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Abstract
In this paper, we establish some Lyapunov-type inequalities for a class of linear and
nonlinear fractional q-difference boundary value problems under Cauchy boundary
conditions. As applications, we use the inequality to obtain an interval, where
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1 Introduction
The famous Lyapunov inequality [1] states that if a nontrivial solution to the boundary
value problem

u′′(t) + λ(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0

exists, where λ : [a, b] →R is a continuous function, then

∫ b

a

∣∣λ(s)
∣∣ds >

4
b – a

.

The Lyapunov inequality has many practical applications in differential and difference
equations, for example: oscillation theory, disconjugacy, eigenvalue problems, etc.; see [2–
12] and references therein.

The study of Lyapunov inequalities originated from differential equations, and the re-
search of Lyapunov inequality by constructing fractional differential operators has recently
begun. The first work in this direction is due to Ferreira.
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In 2013, Ferreira [13] considered the following Lyapunov-type inequality for the
Riemann–Liouville fractional boundary value problem:

(
aDαu

)
(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,

and derived the corresponding Lyapunov-type inequality

∫ b

a

∣∣q(s)
∣∣ds > Γ (α)

(
4

b – a

)α–1

.

In 2014, Ferreira [14] derived the corresponding Lyapunov-type inequality for a differ-
ential equation that depends on the Caputo fractional derivative, i.e., for the boundary
value problem

c
aDαu(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0.

If u is a nontrivial continuous solution to the above problem, then

∫ b

a

∣∣q(s)
∣∣ds >

Γ (α)αα

[(α – 1)(b – a)]α–1 .

There are many articles about the boundary value problem of fractional q-difference
equation as follows.

In 2011, Ferreira [15] studied the existence of positive solutions to the nonlinear q-
difference boundary value problem

Dα
q u(t) + f

(
u(t)

)
= 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = Dqu(0) = 0, Dqu(1) = β ≥ 0.

By using a fixed point theorem in a cone, El-Shahed and Al-Askar [16] were concerned
with the existence of positive solutions to the nonlinear q-difference equation

cDα
q u(t) + a(t)f

(
u(t)

)
= 0, 0 < t ≤ 1, 2 < α ≤ 3,

u(0) = D2
qu(0) ≤ 0, aDqu(1) + bD2

qu(1) = 0,

where a, b ≥ 0 and cDα
q is the fractional q-derivatives of the Caputo type.

Recently, Liang and Zhang [17] discussed the following nonlinear q-fractional three-
point boundary value problem:

(
Dα

q u
)
(t) + f

(
t, u(t)

)
= 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = (Dqu)(0) = 0, Dqu(1) = βDqu(η).

By using a fixed point theorem in partially ordered sets, the authors obtained sufficient
conditions for the existence and uniqueness of positive and nondecreasing solutions to
the above boundary value problem.
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To the best of our knowledge, there are few papers which consider the Lyapunov-type
inequality for a fractional q-difference boundary value problem.

In 2016, M. Jleli and B. Samet [18] considered the following fractional q-difference equa-
tion:

(
aDα

q u
)
(t) + ϕ(t)u(t) = 0, a < t < b, q ∈ [0, 1), 1 < α ≤ 2,

subject to Dirichlet-type boundary conditions

u(a) = u(b) = 0.

If u is a nontrivial continuous solution to the fractional q-difference boundary value prob-
lem, then

∫ b

a
(s – a)α–1(b –

(
qs + (1 – q)a

))(α–1)
a

∣∣ϕ(s)
∣∣
a dqs ≥ Γq(α)(b – a)α–1,

where aDα denotes the fractional q-derivative of Riemann–Liouville type and ϕ : [a, b] →
R is a continuous function.

In 2018, K. Ma and S. Sun [19] considered the nonlinear fractional q-difference equa-
tions with Dirichlet-type boundary conditions

Dα
q u(t) + h(t)f

(
u(t)

)
= 0, 0 < t < 1,

u(0) = u(1) = 0.

If the fractional boundary value problem has a nontrivial solution u, then

∫ 1

0

∣∣h(t)
∣∣[qt(1 – qt)

](α–1) dqt ≥ Γq(α)η
f (η)

,

where η = max0≤t≤1 u(t).
In this work, we consider the following boundary value problem with Cauchy-type

boundary condition:

(
Dα

q u
)
(t) + λ(t)u(t) = 0, a < t < b, 0 ≤ q < 1, 2 < α ≤ 3, (1.1)

(
Dα

q u
)
(t) + λ(t)f

(
u(t)

)
= 0, a < t < b, 0 ≤ q < 1, 2 < α ≤ 3, (1.2)

subject to boundary conditions

Dqu(a) = 0, u(b) = 0, u(a) = 0, (1.3)

where aDα
q denotes the fractional q-derivative of Riemann–Liouville type of order α, and

λ : [a, b] →R is a continuous function.
A Cauchy-type boundary condition specifies both the function value and normal deriva-

tive on the boundary of the domain. This corresponds to imposing both Dirichlet and
Neumann boundary conditions. In addition, this boundary condition is simple and com-
mon, therefore, in this paper, we make full use of the boundary condition.
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The innovation of this paper is to consider the Lyapunov-type inequality of linear and
nonlinear fractional q-difference equations under Cauchy boundary conditions, to inves-
tigate the existence interval of q-Mittag-Leffler function with no real zeros, and to take
advantage of Laplace transform, which most papers rarely consider.

The article is arranged as follows. In Sect. 2, we list some basic definitions about
Riemann–Liouville fractional calculus, together with some basic properties and lemmas
to prove our main results. In Sect. 3, we get some main results and several corollaries.
In Sect. 4, we use the inequality to obtain an interval, where Mittag-Leffler function has
no real zeros. In addition, we consider Lyapunov-type inequalities of nonlinear fractional
q-difference equations.

2 Basic definitions and preliminaries
In this section, we list some useful definitions and preliminaries, which are helpful for the
proof of the main results. These materials can be found in the recent literature, see [20, 21].

For q ∈ (0, 1), we define

[a]q =
1 – qa

1 – q
, a ∈R.

The q-analogue of the power function (a – b)k with k ∈N0 := {0, 1, 2, . . .} is

(a – b)0 = 1, (a – b)(k) =
k–1∏
i=0

(
a – bqi), k ∈N, a, b ∈R.

More generally, if γ ∈R, then

(a – b)(γ ) = aγ

∞∏
i=0

a – bqi

a – bqi+r , a �= 0.

Note if b = 0, then a(γ ) = aγ . We also use the notation 0(γ ) = 0 for γ ≥ 0. Here we point
that the following equality holds:

(a – b)(γ ) =
(
a – bqγ –1)(a – b)(γ –1).

Definition 2.1 ([20]) Let α ≥ 0 and f be a real function defined on a certain interval [a, b].
The Riemann–Liouville fractional q-integral of order α is defined by

(
I0

q f
)
(t) = f (t),

(
Iα

q f
)
(t) =

1
Γq(α)

∫ t

0
(t – qs)(α–1)f (s) dqs, α > 0, t ∈ [a, b].

Definition 2.2 ([20]) The fractional q-derivative of order α > 0 of a continuous and dif-
ferentiable function f is given by

(
D0

qf
)
(t) = f (t), t ∈ [a, b],

(
Dα

q f
)
(t) =

(
Dl

qIl–α
q f

)
(t), α > 0, t ∈ [a, b],

where l is the smallest integer greater than or equal to α.
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Lemma 2.1 ([21]) Let α,β ≥ 0 and f : [a, b] →R be a continuous function defined on [0, 1],
and assume its derivative exists. Then, the following formulas hold:

Dα
q
(
Iα

q f
)
(t) = f (t),

Iα
q Iβ

q f (t) = Iα+β
q f (t).

Lemma 2.2 ([21]) Let f : [a, b] →R be differentiable, p be a positive integer and α > p – 1.
Then

Iα
q Dp

qf (t) = Dp
qIα

q f (t) –
p–1∑
k=0

(t – a)(α–p+k)

Γq(α + k – p + 1)
Dk

qf (a), t ∈ [a, b].

Lemma 2.3 ([21]) The first order q-Leibniz rule for the functions f and g is given by

Dq(fg)(t) = f (t)(Dqg)(t) + g(qt)(Dqf )(t).

3 Lyapunov-type inequalities of linear fractional q-difference equation
At first, we need an integral representation of the solution to problem (1.1) and (1.3).

Lemma 3.1 Function u ∈ [a, b] is a solution to (1.1) and (1.3) if and only if u is a solution
to the integral equation

u(t) =
∫ b

a
G(t, qs)λ(s)u(s) dqs, t ∈ [a, b],

in which G, the Green function linking (1.1) and (1.3), is given by

G(t, qs) =
1

Γq(α)

⎧⎨
⎩

(b – qs)(α–1)( t–a
b–a )(α–1) – (t – qs)(α–1), a ≤ qs ≤ t ≤ b,

(b – qs)(α–1)( t–a
b–a )(α–1), a ≤ t ≤ qs ≤ b.

Proof By making use of Lemmas 2.1 and 2.2 with p = 3, from (1.1), we can see that

(
aDα

q u
)
(t) = –λ(t)u(t),

so

(
Iα

q D3
qI3–α

q u
)
(t) = –Iα

q λ(t)u(t),

i.e.,

(
D3

qIα
q I3–α

q u
)
(t) = –Iα

q λ(t)u(t).

We can get a general solution to (1.1) as

u(t) = c1(t – a)(α–1) + c2(t – a)(α–2) + c3(t – a)(α–3)

–
1

Γq(α)

∫ t

a
(t – qs)(α–1)λ(s)u(s) dqs,
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in which c1, c2, c3 are real constants. Due to the boundary value conditions u(a) = 0, we
know that c3 = 0. Taking the q-derivative of u(t), we get

Dqu(t) = [α – 1]qc1(t – a)(α–2) + [α – 2]qc2(t – a)(α–3)

–
1

Γq(α)

∫ t

a
[α – 1]q(t – qs)(α–2)λ(s)u(s) dqs.

By using the boundary condition Dqu(a) = 0, we get

c2 = 0.

Then the boundary condition given by (1.2) yields

c1(b – a)(α–1) –
1

Γq(α)

∫ b

a
(b – qs)(α–1)λ(s)u(s) dqs = 0,

so

c1 =
∫ b

a (b – qs)(α–1)λ(s)u(s) dqs
Γq(α)(b – a)(α–1) .

Therefore

u(t) =
∫ b

a (b – qs)(α–1)λ(s)u(s) dqs
Γq(α)(b – a)(α–1) (t – a)(α–1) –

1
Γq(α)

∫ t

a
(t – qs)(α–1)λ(s)u(s) dqs

=
1

Γq(α)

∫ t

a

[
(b – qs)(α–1)

(
t – a
b – a

)(α–1)

– (t – qs)(α–1)
]
λ(s)u(s) dqs

+
1

Γq(α)

∫ b

t

[
(b – qs)(α–1)

(
t – a
b – a

)(α–1)]
λ(s)u(s) dqs

=
∫ b

a
G(t, qs)λ(s)u(s) dqs.

The sufficiency is obvious, so we obtain the desired result. �

The properties of Green function play an important role in this paper.

Lemma 3.2 Green function G defined above has the following properties:
(1) G(t, qs) ≥ 0, a ≤ t, qs ≤ b;
(2) maxt∈[a,b] G(t, qs) = G(qs, qs), qs ∈ [a, b];
(3) G(qs, qs) has a unique maximum given by

max
qs∈[a,b]

G(qs, qs) = G
(

a + b
2

,
a + b

2

)
=

1
Γq(α)

(
b – a

4

)(α–1)

.
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Proof (1) Let

g1(t, qs) = (b – qs)(α–1)
(

t – a
b – a

)(α–1)

– (t – qs)(α–1), a ≤ qs ≤ t ≤ b,

g2(t, qs) = (b – qs)(α–1)
(

t – a
b – a

)(α–1)

, a ≤ t ≤ qs ≤ b.

When a ≤ t ≤ qs ≤ b, it is clear that g2(t, qs) > 0.
When a ≤ qs ≤ t ≤ b,

g1(t, qs) = (b – qs)(α–1)
(

t – a
b – a

)(α–1)

– (t – qs)(α–1)

=
(

t – a
b – a

)(α–1)

(b – qs)(α–1) –
(

t – a
b – a

)(α–1)(
b –

(
a +

(qs – a)(b – a)
t – a

))(α–1)

.

Observe now that

a +
(qs – a)(b – a)

t – a
≥ qs

if and only if

(qs – a)(b – a) ≥ (qs – a)(t – a), a ≤ qs ≤ t ≤ b,

so g1(t, qs) ≥ 0. Therefore, G(t, qs) ≥ 0 for all a ≤ t, qs ≤ b.
(2) From (1), we obtain maxt∈[a,b] G(t, qs) = G(qs, qs), qs ∈ [a, b].
(3) Now we obtain the maximum of G(qs, qs).
According to Lemma 2.3, we get

DqG(qs, qs) = Dq

[(
qs – a
b – a

)(α–1)

(b – qs)(α–1)
]

= [α – 1]q
(qs – a)(α–2)

(b – a)(α–1) (b – qs)(α–2)(–2qs + b + a),

which implies that DqG(qs, qs) = 0 only at qs = b+a
2 and DqG(qs, qs) > 0 for qs < b+a

2 and
DqG(qs, qs) < 0 for qs > b+a

2 .
From what has been discussed above, the maximum of G(t, qs) is G( a+b

2 , a+b
2 ), which re-

sults in 1
Γq(α) ( b–a

4 )(α–1). This completes the proof. �

Theorem 3.1 If a nontrivial continuous solution to the fractional q-difference boundary
value problem

(
Dα

q u
)
(t) + λ(t)u(t) = 0, a < t < b, q ∈ [0, 1), 2 < α ≤ 3,

Dqu(a) = 0, u(a) = 0, u(b) = 0
(3.1)

exists, where λ : [a, b] →R is a continuous function, then

∫ b

a

∣∣λ(s)
∣∣(b – qs)(α–1)(qs – a)(α–1) dqs ≥ Γq(α)(b – a)(α–1). (3.2)
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Proof Let u be a nontrivial continuous solution to the fractional q-difference boundary
value problem (3.1). Let

‖u‖ = max
a≤t≤b

|u|.

By Lemma 3.1, for all a ≤ t ≤ b, we have

∣∣u(t)
∣∣ ≤

∫ b

a
G(qs, qs)

∣∣λ(s)
∣∣∣∣u(s)

∣∣dqs

≤ ‖u‖
∫ b

a
G(qs, qs)

∣∣λ(s)
∣∣dqs (3.3)

if and only if

1 ≤
∫ b

a
G(qs, qs)

∣∣λ(s)
∣∣dqs.

Hence,

∫ b

a

∣∣λ(s)
∣∣(b – qs)(α–1)(qs – a)(α–1) dqs ≥ Γq(α)(b – a)(α–1),

which completes the proof. �

Corollary 3.1 If a nontrivial continuous solution to the Riemann–Liouville fractional
boundary value problem

(
Dαu

)
(t) + λ(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

Du(a) = 0, u(a) = 0, u(b) = 0
(3.4)

exists, where λ : [a, b] → R is a continuous function and aDα denotes the Riemann–
Liouville fractional derivative of order α, then

∫ b

a

∣∣λ(s)
∣∣(b – s)α–1(s – a)α–1 ds ≥ Γ (α)(b – a)α–1.

Proof It follows from Theorem 3.1 by letting q → 1–. �

Corollary 3.2 If there exists a nontrivial continuous solution of the fractional q-difference
boundary value problem

Dα
q u(t) + λ(t)u(t) = 0, a < t < b, q ∈ [0, 1), 2 < α ≤ 3,

Dqu(a) = 0, u(a) = 0, u(b) = 0,

where λ : [a, b] →R is a continuous function, then

∫ b

a

∣∣λ(s)
∣∣dqs ≥ Γq(α)

(
4

b – a

)(α–1)

. (3.5)
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Proof Let u be a nontrivial continuous solution to the fractional boundary value problem
(3.1). Let

‖u‖ = max
a≤t≤b

∣∣u(t)
∣∣.

By Lemma 3.1, for all a ≤ t ≤ b, we have

u(t) =
∫ b

a
G(t, qs)λ(s)u(s) dqs, t ∈ [a, b].

Then

∣∣u(t)
∣∣ ≤ ‖u‖ max

a≤t≤b

∫ b

a
G(t, qs)

∣∣λ(s)
∣∣dqs.

Therefore

∣∣u(t)
∣∣ ≤ ‖u‖ 1

Γq(α)

(
b – a

4

)(α–1) ∫ b

a

∣∣λ(s)
∣∣dqs,

1 ≤ 1
Γq(α)

(
b – a

4

)(α–1) ∫ b

a

∣∣λ(s)
∣∣dqs,

(3.6)

and as a consequence,

∫ b

a

∣∣λ(s)
∣∣dqs ≥ Γq(α)

(
4

b – a

)(α–1)

,

which yields the desired inequality. In fact, this conclusion is a generalization of Theo-
rem 3.1. �

Corollary 3.3 If a nontrivial continuous solution to the Riemann–Liouville fractional
boundary value problem

(
Dαu

)
(t) + λ(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

Dqu(a) = 0, u(a) = 0, u(b) = 0

exists, where λ : [a, b] →R is a continuous function, then

∫ b

a

∣∣λ(s)
∣∣ds ≥ Γ (α)

(
4

b – a

)α–1

. (3.7)

Proof Let q → 1– in Corollary 3.2. �

Corollary 3.4 If a nontrivial continuous solution to the boundary value problem

u′′(t) + λ(t)u(t) = 0, a < t < b,

u′(a) = 0, u(a) = 0, u(b) = 0
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exists, where λ : [a, b] →R is a continuous function, then

∫ b

a

∣∣λ(s)
∣∣ds ≥ 4

b – a
.

Proof We need take α = 2 in the Corollary 3.3, which immediately gives us the proof. �

Consider the following problem:

Dα
q u(t) + λ(t)u(t) = 0, 0 < t < 1, (3.8)

subject to the boundary value problem

Dqu(0) = 0, u(0) = 0, u(1) = 0, (3.9)

where λ : [0, 1] →R is a continuous function. We have the following result:

Corollary 3.5 Assume that

∫ 1

0

∣∣λ(s)
∣∣dqs < 4(α–1)Γq(α). (3.10)

Then (3.8)–(3.9) has no nontrivial solution.

Proof Assume on the contrary that (3.8)–(3.9) has a nontrivial solution. By Corollary 3.2,
we get

∫ 1
0 |λ(s)|dqs ≥ 4(α–1)Γq(α), which contradicts assumption (3.10). �

4 On real zeros of the q-Mittag-Leffler function
In this section, we use the Lyapunov inequality in Theorem 3.1 to obtain an interval, where
q-Mittag-Leffler function has no real zeros.

Definition 4.1 ([22]) Let α > 0, β ∈C, then the function

eα,β (z; q) :=
∞∑

n=0

zn

Γq(nα + β)
,

(∣∣z(1 – q)α
∣∣ < 1

)

is called the q-Mittag-Leffler function.

Lemma 4.1 ([22]) Let α,β , a ∈R
+ and k ∈N. Then the identity

qL
(
tkα+β–1e(k)

α,β
(±atα ; q

))
=

pα–β

1 – q
k!

(pα ∓ a)k+1 , |p|α > a (4.1)

is valid in the disk {t ∈ C : a|t(1 – q)|α < 1}.

Theorem 4.1 Let 2 < α ≤ 3. Then the q-Mittag-Leffler function eα,α(z) has no real zeros
for

z ∈
(

–∞,
Γq(α)∫ 1

0 (1 – qs)(α–1)(qs)(α–1) dqs

)
.
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Proof Let a = 0, b = 1 and consider the following fractional q-difference equations:

Dα
q u(t) + λu(t) = 0, 0 < t < 1, q ∈ [0, 1), 2 < α ≤ 3,

u(1) = 0, Dqu(0) = 0, u(0) = 0.
(4.2)

We can use Laplace transform for (4.2) to obtain

qLDα
q u(t) =

sα

(1 – q)α qLu(t) – Dα–1
q u(0)

1
1 – q

– Dα–2
q u(0)

s
(1 – q)2 – Dα–3

q u(0)
s2

(1 – q)3

= –qLλu(t). (4.3)

Therefore, we get

{
sα

(1 – q)α
+ λ

}
q
Lu(t) =

Dα–1
q u(0)
1 – q

+
Dα–2

q u(0)s
(1 – q)2 +

Dα–3
q u(0)s2

(1 – q)3 . (4.4)

Thus

qLu(t) =
Dα–1

q u(0)
1–q + Dα–2

q u(0)s
(1–q)2 + Dα–3

q u(0)s2

(1–q)3

sα
(1–q)α + λ

. (4.5)

According to Lemma 4.1, we suppose k = 0, a = λ, p = 3 and β = α,α – 1,α – 2, respectively.
We can conclude that

u(t) = C1tα–1e(0)
α,α

(
–λtα ; q

)
+ C2tα–2e(0)

α,α–1
(
–λtα ; q

)
+ C3tα–3e(0)

α,α–2
(
–λtα ; q

)
. (4.6)

In the expression of u(t), we take C1 = 1, C2 = C3 = 0, thus getting a solution to this equa-
tion:

u(t) = tα–1e(0)
α,α

(
–λtα ; q

)
. (4.7)

If λ ∈R is an eigenvalue of the boundary value problem of (4.2), then

e(0)
α,α(–λ) = 0, (4.8)

and the corresponding eigenfunction is given by

u(t) = tα–1e(0)
α,α

(
–λtα

)
. (4.9)

According to Theorem 3.1, if λ ∈ R is an eigenvalue of (4.2), i.e., –λ is a zero of equation
(4.8), then

λ ≥ Γq(α)∫ 1
0 (1 – qs)(α–1)(qs)(α–1) dqs

, (4.10)

which concludes the proof. �
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5 Lyapunov-type inequalities of nonlinear fractional q-difference equations
In this section, we consider a nonlinear fractional q-difference equation.

Consider the boundary value problem

(
Dα

q u
)
(t) + λ(t)f

(
u(t)

)
= 0, a < t < b, q ∈ [0, 1), 2 < α ≤ 3 (5.1)

subject to the boundary conditions

Dqu(a) = 0, u(a) = 0, u(b) = 0, (5.2)

where aDα
q denotes the fractional q-derivative of Riemann–Liouville type of order α, 2 <

α ≤ 3 and f : [a, b] ×R →R.
By B = C([a, b],R) we denote the Banach space of all continuous functions from [a, b]

into R with the norm ‖u‖ = maxa≤t≤b |u(t)|. And by L[a, b] we denote the space of all
real functions defined on [a, b], which are Lebesgue integrable with the norm ‖u‖L =∫ b

a |u(s)|dqs.

Lemma 5.1 ([19], Jensen’s inequality) Let u ∈ C([a, b], (c, d)) and λ : [a, b] → R be a real
Lebesgue integrable function with

∫ b
a |λ(s)|dqs > 0, where a, b, c, d ∈ R. If f ∈ ((c, d),R) is

concave, then

f
(∫ b

a |λ(s)|u(s) dqs∫ b
a |λ(s)|dqs

)
≥

∫ b
a |λ(s)|f (u(s)) dqs∫ b

a |λ(s)|dqs
.

Remark 5.1 If f is a convex, then the above inequality holds with “≥” substituted by “≤”.

Theorem 5.1 Let λ : [a, b] →R be a real nontrivial Lebesgue integrable function. Assume
that f ∈ C(R+,R+) is a concave and nondecreasing function. If the fractional boundary
value problem

(
Dα

q u
)
(t) + λ(t)f

(
u(t)

)
= 0, a < t < b,

Dqu(a) = 0, u(a) = 0, u(b) = 0

has a nontrivial solution u, then

∫ b

a

∣∣λ(s)
∣∣dqs ≥ 4(α–1)Γq(α)ξ

(b – a)(α–1)f (ξ )
, (5.3)

where ξ = maxa≤t≤b u(t).

Proof According to Lemma 3.1, we know that

∣∣u(t)
∣∣ ≤

∫ b

a
G(t, qs)

∣∣λ(s)
∣∣f (u(s)

)
dqs
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and, by using Jensen’s inequality [19] and since f is concave and nondecreasing, we get
that

‖u‖ ≤
∫ b

a
G(qs, qs)

∣∣λ(s)
∣∣f (u(s)

)
dqs

≤ ‖λ‖L(b – a)(α–1)

Γq(α)4(α–1)

∫ b

a

|λ(s)|f (u(s))
‖λ‖L

dqs

≤ ‖λ‖L(b – a)(α–1)

Γq(α)4(α–1) f (ξ ),

where ξ = maxa≤t≤b u(t). Therefore,

∫ b

a

∣∣λ(s)
∣∣dqs ≥ 4(α–1)Γq(α)ξ

(b – a)(α–1)f (ξ )
.

This completes the proof. �

Corollary 5.1 If the Riemann–Liouville fractional boundary value problem

(
Dαu

)
(t) + λ(t)f

(
u(t)

)
= 0, a < t < b, 2 < α ≤ 3,

Du(a) = 0, u(a) = 0, u(b) = 0

has a nontrivial solution u, where λ : [a, b] →R is a continuous function, then

∫ b

a

∣∣λ(s)
∣∣ds ≥ 4α–1Γ (α)ξ

(b – a)α–1f (ξ )
,

where ξ = maxa≤t≤b u(t).

Proof It follows from Theorem 5.1 by letting q → 1–. �

Corollary 5.2 If a nontrivial continuous solution to the Riemann–Liouville fractional
boundary value problem

(
D3

qu
)
(t) + λ(t)f

(
u(t)

)
= 0, a < t < b, 2 < α ≤ 3,

Dqu(a) = 0, u(a) = 0, u(b) = 0

exists, where λ : [a, b] →R is a real nontrivial Lebesgue integrable function and f ∈ C(R,R)
is a concave and nondecreasing function, then

∫ b

a

∣∣λ(s)
∣∣ds ≥ 32ξ

(b – a)2f (ξ )
,

where ξ = maxa≤t≤b u(t).

Proof From Corollary 5.1 by taking α = 3, we get

∫ b

a

∣∣λ(s)
∣∣ds ≥ 42Γ (3)ξ

(b – a)2f (ξ )
=

(16 × 2)ξ
(b – a)2f (ξ )

=
32ξ

(b – a)2f (ξ )
,

which completes the proof. �
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