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Abstract
This paper introduces the solution of differential algebraic equations using two hybrid
classes and their twin one-leg with improved stability properties. Physical systems of
interest in control theory are sometimes described by systems of differential algebraic
equations (DAEs) and ordinary differential equations (ODEs) which are zero index
DAEs. The study of the first hybrid class includes the order of convergence,
A(α)-stability, stability regions, and G-stability for its one-leg twin in two cases: for step
(k = 1) and steps (k = 2). For the second class, G-stability of its one-leg twin is studied
in two cases: for steps (k = 2) and steps (k = 3). Test problems are introduced with
different step size at different end points.

MSC: 65L05; 65L06; 65L20

Keywords: Hybrid methods; One-leg methods; DAEs; G-stability; A(α)-stability

1 Introduction
Consider the initial value problems of the form

f
(
x′(t); x(t); t

)
= 0; x(t0) – a = 0, t ∈ [t0; T], (1)

where a ∈ Rm is a consistent initial value for (1) and the function f : Rm × Rm × [t0; T] →
Rm is assumed to be sufficiently smooth. If (∂f /∂x) is nonsingular, then it is possible to
formally solve (1) for x in order to obtain an ordinary differential equation. However, if
(∂f /∂x) is singular, it is no longer possible and the solution x has to satisfy certain algebraic
constraints; therefore, equations (1) are referred to as differential algebraic equations.

Systems of differential algebraic equations arise from many applications such as physics,
engineering, and circuit analysis. Some systems can be reduced to an ODE system, which
are zero index DAEs, and can be solved by numerical ODE methods after reduction. Other
systems, in which reductions to an explicit differential systems are in the form x′ = f (x; t),
are either impossible or impractical, that is because the problem is more naturally posed
in the form

f
(
t, x′, x, y

)
= 0; (2-a)

g(t, x, y) = 0; (2-b)
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and a reduction might reduce the sparseness of Jacobian matrices. These systems are then
solved directly [16, 17].

A fundamentally important concept in the algorithms of the numerical solutions of
DAEs is the index of a DAE. In a sense, this tells us how far away the DAE is from be-
ing an ODE. The index of a DAE is the minimum number of times all or part of the DAE
system must be differentiated with respect to time in order to convert the DAE into an
explicit ODE. The higher the index is, the further it is from an ODE and the more difficult
it is in general to solve the DAE [12].

The first general method applied to the numerical solution of DAEs is backward differ-
entiation formula (BDF). Ebadi andGokhale presented in [9–11] class 2+1 hybrid BDF-like
methods, hybrid BDF methods (HBDF), and new hybrid methods for the numerical solu-
tion of IVPs. These methods have wide stability regions and good performance in solving
CPU time compared to the extended BDF (EBDF) and modified extended BDF (MEBDF)
methods [3].

In Sect. 2 the first hybrid class is derived, its orders of convergence are investigated, and
its stability analysis is studied. In Sect. 3 some basic notions of one-leg schemes and G-
stability are mentioned. The one-leg twin of the first class is derived and its G-stability is
discussed in Sect. 4. The one-leg twin of the second class [14] is derived and its G-stability
is discussed in Sect. 5. Numerical tests are investigated in Sect. 6. Finally, a conclusion is
introduced.

2 The first hybrid class
The first hybrid class takes the form

yn+s = hμfn +
k∑

j=0

γn–jyn–j, (3)

yn +
k∑

j=1

αn–jyn–j = h(βsfn+s + β1fn + β0fn–1), (4)

where fn+s = f (tn+s; yn+s); tn+s = tn + sh; –1 < s and βs, β1, αn–j, j = 1, 2, . . . , k, are parameters
to be determined as functions of s and β0. The methods for step k and order p = k +1 (from
k = 1 up to 6) will be derived and yn+s has order k – 1. To evaluate the value of yn+s at an
off-step point, i.e. tn+s, we will consider the nodes tn (double node), tn–1, . . . , tn–k (simple
nodes).

Applying Newton’s interpolation formula for this data gives the following scheme:

y(t) = yn + (t – tn)y′
n + (t – tn)2 hy′

n – ∇yn

h2

+ (t – tn)2(t – tn–1)
hy′

n – ∇yn – 1
2∇2yn

2!h3

+ (t – tn)2(t – tn–1)(t – tn–2)
hy′

n – ∇yn – 1
2∇2yn – 1

3∇3yn

3!h4 + · · · . (5)



Agarwal et al. Advances in Difference Equations        (2019) 2019:103 Page 3 of 15

Differentiate (5) with respect to t:

y′(t) = y′
n + 2(t – tn)

hy′
n – ∇yn

h2 +
(
2(t – tn)(t – tn–1) + (t – tn)2)hy′

n – ∇yn – 1
2∇2yn

2!h3

+
(
2(t – tn)(t – tn–1)(t – tn–2) + (t – tn)2(t – tn–2) + (t – tn)2(t – tn–1)

)

× hy′
n – ∇yn – 1

2∇2yn – 1
3∇3yn

3!h4 + · · · . (6)

Using (5) and (6) to evaluate yn+s and fn+s gives

y(tn + sh) = yn + shfn + s2(hfn – ∇yn) +
s2(s + 1)

2!

(
hfn – ∇yn –

1
2
∇2yn

)

+
s2(s + 1)(s + 2)

3!

(
hfn – ∇yn –

1
2
∇2yn –

1
3
∇3yn

)
+ · · · , (7)

f (tn+s) = fn + 2s
hfn – ∇yn

h
+ s(2 + 3s)

hfn – ∇yn – 1
2∇2yn

2!h

+ s
(
4 + 9s + 4s2)hfn – ∇yn – 1

2∇2yn – 1
3∇3yn

3!h
+ · · · , (8)

where f (or f (t, y)) is considered as a derivative of the solution y(t), ∇yn = yn – yn–1.
Method (4) is of order p if and only if

1 +
k∑

j=1

αn–j = 0,
k∑

j=1

–jαn–j = (βs + β1 + β0),

k∑

j=1

αn–j(–j)q = q
(
βssq–1 + (–1)q–1β0

)
, where q = 2, . . . , p.

The coefficients of the methods for steps k = 1 up to 6 are tabulated in Tables 1, 2, 3,
and 4.

Since formula (3) is of order k and formula (4) is of order k + 1, then it is easy to see that
method (3)–(4) has order k + 1.

Table 1 The coefficients of method (2.2) for orders 2, 3, and 4

k 1 2 3

αn–1 –1 2(–8–6s+3β0+3sβ0)
14+9s

–18(12+s(15+4s))+(1+s)(119+46s)β0
2(85+90s+22s)

αn–2 0 2+3s–6(1+s)β0
14+9s

9(3+2s(3+s))–4(1+s)(17+7s)β0
85+90s+22s

αn–3 0 0 –2(4+s(9+4s))+(1+s)(17+10s)β0
2(85+90s+22s)

β1
1+2s–2(1+s)β0

2s
4+6s(2+s)–(1+s)(5+3s)

s(14+9s)
–6(3+2s)(1+s(3+s))+(1+s)(17+s(17+4s))β0

s(85+90s+22s)

βs – 1–2β0
2s

–4+5β0
s(14+9s)

–18+17β0
s(85+90s+22s)



Agarwal et al. Advances in Difference Equations        (2019) 2019:103 Page 4 of 15

Table 2 The coefficients of method (2.2) for order 5

k 4

αn–1
–288(48+s(78+s(36+5s)))+(1+s)(8996+6055s+985s)β0

6(1660+s(2265+s(952+125s)))

αn–2
72(24+s(57+s(32+5s)))–3(1+s)(1274+s(913+155s))β0

(3320+2s(2265+s(952+125s)))

αn–3
–32(8+5s)(2+s(4+s))+3(1+s)(316+s(281+55s))β0

(3320+2s(2265+s(952+125s)))

αn–4
18(12+s(33+s(24+5s)))–(1+s)(374+s(367+85s))β0

6(1660+s(2265+s(952+125s)))

β1
12(24+5s(4+s)(5+s(4+s)))–3(1+s)(74+s(96+s(39+5s)))β0

s(1660+s(2265+s(952+125s)))

βs
6(–48+37β0)

s(1660+s(2265+s(952+125s)))

Table 3 The coefficients of method (2.2) for order 6

k 5

αn–1
(–7200(120+s(231+s(142+s(35+3s))))+(1+s)(615,436+s(553,907+3s(53,483+5002s)))β0)

(12(48,076+s(77,175+s(42,980+9975s+822s))))

αn–2
(300(120+s(321+s(236+s(65+6s))))–4(1+s)(17,929+s(17,174+s(5194+501s)))β0)

(48,076+s(77,175+s(42,980+9975s+822s)))

αn–3
(–400(40+s(117+s(98+3s(10+s))))+9(1+s)(2948+s(3325+s(1127+118s)))β0)

(48,076+s(77,175+s(42,980+9975s+822s)))

αn–4
(225(60+s(183+s(164+s(55+6s))))–4(1+s)(5221+s(6362+3s(794+91s)))β0

(3(48,076+s(77,175+s(42,980+9975s+822s))))

αn–5
(–96(24+s(75+s(70+s(25+3s))))+(1+s)(3436+s(4379+s(1753+222s))))β0

(4(48,076+s(77,175+s(42,980+9975s+822s))))

β1
(60(5+2s)(24+s(5+s)(20+3s(5+s)))–24(1+s)(197+s(302+s(163+s(37+3s))))β0)

(s(48,076+s(77,175+s(42,980+9975s+822s))))

βs
–7200+4728β0

s(48,076+s(77,175+s(42,980+9975s+822s)))

Table 4 The coefficients of method (2.2) for order 7

k 6

αn–1
–7200(1440+s(3132+s(2320+s(775+s(120+7s)))))+(1+s)(7,796,104+s(8,479,052+s(3,336,768+7s(80,701+4973s))))β0)

(60(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s))))))

αn–2
(300(720+s(2106+s(1844+s(685+s(114+7s)))))–5(1+s)(78,796+s(91,175+s(37,473+s(6547+413s))))β0)

(215,824+2s(194,628+s(130,060+s(40,775+s(6054+343s)))))

αn–3
(–1200(480+s(1524+s(1488+s(605+s(108+7s)))))+5(1+s)(174,152+s(230,788+s(104,616+7s(2807+187s))))β0)

(9(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s))))))

αn–4
225(360+s(1188+s(1228+s(535+s(102+7s)))))–20(1+s)(5701+s(8066+s(3942+s(793+56s))))β0

3(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s)))))

αn–5
–96(288+s(972+s(1040+s(475+s(96+7s)))))+5(1+s)(7496+s(11,020+s(5664+7s(173+13s))))β0

4(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s)))))

αn–6
300(240+s(822+s(900+s(425+s(90+7s)))))–(1+s)(95,356+s(143,753+s(76,527+s(17,173+1379s))))β0

90(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s)))))

β1
(60(720+7s(6+s)(84+s(6+s)(17+s(6+s))))–10(1+s)(2484+s(4292+s(2785+s(855+s(125+7s)))))β0)

(3s(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s))))))

βs
360(–40+23β0)

s(107,912+s(194,628+s(130,060+s(40,775+s(6054+343s)))))

2.1 Stability analysis
Consider the scalar test problem y′ = λy, y(0) = y0. From equations (3) and (4) the corre-
sponding characteristic equation is as follows:

yn +
k∑

j=1

αn–jyn–j = h

(

βs

(

hμyn +
k∑

j=0

γn–jyn–j

)

+ β1yn + β0yn–1

)

, (9)

where h = λy, i.e.

Ah2 + Bh + C = 0, (10)
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Figure 1 The absolute stability domain of class (3–4) for k = 1 up to 7

where

A = βsμr, B = βs

k∑

j=0

γn–jr1–j + β1r + β0, C = r +
k∑

j=1

an–jr1–j. (11)

The absolute stability regions for this class for k = 1 up to 7 are given in Fig. 1 for the
optimal s and β0 using the boundary locus method.

The angle α of A(α)-stability for different methods, BDF, EBDF, A-EBDF, MEBDF, En-
right methods, HEBDF, and The class (3–4) for various orders are tabulated in Table 5.

We recall some basic notions of one-leg schemes and G-stability.

3 One-leg schemes
Suppose that a linear k-step method

k∑

i=0

αiyn+i = h
k∑

i=0

βif (tn+i, yn+i) (12)

is given. One-leg methods can be formulated in a compact form by introducing the poly-
nomials

ρ(ξ ) =
k∑

i=0

αiξ
i, σ (ξ ) =

k∑

i=0

βiξ
i, (13)
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Table 5 A(α)-stability for BDF, EBDF, A-EBDF, MEBDF, Enright methods, HEBDF, and The class (3–4) for
various orders

k 1 2 3 4 5 6 7

BDF
Order 1 2 3 4 5 6 -
α 90° 90° 88° 73° 51° 18° -

EBDF
Order 2 3 4 5 6 7 8
α 90° 90° 90° 87.61° 80.2° 67.7° 48.8°

A-EBDF
Order 2 3 4 5 6 7 8
α 90° 90° 90° 88.85° 84.2° 75° 61°

MEBDF
Order 2 3 4 5 6 7 8
α 90° 90° 90° 88.4° 82.5° 74.5° 62°

Enright methods
Order 3 4 5 6 7 8 9
α 90° 90° 87.88° 82.03° 73.10° 59.95° 37.61°

HEBDF
Order 2 3 4 5 6 7 8
α 90° 90° 90° 89.013° 85.2° 77.195° 60.686°

The class (3–4)
Order 2 3 4 5 6 7 8
α 90° 90° 90° 90° 86.1o 81.6o 75.2o

with real coefficients αi,βi ∈ R and no common divisor. There is also the assumption
throughout the normalization that

σ (1) = 1. (14)

The associated one-leg methods are defined by

k∑

i=0

αiyn+i = hf

( k∑

i=0

βitn+i,
k∑

i=0

βiyn+i

)

. (15)

In the one-leg methods, the derivative f is evaluated at one point only, which makes it
easier to analyze. The one-leg method (15) may have stronger nonlinear stability proper-
ties such as G-stability [12, 15]. On the other hand, it is known that to obtain a one-leg
method of high order, the parameters αi, βi have to satisfy more constraints than those
for linear multistep methods, see [7, 8, 14]. The conditions ρ(1) = 0, ρ ′(1) = σ (1) = 1 imply
the consistency of the scheme (ρ,σ ).

3.1 G-stability analysis
The G-stability analysis, announced at the 1975 Dundee conference and published in [6],
uses the test problem dy/dx = f (x, y), where 〈y – z, f (x, y) – f (x, z)〉 ≤ 0. In the same pub-
lication, one-leg methods were introduced and related to corresponding linear multistep
methods. Stable behavior for this problem was defined as G-stability. A more detailed ac-
count of this work will be given.

If the differential equation satisfies the one-sided Lipschitz condition

〈
f (x, y) – f (x, z)

〉 ≤ ν‖y – z‖2, (16)
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with ν = 0, then the exact solutions are contractive. Consider the multistep method as a
mapping Rn,k → Rn,k . Let Ym = (ym+k–1, . . . , ym)T and consider inner product norms on Rn,k

‖Ym‖2
G =

k∑

i=1

k∑

j=1

gji〈ym+i–1, ym+j–1〉, (17)

where 〈·, ·〉 is the inner product on Rn used in (16) and k-dimensional matrix G = (gij)
i, j = 1, . . . , k is assumed to be real, symmetric, and positive definite. The inner product 〈·, ·〉,
on which 〈·, ·〉G is built, is supposed to have a corresponding norm defined by ‖u‖2 = 〈u, u〉.
Similarly we will write ‖·, ·‖G as the norm corresponding to 〈·, ·〉G.

Definition 1 ([6]) The one-leg method (15) is called G-stable if there exists a real, sym-
metric, and positive definite matrix G such that, for two numerical solutions {Ym} and
{Ŷm}, we have

‖Ym+1 – Ŷm+1‖G ≤ ‖Ym – Ŷm‖G (18)

for all step sizes h > 0 and for all differential equations satisfying (16) with ν = 0.

Theorem 1 ([2]) G-stability implies A-stability.

Theorem 2 ([12]) Consider a method (ρ,σ ). If there exists a real, symmetric, and positive
definite matrix G, and real numbers a0, . . . , ak such that

1
2
(
ρ(ξ )σ (ω) + ρ(ω)σ (ξ )

)
= (ξω – 1)

k∑

i,j=1

gijξ
i–1ωj–1 +

( k∑

i=0

aiξ
i

)( k∑

i=0

ajω
j

)

, (19)

then the corresponding one-leg method is G-sable.

Theorem 3 ([5]) If ρ and σ have no common divisor, then the method (ρ,σ ) is A-stable if
and only if the corresponding one-leg method is G-stable.

4 One-leg method for the first hybrid class
Here, the one-leg twin of the first class is studied when k = 1 and k = 2.

In the case of k = 1, method (4) takes the form

αnyn + αn–1yn–1 = h(βsfn+s + β1fn + β0fn–1), (20)

yn+s = yn + shfn, (21)

where

αn = 1, αn–1 = –1, βs =
–1 + 2β0

2s
, and β1 =

1 + 2s – 2(1 + s)β0

2s
.

Method (20) has order 2, its truncation error takes the form

T2 =
2 + 3s – 6(1 + s)β0

12
h3y(3)(η).
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The one-leg twin of (20) takes the form

αnyn + αn–1yn–1 = hf (βstn+s + β1tn + β0tn–1) (22)

and has order 2 and its truncation error takes the form

T2 = (1/24)h3y(3)(η).

To discuss G-stability of (22),

fn+s = fn.

Substitute fn+s in equation (20), it becomes

αnyn + αn–1yn–1 = h(βsfn + β1fn + β0fn–1).

The corresponding characteristic equations are

ρ(ξ ) = αnξ + αn–1, σ (ξ ) = (β1 + βs)ξ + β0.

Applying Theorem 2, the variables ai, i = 0, 1 and gij, i, j = 1 satisfy the relations

a0 =
√

1
2

– β0, a1 = –
√

1
2

– β0 and g11 = a2
0 + β0.

Choose β0 < 1/2, g11 = 1/2 > 0. So, method (22) is G-stable.
In the case of k = 2, method (4) takes the form

αnyn + αn–1yn–1 + αn–2yn–2 = h(βsfn+s + β1fn + β0fn–1), (23)

yn+s = yn + shfn + s2(hfn – yn + yn–1). (24)

After normalization

αn =
14 + 9s

6(2 + s + (1 + s)β0)
, αn–1 =

–8 – 6s + 3(1 + s)β0

3(2 + s + (1 + s)β0)
,

αn–2 =
2 + 3s – 6(1 + s)β0

6(2 + s + (1 + s)β0)

βs =
–4 + 5β0

6s(2 + s + (1 + s)β0)
, and β1 =

4 + 6s(2 + s) – (1 + s)(5 + 3s)β0

6s(2 + s + (1 + s)β0)
.

Method (23) has order 3, its truncation error takes the form

T3 =
8 + 2s(9 + 4s) + β0(–21 – s(33 + 10s) + 12(1 + s)β0

72(2 + s + (1 + s)β0)
h4y(4)(η).

The one-leg twin of (23) takes the form

αnyn + αn–1yn–1 + αn–2yn–2 = hf (βstn+s + β1tn + β0tn–1) (25)
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and has order 2 if β0 = (2 + 3s)/(6(1 + s)) and its truncation error takes the form

T3 = (1/24)h3y′′′(η).

To discuss G-stability of (25),

fn+s = fn + 2s(hfn – yn + yn–1)/h.

Substitute fn+s in equation (23), it becomes

αnyn + αn–1yn–1 + αn–2yn–2 = h
(
βs

(
fn + 2s(hfn – yn + yn–1)/h

)
+ β1fn + β0fn–1

)
.

The corresponding characteristic equations are

ρ(ξ ) = (αn + 2sβs)ξ 2 + (αn–1 – 2sβs)ξ + αn–2,

σ (ξ ) =
(
β1 + βs(1 + 2s)

)
ξ 2 + β0ξ .

Applying Theorem 2, the variables ai, i = 0, 1, 2 and gij, i, j = 1, 2 satisfy the relations

g11 = a2
0,

g12 =
(
12a0a1

(
2 + s + (1 + s)β0

)
+ β0

(
–2 – 3s + 6(1 + s)β0

))
/
(
12

(
2 + s + (1 + s)β0

))
,

g22 = –
(
36a2

2
(
2 + s + (1 + s)β0

)2 + (6 + 9s + 10β0)
(
–4 – 6s + (–2 + 3s)β0

))

/
(
36

(
2 + s + (1 + s)β0

)2).

Choosing β∗ = 0.4 and s = 0.9 makes that a0 = 0.079714, a1 = –0.0561286, a2 = –0.0235855,
g11 > 0, and Det

(( g11 g12
g21 g22

))
> 0. Therefore, the matrix G is positive definite and method (25)

is G-stable.

5 The second hybrid class
The second hybrid class takes the form

yn+s = hμfn +
k–2∑

j=0

γn–jyn–j, (26)

yn +
k∑

j=1

αn–jyn–j = hβs
(
fn+s – β∗fn–1

)
, (27)

where fn+s = f (tn+s; yn+s); tn+s = tn + sh; –1 < s < 1 and βs, αn–j, j = 1, 2, . . . , k, are parameters
to be determined as functions of s and β∗. The method with step k has order p = k and
yn+s has order k – 1. To evaluate the value of yn+s at off-step point, i.e. tn+s, consider the
nodes tn (double node), tn–1, . . . , tn–k (simple nodes) [14].

Here, the one-leg twin of the second class is studied when k = 2 and k = 3.
In the case of k = 2, the method takes the form

αnyn + αn–1yn–1 + αn–2yn–2 = hβs
(
fn+s – β∗fn–1

)
, (28)

yn+s = yn + shfn, (29)
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where

αn =
3 + 2s – β∗

2(1 – β∗)
, αn–1 =

–2(1 + s)
(1 – β∗)

,

αn–2 =
–(–1 – 2s – β∗)

2(1 – β∗)
and βs =

1
(1 – β∗)

.

Method (28) has order 2, its truncation error takes the form

T3 =
2 + 3s(2 + s) + β∗

6(–1 + β∗)
h3y′′′(η).

The one-leg twin of (28) takes the form

αnyn + αn–1yn–1 + αn–2yn–2 = hf
(
βstn+s – βsβ

∗tn–1
)

(30)

and has order 2 and its truncation error takes the form

T̄3 =
(

1
6

–
(1 + s)2

2(–1 + β∗)2

)
h3y′′′(η).

If

s =
1
3
(
–3 +

√
3
√

1 – 2β∗ + β∗2
)
,

then method (30) has order 3 and its truncation error becomes

T̄4 =
1

36
√

3
h4y(4)(η).

To discuss G-stability of (30), using (8), we have

fn+s = fn.

Substitute fn+s in equation (28), it becomes

2∑

i=0

αn–iyn–i = hβs
(
fn – β∗fn–1

)
.

The corresponding characteristic equations are

ρ(ξ ) = αnξ
2 + αn–1ξ + αn–2 and σ (ξ ) = βsξ

(
ξ – β∗).

Applying Theorem 2, the variables ai, i = 0, 1, 2 and gij; i, j = 1, 2 satisfy the relations

g11 = a2
0,

g21 =
–4(1 + s) – 4a1a2(–1 + β∗)2 + β∗(–3 – 2s + β∗)

4(–1 + β∗)2 ,

g22 = –a2
2 +

3 + 2s – β∗

2(–1 + β∗)2 .
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Choosing β∗ = 0.3 and s = –0.1 makes a0 = –0.583636,

a1 = 1.54524, a2 = –0.9616, g11 > 0 and

Det

([
g11 g12

g21 g22

])

> 0.

Therefore, the matrix G is positive definite and method (30) is G-stable.
In the case of k = 3, the method takes the form

αnyn + αn–1yn–1 + αn–2yn–2 + αn–3yn–3 = hβs
(
fn+s – β∗fn–1

)
, (31)

yn+s = yn + shfn + s2(hfn – yn + yn–1), (32)

where

αn =
11 + 12s + 3s2 – 2β∗

6(1 – β∗)
, αn–1 =

–(6 + 10s + 3s2 + β∗)
2(1 – β∗)

,

αn–2 =
3 + 8s + 3s2 + 2β∗

2(1 – β∗)
, αn–3 =

–(2 + 6s + 3s2 + β∗)
6(1 – β∗)

and

βs =
1

(1 – β∗)
.

Method (31) has order 3 and its truncation error takes the form

T4 =
(3 + 2s)(1 + s(3 + s)) + β∗

12(–1 + β∗)
h4y(4)(η).

The one-leg twin of (31) takes the form

αnyn + αn–1yn–1 + αn–2yn–2 + αn–3yn–3

= hf
(
βstn+s – βsβ

∗tn–1
)

(33)

and has order 2, its truncation error takes the form

T̄3 = –
(1 + s)2β∗

2(–1 + β∗)2 h3y′′′(η).

To discuss G-stability of (33), using (8), we have

hfn+s = hfn + 2s(hfn – yn + yn–1).

Substitute fn+s in equation (31), it becomes

3∑

i=0

αn–iyn–i = βs
((

hfn + 2s(hfn – yn + yn–1)
)

– hβ∗fn–1
)
.
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The corresponding characteristic equations are

ρ(ξ ) = (αn + 2sβs)ξ 3 + (αn–1 – 2sβs)ξ 2 + αn–2ξ + αn–3 and

σ (ξ ) = (1 + 2s)βsξ
3 – β∗βsξ

2.

Applying Theorem 2, the variables ai, i = 0, 1, 2, 3 and gij; i, j = 1, 2, 3 satisfy the relations

g11 = a2
0,

g12 = g21 = a0a1,

g13 = g31 =
12a0a2(–1 + β∗)2 – β∗(2 + 3s(2 + s) + β∗)

12(–1 + β∗)2 ,

g23 = g32

=
–3(1 + 2s)(6 + s(14 + 3s)) – 12a2a3(–1 + β∗)2 + β∗(–14 – 3s(10 + s) + 2β∗)

12(–1 + β∗)2 ,

g22 = a2
0 + a2

1,

g33 = a2
0 + a2

1 +
2a2

2(–1 + β∗)2 – β∗(6 + s(14 + 3s) + β∗)
2(–1 + β∗)2 .

Choosing s = –0.3 and β∗ = 0.2 makes a0 = –0.231455;

a1 = 0.613677, a2 = –0.53299,

a3 = 0.150767, g11 > 0,

Det

([
g11 g12

g21 g22

])

> 0 and Det

⎛

⎜
⎝

⎡

⎢
⎣

g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤

⎥
⎦

⎞

⎟
⎠ > 0.

Therefore, the matrix G is positive definite and method (33) is G-stable.

6 Numerical tests
Here, some numerical results are presented to evaluate the performance of the proposed
technique [1, 4, 13]. The numerical tests are solved after reduction.

Test 1 Consider the differential algebraic equations:

y′
1(t) – ty′

2(t) + t2y′
3(t) + y1(t) – (t + 1)y2(t) +

(
t2 + 2t

)
y3(t) = 0;

y′
2(t) – ty′

3(t) – y2(t) + (t – 1)y3(t) = 0;

y3(t) = sin(t);

with the initial condition y1(0) = 1; y2(0) = 1; y3(0) = 0; and the exact solution is

y1(t) = exp(–t) + t exp(t); y2(t) = exp(t) + t sin(t); y3(t) = sin(t).



Agarwal et al. Advances in Difference Equations        (2019) 2019:103 Page 13 of 15

Test 2 Consider the differential algebraic equations:

x′(t) = 2(1 – y) sin(y) + x/
√

(1 – y); 0 = x2 + (y – 1) cos2(y);

with the initial condition x(1) = 1; y(1) = 0; and the exact solution is x(t) = t cos(1 – t2),
y(t) = 1 – t2.

Test 3 Consider the differential algebraic equations:

x′(t) = f (x; t) – B(x; t)y; 0 = g(x; t);

where x′(t) = (x1, x2)T; f (x; t) = (1 + (t – 1/2) exp(t), 2t + (t2 – 1/4) exp(t))T; B(x; t) = (x′
1, x′

2)T;
g(x; t) = 1/2(x2

1 + x2
2 – (t – 1/2)2 – (t2 – 1/4)2); with the initial condition x1(0) = –1/2; x2(0) =

–1/4; and the exact solution is x1(t) = (t – 1/2); x2(t) = t2 – 1/4; y(t) = exp(t).

The above tests are solved by the two hybrid classes and their one-leg twins of the two
classes with k = 2 at different values of t. In the first method, β0 = 0.8, s = 2, and in the
second method, β∗ = –0.4, s = –0.3. The errors of numerical solutions of tests 1, 2, and 3
are tabulated in Tables 6, 7, and 8, with different step-sizes h, respectively.

7 Conclusion
In this paper, the first hybrid class is studied for k = 1 up to 6. It has large stability regions.
Its one-leg twin for k = 1 (p = 2) and k = 2 (p = 3) is G-stable. In the second class, for
k = p = 2, the one-leg twin has order 2 except when s = 1

3 (–3 +
√

3
√

(1 – 2β∗ + β∗2)) it has
order 3. For k = p = 3, the one-leg twin has order 2 and if β∗ = 0, it leads to one leg hybrid
BDF, and they are G-stable. The numerical tests show that the hybrid method (4) gives
good result with small steps.

Table 6 The error of the first test

t h Er(y1(t)) Er(y2(t))

Hybrid Method (4) 3 0.001 4.78965E-8 1.53733E-8
6 0.001 2.07019E-6 3.41682E-7

3 0.0001 1.67133E-10 4.69775E-11
6 0.0001 1.26784E-9 1.45462E-10

One-Leg of Hybrid Method (4) 3 0.001 8.87175E-6 4.70979E-6
6 0.001 4.45514E-4 8.88051E-5

3 0.0001 8.92249E-8 4.72626E-8
6 0.0001 4.48537E-6 8.9293E-7

Hybrid Method (27) 3 0.001 1.15024E-7 3.66907E-8
6 0.001 5.31317E-6 8.72459E-7

3 0.0001 3.5984E-10 1.107355E-10
6 0.0001 1.12391E-8 1.93154E-9

One-Leg of Hybrid Method (27) 3 0.001 1.28838E-6 9.03448E-8
6 0.001 2.06502E-4 2.96481E-5

3 0.0001 1.22774E-8 1.09555E-9
6 0.0001 2.02582E-6 2.90166E-7

HBDF 3 0.001 4.67957E-9 1.52812E-8
6 0.001 7.17848E-6 1.01547E-6

3 0.0001 2.87855E-10 9.16494E-11
6 0.0001 4.06857E-8 6.55177E-9



Agarwal et al. Advances in Difference Equations        (2019) 2019:103 Page 14 of 15

Table 7 The error of the second test

t h Er(y1(t)) Er(y2(t))

Hybrid Method 1.3 0.001 6.79234E-13 4.38633E-10
2.3 0.001 3.66441E-8 1.53328E-8

1.5 0.0001 1.23906E-12 7.22089E-13
3 0.0001 7.66911E-10 1.98713E-9

One-Leg Hybrid Method 1.3 0.001 1.20205E-6 1.07885E-6
2.3 0.001 1.08490E-5 3.18015E-6

1.5 0.0001 1.54044E-8 1.13384E-8
3 0.0001 8.71812E-8 2.76648E-8

Class1 1.3 0.001 8.48159E-11 4.33369E-10
2.3 0.001 1.37322E-7 3.42503E-8

1.5 0.0001 1.41808E-12 2.87503E-12
3 0.0001 1.36406E-8 3.2887E-8

One-Leg Class1 1.3 0.001 2.17487E-7 1.48626E-7
2.3 0.001 2.25127E-6 1.99805E-6

1.5 0.0001 3.73525E-9 6.91022E-10
3 0.0001 2.8067E-7 1.95566E-6

HBDF 1.3 0.001 3.24911E-9 2.8293E-9
2.3 0.001 8.05334E-6 1.9571E-6

1.5 0.0001 4.8609E-11 3.10769E-11
3 0.0001 7.08909E-3 2.92056E-1

Table 8 The error of the third test

t h Er(x1(t)) Er(x2(t)) Er(y(t))

Hybrid Method 1 0.001 1.22665E-10 1.44872E-10 2.37014E-9
3 0.001 8.34595E-8 2.85294E-7 8.03989E-7

1 0.0001 1.63203E-13 2.12274E-13 2.45715E-12
3 0.0001 1.02396E-10 3.50464E-10 9.74921E-10

One-Leg Hybrid Method 1 0.001 3.66007E-8 9.76405E-8 6.03067E-7
3 0.001 1.38646E-7 2.52238E-7 3.53319E-6

1 0.0001 3.62941E-10 9.81447E-10 5.9809E-9
3 0.0001 3.0906E-10 1.16064E-9 2.49718E-8

Class1 1 0.001 5.5670E-6 6.86347E-6 3.45989E-5
3 0.001 3.41734E-5 1.18007E-4 2.28748E-4

1 0.0001 8.08261E-8 9.76428E-8 4.405E-7
3 0.0001 3.46347E-7 1.19601E-6 2.32459E-6

One-Leg Class1 1 0.001 6.7857E-9 1.47176E-8 1.12592E-7
3 0.001 1.69542E-7 5.4232E-7 1.85398E-6

1 0.0001 2.48221E-7 1.85705E-7 7.07125E-8
3 0.0001 3.66093E-9 1.22613E-8 3.38426E-8

HBDF 1 0.001 5.68471E-10 1.28144E-9 6.63956E-9
3 0.001 1.07333E-8 4.18462E-8 8.94225E-8

1 0.0001 7.12319E-13 1.52255E-12 6.35358E-12
3 0.0001 1.43312E-11 5.25517E-11 1.13875E-10
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