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Abstract
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involving causal operators in the presence of upper and lower solutions in the reverse
order. To this end, we prove some new comparison theorems and develop the upper
and lower solutions method. Our results improve and extend some relevant results in
difference equations. Two examples are given to illustrate the obtained results.

MSC: 34B15; 39A10

Keywords: Upper and lower solutions method; Causal operators; Extremal solutions;
Coupled extremal quasi-solutions

1 Introduction
In this paper, we are concerned with the existence of solutions for the following difference
equations with causal operators:

⎧
⎨

⎩

�x(k) = (Qx)(k), k ∈ Z[0, T – 1] = {0, 1, . . . , T – 1},
g(x(0), x(T)) = 0,

(1)

where �x(k) = x(k + 1) – x(k), E0 = C(Z[0, T – 1],R), Q ∈ C(E0, E0) is a causal operator,
g ∈ C(R×R,R), and the following type of equations:

⎧
⎨

⎩

�x(k – 1) = (Qx)(k), k ∈ Z[1, T] = {1, 2, . . . , T},
g(x(0), x(T)) = 0,

(2)

where �x(k – 1) = x(k) – x(k – 1), E1 = C(Z[1, T],R), Q ∈ C(E1, E1) is a causal operator, and
g ∈ C(R×R,R).

With the development of boundary value problems (BVPs) for differential equations and
for difference equations [18, 19, 25, 26], and the theory of causal differential equations [6–
9, 14, 21, 23], many authors have focused their attention on BVPs for causal difference
equations [11, 12, 24]. In particular, in 2011, Jankowski [11] investigated first-order BVPs
of difference equations with causal operators and developed the monotone iterative tech-
nique. In 2006, Atici, Cabada, and Ferreiro [2] considered the difference equations with
functional boundary value conditions. Inspired by this paper, in 2015, Wang and Tian [24]
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established some existence criteria for the following difference equations involving causal
operators with nonlinear boundary conditions:

⎧
⎨

⎩

�y(k – 1) = (Qy)(k), k ∈ Z[1, T],

B(y(0), y) = 0,

and
⎧
⎨

⎩

�y(k) = (Qy)(k), k ∈ Z[0, T – 1],

B(y(0), y) = 0.

To obtain existence results of causal difference equations for problem (1) and (2), we use
the method of lower and upper solutions coupled with the monotone iterative technique.
This method is well known not only for the continuous case but also for the discrete case,
see [1, 10, 13, 15, 17, 20, 22]. However, in the above papers, the definition of lower and
upper solutions is not perfect, for example, in [2], and most results only discuss the case
when lower solution is less than upper solution. In fact, in many cases, the lower and up-
per solutions often occur in the reverse order, which is a fundamentally different situation.
So far only a few papers have investigated the existence results for the non-ordered case
[3–5, 16, 27]. In this paper, we shall consider the causal difference equations with nonlin-
ear periodic boundary conditions under the assumption of the existing upper and lower
solutions for the reverse case.

We shall divide the results of this paper into six sections. First, some comparison prin-
ciples are established. Next, by using the notion of lower and upper solutions v(k), w(k)
and the monotone iterative technique, we testify the existence of the extremal solutions
for (1) and (2) with v(k) ≥ w(k). Then, by using the definition of coupled lower and upper
solutions v(k), w(k), we obtain the existence of the coupled quasi-solutions of (1) and (2)
with lower and upper solutions in the reverse order. Finally, two examples are given to
illustrate the results.

2 Lemmas
Let R be a real numbers set, Z denote the set of nonnegative integer numbers, Z[m, n] =
{m, m + 1, . . . , n}, E = C(Z[m, n],R), where m, n ∈ Z and m < n. We define ‖x‖ =
maxk∈Z[m,n] |x(k)|. Moreover, in the paper, we only consider the discrete topology for the
set Z[0, T].

A function x ∈ C(Z[0, T],R) is said to be a solution of problem (1) if it satisfies (1). Sim-
ilarly the solution of problem (2) is defined analogously above.

Definition 2.1 Assume that Q ∈ C(E, E), then Q is said to be a causal operator if the fol-
lowing property holds: if u, v ∈ E are such that u(s) = v(s) for m ≤ s ≤ k < n, k ∈ Z[m, n]
arbitrary, then (Qu)(s) = (Qv)(s) for m ≤ s ≤ k.

Lemma 2.2 Suppose that M ≥ 0, p ∈ C(Z[0, T],R) and

⎧
⎨

⎩

�p(k) ≥ Mp(k) + (Lp)(k), k ∈ Z[0, T – 1],

λp(0) ≥ p(T),
(3)
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where L ∈ C(E0, E0) is a positive linear operator, that is, Lm ≥ 0 whenever m ≥ 0, and

T–1∑

j=0

(
M + (L1)(j)

) ≤ λ

λ + 1
, 0 < λ ≤ 1, 1(k) = 1 for all k ∈ Z[0, T]. (4)

Then p(k) ≤ 0 for k ∈ Z[0, T].

Proof Suppose that the conclusion is not true, then p(k) ≥ 0 for some k ∈ Z[0, T]. We have
two cases as follows.

Case I: There is k̄ ∈ Z[0, T] satisfying p(k̄) > 0 and p(k) ≥ 0 for all k ∈ Z[0, T].
By (3), we know that �p(k) ≥ 0 on Z[0, T – 1] and p(k) is nondecreasing on Z[0, T]. So,

we have

p(k) = p(0) +
k–1∑

j=0

�p(j) ≥ p(0) +
k–1∑

j=0

(
Mp(j) + (Lp)(j)

)

≥ p(0) + p(0)
k–1∑

j=0

(
M + (L1)(j)

)

= p(0)

(

1 +
k–1∑

j=0

(
M + (L1)(j)

)
)

.

Thus,

λp(0) ≥ p(T) ≥ p(0)

(

1 +
T–1∑

j=0

(
M + (L1)(j)

)
)

> p(0),

so λ > 1, this is in contradiction with (4).
Case II: There exist k∗ and k∗ such that p(k∗) < 0 and p(k∗) > 0.
Set mink∈Z(0,T) p(k) = –r, r > 0. In general, let p(k∗) = –r.
From (3), we have

p(k) = p(0) +
k–1∑

j=0

�p(j) ≥ p(0) +
k–1∑

j=0

(
Mp(j) + (Lp)(j)

)

≥ p(0) – r
T–1∑

j=0

(
M + (L1)(j)

)
.

Set k = k∗, we obtain

–r ≥ p(0) – r
T–1∑

j=0

(
M + (L1)(j)

)
.

Thus, we get

p(0) ≤ –r + r
T–1∑

j=0

(
M + (L1)(j)

)
.
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In addition,

p(k) = p(T) –
T–1∑

j=k

�p(j).

Take k = k∗, we have

0 < p
(
k∗) = p(T) –

T–1∑

j=k∗
�p(j).

Then

p(T) >
T–1∑

j=k∗
�p(j) ≥ –r

T–1∑

j=0

(
M + (L1)(j)

)
.

Using the fact p(0) ≥ λ–1p(T), we obtain

–r + r
T–1∑

j=0

(
M + (L1)(j)

) ≥ p(0) ≥ λ–1p(T) > –λ–1r
T–1∑

j=0

(
M + (L1)(j)

)
,

which is a contradiction with (4). Then we get p(k) ≤ 0 on Z[0, T], this completes the
proof. �

Lemma 2.3 Let M ≥ 0, p ∈ C(Z[0, T],R), and

⎧
⎨

⎩

�p(k – 1) ≥ Mp(k) + (Lp)(k), k ∈ Z[1, T],

λp(0) ≥ p(T),

where L ∈ C(E1, E1) is a positive linear operator and

T∑

j=1

(
M + (L1)(j)

) ≤ λ

λ + 1
, 0 < λ ≤ 1, 1(k) = 1 for all k ∈ Z[0, T]. (5)

Then p(k) ≤ 0 for k ∈ Z[0, T].

The proof is analogous to Lemma 2.2, so it is omitted.

3 Existence results to (1.1)
In this section, to prove the existence of extremal solutions for (1), we first give the follow-
ing linear equations:

⎧
⎨

⎩

�x(k) = Mx(k) + (Lx)(k) + ση̄(k), k ∈ Z[0, T – 1],

g(η(0),η(T)) + M1(x(0) – η(0)) – M2(x(T) – η(T)) = 0,
(6)

where ση(k) = (Qη)(k) – Mη(k) – (Lη)(k).
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Lemma 3.1 A function x ∈ E0 is a solution of (6) if and only if x is a solution of the sum-
mation equation below:

x(k) =
Cη(1 + M)k

M1 – M2(1 + M)T +
T–1∑

i=0

G(k, i)
[
ση(i) + (Lx)(i))

]
,

where Cη = –g(η(0),η(T)) + M1η(0) – M2η(T), M, M1, M2 are constants satisfying M ≥ 0,
M1 �= M2(1 + M)T , and

G(k, i) =
1

M1 – M2(1 + M)T

⎧
⎨

⎩

M1(1+M)k

(1+M)i+1 , 0 ≤ i ≤ k – 1 ≤ T ,
M2(1+M)T+k

(1+M)i+1 , 0 ≤ k ≤ i ≤ T – 1.

Proof Assume that x ∈ E0 is a solution of (6). Set x(k) = y(k)(1 + M)k , k ∈ Z[0, T]. From
(6), we see that y(k) satisfies

⎧
⎨

⎩

�y(k) = ση(k)+(L(1+M)y)(k)
(1+M)k+1 , k ∈ Z[0, T – 1],

y(0) = Cη

M1
+ M2(1+M)T

M1
y(T).

(7)

By applying (7), one arrives at

y(k) = y(0) +
k–1∑

i=0

ση(k) + (L(1 + M)y)(k)
(1 + M)k+1 . (8)

Let k = T in (8). Then one has

y(T) = y(0) +
T–1∑

i=0

ση(k) + (L(1 + M)y)(k)
(1 + M)k+1 .

From the boundary condition y(T) = M1y(0)–Cη

M2(1+M)T , we get

y(0) =
Cη

M1 – M2(1 + M)T +
M2(1 + M)T

M1 – M2(1 + M)T

T–1∑

i=0

ση(i) + (L(1 + M)y)(i)
(1 + M)i+1 . (9)

Substituting (9) into (8) and using y(k) = x(k)
(1+M)k , k ∈ Z[0, T], we have

x(k)
(1 + M)k =

Cη

M1 – M2(1 + M)T +
M1

M1 – M2(1 + M)T

k–1∑

i=0

ση(i) + (Lx)(i)
(1 + M)i+1

+
M2(1 + M)T

M1 – M2(1 + M)T

T–1∑

i=k

ση(i) + (Lx)(i)
(1 + M)i+1 .

Let

G(k, i) =
1

M1 – M2(1 + M)T

⎧
⎨

⎩

M1(1+M)k

(1+M)i+1 , 0 ≤ i ≤ k – 1 ≤ T ,
M2(1+M)T+k

(1+M)i+1 , 0 ≤ k ≤ i ≤ T – 1.

We see that x is a solution of (6) and the proof is complete. �
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Apparently, ‖G(k, i)‖ = max{| M1(1+M)T

M1–M2(1+M)T |, | M2(1+M)T

M1–M2(1+M)T |}. In the remainder of the paper,

we denote τ = ‖G(k, i)‖ = max{| M1(1+M)T

M1–M2(1+M)T |, | M2(1+M)T

M1–M2(1+M)T |}.

Lemma 3.2 Suppose that M ≥ 0, M1 �= M2(1 + M)T , and

τ‖L‖T < 1. (10)

Then problem (6) has a unique solution.

Proof Define an operator F : E0 → E0 by

(Fx)(k) =
Cη(1 + M)k

M1 – M2(1 + M)T +
T–1∑

i=0

G(k, i)
[
σ (i) + (Lx)(i)

]
, k ∈ Z[0, T – 1].

For any x1, x2 ∈ E0, we have

|Fx1 – Fx2| ≤
∣
∣
∣
∣
∣

T–1∑

i=0

G(k, i)
[(
L(x2 – x1)

)
(i)

]
∣
∣
∣
∣
∣
≤ τT‖L‖‖x2 – x1‖.

Hence, by the Banach contraction principle, F has a unique fixed point and (6) has only
one solution. We complete the proof. �

Next, we give the following definitions which help us to testify our main results.

Definition 3.3 A function w is called an upper solution of (1) if

⎧
⎨

⎩

�w(k) ≥ (Qw)(k), k ∈ Z[0, T – 1],

g(w(0), w(T)) ≥ 0,

and a lower solution of (1) is defined similarly by reversing the inequalities above.

Theorem 3.4 Suppose that (4) and (10) hold, and Q ∈ C[E0, E0]
(H1) the functions w, v are upper and lower solutions of problem (1) with w(k) ≤ v(k),

k ∈ Z[0, T];
(H2) Q satisfies

(Qy)(k) – (Qz)(k) ≤ M
(
y(k) – z(k)

)
+

(
L(y – z)

)
(k), k ∈ Z[0, T – 1],

for w(k) ≤ z(k) ≤ y(k) ≤ v(k), where M ≥ 0, L ∈ C[E0, E0] is a positive linear opera-
tor;

(H3) there exist constants M1, M2 such that M2 ≥ M1 > 0 and

g(ȳ, z̄) – g(y, z) ≥ M1(ȳ – y) – M2(z̄ – z))

for w(0) ≤ y ≤ ȳ ≤ v(0), w(T) ≤ z ≤ z̄ ≤ v(T), and 0 < λ ≤ 1 with λ = M1
M2

.
Then problem (1) has extremal solutions in the sector [w, v] = {x : w(k) ≤ x(k) ≤ v(k), k ∈

Z[0, T]}.
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Proof First, we define the sequences {vn(k)}, {wn(k)} as follows:

⎧
⎨

⎩

�vn(k) = Mvn(k) + (Lvn)(k) + (Qvn–1)(k) – Mvn–1(k) – (Lvn–1)(k),

g(vn–1(0), vn–1(T)) + M1(vn(0) – vn–1(0)) – M2(vn(T) – vn–1(T)) = 0
(11)

and
⎧
⎨

⎩

�wn(k) = Mwn(k) + (Lwn)(k) + (Qwn–1)(k) – Mwn–1(k) – (Lwn–1)(k),

g(wn–1(0), wn–1(T)) + M1(wn(0) – wn–1(0)) – M2(wn(T) – wn–1(T)) = 0
(12)

for n = 1, 2, . . . , where v0 = v, w0 = w.
It follows from Lemma 3.2 that both (11) and (12) have unique solutions, respectively.
We have four steps to complete the proof.
Step 1. We demonstrate that wn–1 ≤ wn and vn ≤ vn–1, n = 1, 2, . . . .
Set p = v1 – v. Employing (H1), we have

�p(k) = �v1(k) – �v(k)

≥ Mv1(k) + (Lv1)(k) + (Qv)(k) – Mv(k) – (Lv)(k) – (Qv)(k)

= Mp(k) + (Lp)(k), k ∈ Z[0, T – 1]

and

p(0) = v1(0) – v(0) = –
1

M1
g
(
v(0), v(T)

)
+

M2

M1

(
v1(T) – v(T)

) ≥ M2

M1
p(T).

From Lemma 2.2 and M2 ≥ M1 > 0, we get p ≤ 0, so v1 ≤ v.
Employing mathematical induction, it is readily seen that vn is a nonincreasing sequence.

Analogously, we can show wn is a nondecreasing sequence.
Step 2. We prove that w1 ≤ v1 if w ≤ v.
Let p = w1 – v1. Using (H2) and (H3), we get

�p(k) = �w1(k) – �v1(k)

= Mw1(k) + (Lw1)(k) + (Qw)(k) – Mw(k) – (Lw)(k)

– Mv1(k) – (Lv1)(k) – (Qv)(k) + Mv(k) + (Lv)(k)

≥ Mp(k) + (Lp)(k), k ∈ Z[0, T – 1]

and

p(0) = w1(0) – v1(0)

= –
1

M1
g
(
w(0), w(T)

)
+

M2

M1

(
w1(T) – w(T)

)
+ w(0)

–
[

–
1

M1
g
(
v(0), v(T)

)
+

M2

M1

(
v1(T) – v(T)

)
+ v(0)

]

≥ M2

M1
p(T).
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From Lemma 2.2, we obtain p ≤ 0 and w1 ≤ v1. By mathematical induction, we obtain
wn ≤ vn, n = 1, 2, . . . .

Step 3. By the first two steps, we get

w0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0,

and each vn, wn satisfies (10) and (11). It is easy to see that sequences {vn(k)}, {wn(k)} are
monotonously and bounded, passing to the limit when n → ∞, we have limn→∞ vn(k) =
ρ(k) and limn→∞ wn(k) = r(k) uniformly on Z[0, T]. Clearly, ρ(k), r(k) satisfy problem (1).

Step 4. We show that ρ and r are extremal solutions of (1) in [w, v].
Let x(k) be any solution of (1) such that w(k) ≤ x(k) ≤ v(k). Assume that there exists a

positive integer n such that wn(k) ≤ x(k) ≤ vn(k). Then, setting p = wn+1 – x, we have

�p(k) = �wn+1(k) – �x(k)

= Mwn+1(k) + (Lwn+1)(k) + (Qwn)(k) – Mwn(k) – (Lwn)(k) – (Qx)(k)

≥ Mp(k) + (Lp)(k), k ∈ Z[0, T – 1]

and

p(0) = wn+1(0) – x(0)

= –
1

M1
g
(
wn(0), wn(T)

)
+

M2

M1

(
wn+1(T) – wn(T)

)

+ wn(0) – x(0) +
1

M1
g
(
x(0), x(T)

)

≥ M2

M1
p(T).

By Lemma 2.2, p ≤ 0, i.e., wn+1 ≤ x. Similarly, we may get that x ≤ vn+1 on Z[0, T]. Since
w0(k) ≤ x(k) ≤ v0(k), by induction we obtain wn(k) ≤ x(k) ≤ vn(k) for every n ∈ N, which
implies r(k) ≤ x(k) ≤ ρ(k), and the proof is complete. �

4 Existence results to (1.2)
In this section, to avoid repetition, we merely state the next lemmas and theorems without
proofs since they are similar to those in Sect. 3.

Definition 4.1 Function w is called an upper solution of (2) if
⎧
⎨

⎩

�w(k – 1) ≥ (Qw)(k), k ∈ Z[1, T],

g(w(0), w(T)) ≥ 0,

and a lower solution of (2) is defined similarly by reversing the inequalities above.

Consider the following linear problems:
⎧
⎨

⎩

�x(k – 1) = Mx(k) + (Lx)(k) + hu(k), k ∈ Z[1, T],

g(u(0), u(T)) + M1(x(0) – u(0)) – M2(x(T) – u(T)) = 0,
(13)

where hu(k) = (Qu)(k) – Mu(k) – (Lu)(k).
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Lemma 4.2 Let Cu = –g(u(0), u(T)) + M1u(0) – M2u(T). A function x ∈ E1 is a solution of
(13) iff x is a solution of the following summation equation:

x(k) =
Cu(1 – M)T–k

M1(1 – M)T – M2
+

T∑

i=1

H(k, i)
[
hu(i) – (Lx)(i)

]
,

where M, M1, M2 are constants satisfying 0 ≤ M < 1, M2 �= M1(1 – M)T , and

H(k, i) =
1

M1(1 – M)T – M2

⎧
⎨

⎩

M1(1–M)T+i–1

(1–M)k , 1 ≤ i ≤ k ≤ T ,
M2(1–M)i–1

(1–M)k , 0 ≤ k + 1 ≤ i ≤ T .

In the remainder of the paper, we denote ξ = ‖H(k, i)‖ = max{| M1
M1(1–M)T –M2

|,
| M2

M1(1–M)T –M2
|}.

Lemma 4.3 Assume that constants 0 ≤ M < 1, M2 �= M1(1 – M)T , and

ξ‖L‖T < 1. (14)

Then problem (13) has a unique solution.

Theorem 4.4 Suppose that (14) is satisfied, further
(A1) w, v are upper and lower solutions of problem (2) and w(k) ≤ v(k), k ∈ Z[1, T];
(A2) there exist 0 ≤ M < 1 and L, Q ∈ C[E1, E1] satisfying

(Qy)(k) – (Qz)(k) ≤ M
(
y(k) – z(k)

)
+

(
L(y – z)

)
(k), k ∈ Z[1, T],

for w(k) ≤ z(k) ≤ y(k) ≤ v(k);
(A3) there exist constants M1, M2 such that M2 ≥ M1 > 0 and

g(ȳ, z̄) – g(y, z) ≥ M1(ȳ – y) – M2(z̄ – z))

for w(0) ≤ y ≤ ȳ ≤ v(0), w(T) ≤ z ≤ z̄ ≤ v(T), and 0 < λ ≤ 1 with λ = M1
M2

.
Then problem (2) has extremal solutions in the sector [w, v] = {x : w(k) ≤ x(k) ≤ v(k), k ∈

Z[0, T]}.

5 Coupled lower and upper solutions
In this section, we shall prove the existence of the coupled quasi-solutions for problems
(1) and (2).

Definition 5.1 Functions v, w are called coupled lower and upper solutions of (1) if
⎧
⎨

⎩

�v(k) ≤ (Qv)(k), k ∈ Z[0, T – 1],

g(v(0), w(T)) ≤ 0

and
⎧
⎨

⎩

�w(k) ≥ (Qw)(k), k ∈ Z[0, T – 1],

g(w(0), v(T)) ≥ 0.
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Definition 5.2 A pair (U , V ) is said to be a coupled quasi-solution of problem (1) if

⎧
⎨

⎩

�U(k) = (QU)(k), k ∈ Z[0, T – 1],

g(U(0), V (T)) = 0

and

⎧
⎨

⎩

�V (k) = (QV )(k), k ∈ Z[0, T – 1],

g(V (0), U(T)) = 0.

The definitions of coupled lower and upper solutions and coupled quasi-solution for (2)
are similar to above.

Theorem 5.3 Suppose that (H2), (4), and (10) hold, let Q ∈ E0. In addition, we assume
that

(H4) v, w are coupled lower and upper solutions of (1) such that w ≤ v;
(H5) there exist M1, M2 such that M2 ≥ M1 > 0, g(·, z) ∈ C(R2,R) is a nonincreasing func-

tion for each z ∈ [w(T), v(T)], and

g(x̄, z) – g(x, z) ≥ M1(x̄ – x)), if w(0) ≤ x ≤ x̄ ≤ v(0).

Then there exist two monotone sequences {wn(k)} and {vn(k)} such that w = w0 ≤ w1 ≤
w2 ≤ · · · ≤ wn ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0 = v for every n ∈ N , which converge uniformly
to the coupled extremal quasi-solutions.

Proof Let

⎧
⎨

⎩

�vn(k) = Mvn(k) + (Lvn)(k) + (Qvn–1)(k) – Mvn–1(k) – (Lvn–1)(k),

g(vn–1(0), wn–1(T)) + M1(vn(0) – vn–1(0)) – M2(vn(T) – vn–1(T)) = 0

and

⎧
⎨

⎩

�wn(k) = Mwn(k) + (Lwn)(k) + (Qwn–1)(k) – Mwn–1(k) – (Lwn–1)(k),

g(wn–1(0), vn–1(T)) + M1(wn(0) – wn–1(0)) – M2(wn(T) – wn–1(T)) = 0

for n = 1, 2, . . . , where v0 = v, w0 = w.
In regard to Lemma 3.1 and Lemma 3.2, it is easy to obtain that v, w are well defined.

First we prove that v0 ≤ v1 ≤ w1 ≤ w0.
Let p = v1 – v0, applying (H4) we have

�p(k) = �v1(k) – �v0(k)

≥ Mv1(k) + (Lv1)(k) + (Qv0)(k) –
[
(Qv0)(k) – Mv0(k) – (Lv0)(k) – (Qv0)(k)

]

= Mp(k) + (Lp)(k), k ∈ Z[0, T – 1]
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and

p(0) = v1(0) – v0(0)

= –
1

M1
g
(
v0(0), w0(T)

)
+

M2

M1
p(T)

≥ M2

M1
p(T).

By Lemma 2.2, we obtain p(k) ≤ 0 with k ∈ Z[0, T], that is, v1 ≤ v0. Similar arguments
prove that w0 ≤ w1.

Now, set p = w1 – v1, using (H2), we get

�p(k) = �w1(k) – �v1(k)

=
[
Mw1(k) + (Lw1)(k) + (Qw0)(k) – Mw0(k) – (Lw0)(k)

]

–
[
Mv1(k) + (Lv1)(k) + (Qv0)(k) – Mv0(k) – (Lv0)(k)

]

≥ Mp(k) + (Lp)(k), k ∈ Z[0, T – 1].

Noticing w0 ≤ v0 and (H5), we obtain

p(0) = w1(0) – v1(0)

= –
1

M1
g
(
w0(0), v0(T)

)
+

M2

M1

(
w1(T) – w0(T)

)
+ w0(0)

–
[

–
1

M1
g
(
v0(0), w0(T)

)
+

M2

M1

(
v1(T) – v0(T)

)
+ v0(0)

]

≥ M2

M1
p(T).

From Lemma 2.2, we have p(k) ≤ 0, k ∈ Z[0, T], i.e., w1 ≤ v1.
In the following, we shall show that v1, w1 are the coupled lower and upper solutions of

(1). Using H4, H5 and v1 ≤ v0, w0 ≤ w1, we obtain

�v1(k) = (Qv1)(k) + (Qv0)(k) – (Qv1)(k)

+ M
(
v1(k) – v0(k)

)
+

(
L(v1 – v0)

)
(k)

≤ (Qv1)(k),

�w1(k) = (Qw1)(k) + (Qw0)(k) – (Qw1)(k)

+ M
(
w1(k) – w0(k)

)
+

(
L(w1 – w0)

)
(k)

≥ (Qw1)(k),

g
(
v1(0), w1(T)

) ≤ g
(
v1(0), w0(T)

)

≤ g
(
v0(0), w0(T)

)
+ M1

(
v1(0) – v0(0)

)

≤ 0,
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g
(
w1(0), v1(T)

) ≥ g
(
w1(0), v0(T)

)

≥ g
(
w0(0), v0(T)

)
+ M1

(
w1(0) – w0(0)

)

≥ 0.

We see that v1, w1 are coupled lower and upper solutions of (1).
Continuing this progress, by mathematical induction, we can get the sequences {vn(k)}

and {wn(k)} such that

w0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.

Then we show that there exist ρ , r such that limn→∞ v(k) = ρ(k), limn→∞ w(k) = r(k) uni-
formly on Z[0, T], and ρ , r satisfy the equations

⎧
⎨

⎩

�ρ(k) = (Qρ)(k),

g(ρ(0), r(T)) = 0,

and
⎧
⎨

⎩

�r(k) = (Qr)(k),

g(r(0),ρ(T)) = 0.

This proves that the pair (r,ρ) is a coupled quasi-solution of problem (1).
Finally, we prove that (r,ρ) is coupled minimal and maximal quasi-solutions of (1). Let

u1, u2 ∈ [w0, v0] be any coupled quasi-solutions of problem (1). Assume that there exists a
positive integer n such that wn ≤ u1, u2 ≤ vn on Z[0, T]. Then, putting p = wn+1 – u1 and
employing the fact g(u1(0), u2(T)) = 0, wn ≤ u1, and H2, we have

�p(k) = �wn+1(k) – �u1(k)

= Mwn+1(k) + (Lwn+1)(k) + (Qwn)(k) – Mwn(k) – (Lwn)(k) – (Qu1)(k)

≥ Mp(k) + (Lp)(k), k ∈ Z[0, T – 1],

p(0) = wn+1(0) – u1(0)

= –
1

M1
g
(
wn(0), vn(T)

)
+

1
M1

g
(
u1(0), u2(T)

)

+
M2

M1

(
wn+1(T) – wn(T)

)
+ wn(0) – u1(0)

≥ M2

M1

(
wn+1(T) – wn(T)

)

≥ M2

M1
p(T).

By Lemma 2.2, p(k) ≤ 0, which proves wn+1(k) ≤ u1(k) on Z[0, T]. Using similar ar-
guments, we can conclude wn+1(k) ≤ u1(k), u2(k) ≤ vn+1(k) on Z[0, T]. Since w0(k) ≤
u1(k), u2(k) ≤ v0(k), by the principle of induction, wn(k) ≤ u1(k), u2(k) ≤ vn(k), (n =
0, 1, 2, . . .) hold for all k ∈ Z[0, T], which implies r(k) ≤ u1(k), u2(k) ≤ ρ(k) on Z[0, T]. It
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is clear that r, ρ are coupled minimal and maximal quasi-solutions of (1). We complete
the proof. �

We can also obtain the existence of coupled extremal quasi-solutions for problem (2) by
a way similar to the one we used in the proof of Theorem (5.3).

Theorem 5.4 Assume condition (A2), (4), and (14) hold, let Q ∈ E1. In addition, we suppose
that

(A4) v, w are coupled lower and upper solutions of (2) such that w ≤ v;
(A5) there exist M1, M2 such that M2 ≥ M1 > 0, and the function g(x, z) ∈ C(R2,R) is

nondecreasing in the second variable satisfying

g(x̄, z) – g(x, z) ≤ –M1(x̄ – x)) if w(0) ≤ x ≤ x̄ ≤ v(0).

Then problem (2) has coupled minimal and maximal quasi-solutions in the sector [w, v] =
{x : w(k) ≤ x(k) ≤ v(k), k ∈ Z[0, T]}.

6 Two examples
In this section, we give two simple but illustrative examples, thereby validating the pro-
posed theorems.

Example 6.1 Consider the problem of

⎧
⎨

⎩

�x(k) = 0.005x(k) + 1
0.01k

∑k
i=1 ix(i) ≡ (Qx)(k), k ∈ Z[0, T],

g(x(0), x(T)) = 1
2 x3(0) + 3x(0) – 4x(T) = 0.

(15)

Set v(k) = 0, w(k) = –1. We can easily prove that v(k) is a lower solution, w(k) is an upper
solution with w(k) ≤ v(k). It is easy to see that (4), (10), H1, H2, and H3 hold with M = 0.005,
M1 = 3, M2 = 4, λ = 3

4 , T = 37. From Theorem (3.4), problem (15) has extremal solutions
in the sector [w, v].

Example 6.2 Consider the problem of

⎧
⎨

⎩

�x(k) = 1
800 x2(k) + 1

400 x(k) + 1
100k3

∑k
i=1 i2x(i) ≡ (Qx)(k), k ∈ Z[0, 30],

g(x(0), x(T)) = ln(2 – x(0)) + (x(T) – 1)3 + 3
2 (x(T) – 1)2 – 1

2 .
(16)

Taking v(k) = 1, w(k) = 0. We can easily prove that v(k) is a coupled lower solution,
w(k) is a coupled upper solution with w(k) ≤ v(k). Let (Qx)(k) = 1

800 x2(k) + 1
400 x(k) +

1
100k3

∑k
i=1 i2x(i), (Lx)(k) = 1

100k3
∑k

i=1 i2x(i). By computing, we get

(Qx)(k) – (Qz)(k) ≤ 1
200

(
x(k) – z(k)

)
+

(
L(x – z)

)
(k),

where v(k) ≤ z(k) ≤ x(k) ≤ w(k) on k ∈ Z[0, 30], M = 1
200 .
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Set g(x, z) = ln(2 – x) + (z – 1)3 + 3
2 (z – 1)2 – 1

2 , we get that the function g(x, z) is nonin-
creasing in the second variable and

g(x̄, z) – g(x, z) ≥ (x̄ – x),

where w(T) ≤ x ≤ x̄ ≤ v(T), M1 = 1, M2 = 2, λ = M1
M2

= 1
2 .

It is easy to prove that τ = maxk∈J{| (1+ 1
200 )30

1–2(1+ 1
200 )30 |, | 2(1+ 1

200 )30

1–2(1+ 1
200 )30 |} < 2,

30∑

j=0

(
M + (L1)(j)

)
=

30∑

j=0

(
1

200
+

1
600

(

2 +
1
j

)(

1 +
1
j

))

<
λ

1 + λ
=

1
3

,

and

τ‖L‖T = 30τ‖L‖ = 30τ
1

100
< 1.

Then all the conditions of Theorem 5.3 are satisfied. Hence problem (16) has coupled
minimal and maximal quasi-solutions in the segment [w, v].
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3. Cabada, A., Grossinho, M.R., Minhoś, F.: Extremal solutions for third-order nonlinear problems with upper and lower

solutions in reversed order. Nonlinear Anal. 62, 1109–1121 (2005)
4. Cabada, A., Habets, P., Pouso, R.L.: Optimal existence conditions for φ-Laplacian equations with upper and lower

solutions in the reversed order. J. Differ. Equ. 166, 385–401 (2000)
5. Cabada, A., Otero-Espinar, V.: Existence and comparison results for difference φ-Laplacian boundary value problems

with upper and lower solutions in reverse order. J. Math. Anal. Appl. 267, 501–521 (2002)
6. Corduneanu, C.: Some existence results for functional equations with causal operators. Nonlinear Anal. 47, 709–716

(2001)
7. Drici, Z., McRae, F.A., Vasundhara Devi, J.: Differential equations with causal operators in a Banach space. Nonlinear

Anal. 62, 301–313 (2005)
8. Drici, Z., McRae, F.A., Vasundhara Devi, J.: Monotone iterative technique for periodic boundary value problems with

causal operators. Nonlinear Anal. 64, 1271–1277 (2006)
9. Geng, F.: Differential equations involving causal operators with nonlinear periodic boundary conditions. Math.

Comput. Model. 48, 859–866 (2008)



Wang and Tian Advances in Difference Equations        (2019) 2019:136 Page 15 of 15

10. He, Z., Zhang, X.: Monotone iterative technique for first order impulsive difference equations with periodic boundary
conditions. Appl. Math. Comput. 156, 605–620 (2004)

11. Jankowski, T.: Boundary value problems for difference equations with causal operators. Appl. Math. Comput. 218,
2549–2557 (2011)

12. Jankowski, T.: Existence of solutions for a coupled system of difference equations with causal operators. Appl. Math.
Comput. 219, 9348–9355 (2013)

13. Kelley, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications. Academic Press, San Diego
(2001)

14. Lakshmikantham, V., Leela, S., Drici, Z., McRae, F.A.: Theory of Causal Differential Equations. World Scientific Press, Paris
(2009)

15. Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations Numerical Methods and Applications. CRC Press,
Boca Raton (2002)

16. Li, F., Jia, M., Liu, X., Li, Ch., Li, G.: Existence and uniqueness of solutions of second-order three-point boundary value
problems with upper and lower solutions in the reversed order. Nonlinear Anal. 68, 2381–2388 (2008)

17. Liu, Y., Liu, X.: The existence of periodic solutions of higher order nonlinear periodic difference equations. Math.
Methods Appl. Sci. 36, 1459–1470 (2013)

18. Qi, F., Lim, D., Guo, B.-N.: Explicit formulas and identities for the Bell polynomials and a sequence of polynomials
applied to differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 1–9 (2019)

19. Qi, F., Wang, J.-L., Guo, B.-N.: Simplifying differential equations concerning degenerate Bernoulli and Euler numbers.
Trans. A Razmadze Math. Inst. 172(1), 90–94 (2018)

20. Tian, J.: Note on common fixed point theorems in fuzzy metric spaces using the CLRg property. Fuzzy Sets Syst.
https://doi.org/10.1016/j.fss.2019.01.018

21. Tian, J., Wang, W., Cheung, W.-S.: Periodic boundary value problems for first-order impulsive difference equations
with time delay. Adv. Differ. Equ. 2018, 79 (2018)

22. Wang, P., Tian, S., Wu, Y.: Monotone iterative method for first-order functional difference equations with nonlinear
boundary value conditions. Appl. Math. Comput. 203, 266–272 (2008)

23. Wang, W., Tian, J.: Generalized monotone iterative method for nonlinear boundary value problems with causal
operators. Bound. Value Probl. 2014, 192 (2014)

24. Wang, W., Tian, J.: Difference equations involving causal operators with nonlinear boundary conditions. J. Nonlinear
Sci. Appl. 8, 267–274 (2015)

25. Wang, W., Tian, J.-F.: Nonlinear boundary value problems for impulsive differential equations with causal operators.
Differ. Equ. Appl. 9(2), 161–170 (2017)

26. Wang, W., Tian, J.-F., Cheung, W.-S.: A class of coupled causal differential equations. Symmetry 10, 421 (2018)
27. Wang, W., Yang, X., Shen, J.: Boundary value problems involving upper and lower solutions in the reverse order.

J. Comput. Appl. Math. 230, 1–7 (2009)

https://doi.org/10.1016/j.fss.2019.01.018

	Causal difference equations with upper and lower solutions in the reverse order
	Abstract
	MSC
	Keywords

	Introduction
	Lemmas
	Existence results to (1.1)
	Existence results to (1.2)
	Coupled lower and upper solutions
	Two examples
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


