes,

.

Figure 1 Schematic diagram of coal seam mining in curved rock

Figure 2 Numerical calculation model of curved strata
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Table 1 Boundary conditions of the computational model

Boundary Boundary conditions

Normal component Tangential component

Right Boundary θ = θi ur (r,θi) = 0 uθ (r,θi) = 0
Left Boundary θ = θmax = θi + θe ur (r,θmax) = 0 uθ (r,θmax) = 0
Inner Boundary r = rib σr (rib ,θ ) = 0 τrθ (rib ,θ ) = 0
Out Boundary r = rob , θ ≤ 90◦ σr (rob ,θ ) = –q(λ cosθ + sinθ ) τrθ (rob ,θ ) = –q(cosθ – λ sinθ )
Out Boundary r = rob , θ > 90◦ σr (rob ,θ ) = –q(–λ cosθ + sinθ ) τrθ (rob ,θ ) = –q(cosθ + λ sinθ )

Table 2 Boundary conditions at four corners

Angular
point

Given boundary
conditions

Used boundary
conditions

Boundary conditions
of angular points

A {ur ,uθ ,σr ,τrθ } {ur ,uθ ,τrθ } ur = 0; uθ = 0; τrθ = 0
B {ur ,uθ ,σr ,τrθ } {ur ,uθ ,τrθ } ur = 0; uθ = 0; τrθ = 0
C {ur ,uθ ,σr ,τrθ } {ur ,uθ ,τrθ } ur = 0; uθ = 0; τrθ = 0
D {ur ,uθ ,σr ,τrθ } {ur ,uθ ,τrθ } ur = 0; uθ = 0; τrθ = 0

Figure 3 Distribution of radial stress along the middle circumference

the details of which are illustrated in Table 2. It can be seen from Table 2 that three out of
the available four boundary conditions are satisfied at each corner nodes of the domain,
and the remaining one is considered as redundant. It can be mentioned that usual com-
putational approaches use two out of four conditions at each corner nodes to obtain the
solution and thus the stresses around the corner regions deviate more from the actual
stress state. Here, the mesh length h is 0.5 m and the mesh length k is 1◦.

6.2 Stress analysis of curved strata
Taking inner radius rib = 20 m, the coefficient of tectonic stress λ = 1.8, mining depth md =
1000 m, advancing angle θe = 120◦, mining location θi = 0◦, and rock thickness st = 20 m
as examples, the distribution characteristics of radial stress in the computational model
are given as follows.

6.2.1 Distribution of radial stress in curved strata
Figure 3 presents the distribution of radial stress along the middle circumference in the
computational model. It can be concluded that the radial stress is unevenly distributed
along the middle circumference. The radial stress increases with the increase of angle θ

in the range of 0◦∼17◦, decreases with the increase of angle θ in the range of 18◦∼69◦,
increases with the increase of angle θ in the range of 70◦∼92◦, decreases with the increase
of angle θ in the range of 93◦∼120◦, and the maximum value of radial stress is located
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Figure 4 Distribution of radial stress for three different sections

Figure 5 Distribution c of circumferential stress along the middle circumference

around θ = 15◦. It can be seen that the radial stress will reach a peak value not far from
open-off cut. The distribution of radial stress for three different sections (θ = 45◦, 75◦ and
105◦) is shown in Fig. 4. The radial stress increases gradually from the inner surface to the
outer surface along the radial direction, and the radial stress for θ = 45◦ increases faster
comparing with the other two sections, which indicates that the radial stress increases
faster for the section closer to open-off cut. On the contrary, the radial stress increases
slow and the value of radial stress is small. It is worth mentioning that the radial stress
values for all sections on the inner surface are zero, which indicate that the results conform
to the boundary conditions of radial stress on the inner surface.

6.2.2 Distribution of circumferential stress in curved rock strata
Figure 5 presents the distribution of circumferential stress along the middle circumference
in the computational model. It can be concluded that circumferential stress is unevenly
distributed along the middle circumference. The circumferential stress decreases with the
increase of angle θ in the range of 0◦∼25◦, the circumferential stress increases with the
increase of angle θ in the range of 26◦∼90◦, the circumferential stress decreases with the
increase of angle θ in the range of 91◦∼120◦, and the maximum value of circumferential
stress is located around θ = 90◦. It can be seen that the circumferential stress will reach
the peak value not far behind the working face. Therefore, more observations should be
carried out behind the working face during the mining because the circumferential stress
will easily cause the breaking along circumference. The distribution of circumferential
stress for three different sections (θ = 45◦, 75◦ and 105◦) is shown in Fig. 6. It can be seen
that the circumferential stress for θ < 90◦ increases from the inner surface to the outer
surface along the radial direction, while the circumferential stress for θ > 90◦ decreases
from the inner surface to the outer surface. For example, the value of circumference stress
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Figure 6 Distribution of circumferential stress for three different sections

Figure 7 Distribution of shear stress along the middle circumference

for θ = 75◦ is 40.99 MPa on the inner surface, while the value is 91.28 MPa on the outer
surface. The circumferential stress for θ = 105◦ decreases by about 70% from the inner
surface to the outer surface. It should be mentioned that the value of circumferential stress
for sections (θ = 75◦∼105◦) is larger than for other sections, which may easily cause the
circumferential compression breaking in the overlying strata. Therefore, more observation
should be carried out during the mining for these sections, and necessary measures should
be taken for avoiding the disaster accidents.

6.2.3 Distribution of shear stress in curved strata
Figure 7 presents the distribution of shear stress along the middle circumference in the
computational model. It can be concluded that the shear stress has both positive and neg-
ative values, and the distribution is also uneven along the middle circumference. The shear
stress has negative values in the range of 0◦∼42◦, and the shear stress increases first and
then decreases with the increase of angle θ in this range. The shear stress has positive
values in the range of 43◦∼120◦, and the shear stress increases first and then decreases
with the increase of angle θ in this range. The shear stress is relatively stable and does not
change much in the range of 60◦∼105◦, but the maximum value of shear stress is located
around θ = 10◦. It can be seen that the shear stress will reach the peak value not far from
the open-off cut. The distribution of shear stress for three different sections (θ = 45◦, 75◦,
and 105◦) is shown in Fig. 8. The shear stress for θ < 75◦ increases from the inner surface
to the outer surface along the radial direction, while the shear stress for θ = 105◦ increases
first and then decreases to negative values. It is worth mentioning that the shear stress val-
ues for all sections on the inner surface are zero, which indicates that the results conform
to the boundary conditions of shear stress on the inner surface.
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Figure 8 Distribution of shear stress for three different sections

7 Conclusions
In the present research, a modification to the usual approach of analyzing the plane curved
beam with mixed boundary conditions in polar coordinates is introduced, which has
been realized through the development of a displacement function based finite difference
scheme. The novel of the present approach is that the governing equation for the plane
problem is expressed in terms of a single partial differential equation. This method can
handle mixed mode of boundary conditions, which is in contrast with the classical stress
function formulation. Moreover, the finite difference scheme for governing equation, dis-
placement components, and stress components has been developed, and the difference
equations are also obtained in present paper. Finally, these theoretical formulations are
applied to analyze the stress distribution of curved rock during the coal seam mining,
which will provide scientific basis and reference for coal mining engineering.
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