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Abstract
The phytoplankton–zooplankton is fundamentally important to study plankton and
protect marine environment. In this paper, we propose a diffusive
phytoplankton–zooplankton model, in which we also consider time delay in
zooplankton predation and harvesting in zooplankton. By analyzing the distribution
of eigenvalues, we investigate the stability of the positive equilibrium and the
existence of Hopf bifurcation using time delay as a bifurcation parameter. We analyze
the property of Hopf bifurcation and give an explicit formula for determining the
direction and the stability of Hopf bifurcation. Finally, by numerical simulation, we
analyze the effect of harvesting, conversion rate, half-saturation, and time delay. We
conclude that harvesting parameter, conversion rate, and half-saturation constant all
can be used in controlling the bloom of plankton population.
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1 Introduction
Plankton are the basis for aquatic food chains and they can absorb not less than half of
the carbon dioxide, producing a huge amount of oxygen for humans and other living ani-
mals. The importance of plankton in marine ecosystem has been widely recognized [1, 2].
Plankton are also the base of the marine food chain. Generally, plankton can be divided
into two kinds: phytoplankton and zooplankton [3]. Phytoplankton are plant species uni-
cellular and microscopic in size. Zooplankton are animal species that feed on these phy-
toplankton. Therefore, zooplankton and phytoplankton form predator–prey relationship.
Many researchers have studied the predator–prey model and obtained many important
results [4–10].

In the last decades, the global increase in toxin-producing phytoplankton (TPP) blooms
has attracted a lot of attention [11, 12]. These harmful phytoplankton may affect human
health, commercial fisheries, ecosystem and environment, and so on. Toxin-producing
phytoplankton can reduce zooplankton population. Some studies reveal that zooplank-
ton’s grazing and fecundity decrease in harmful algal bloom [13]. Many scholars attempt to
describe the reduction of zooplankton due to toxin-producing phytoplankton [12, 14–16].
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Some zooplankton such as jellyfish, krill, and acetes can be harvested for food. Hence,
the stocks of these tiny zooplankton play a significant role in marine reserves and fishery
management. For these reasons, many scholars have studied phytoplankton–zooplankton
(or predator–prey) models with harvesting [16–20]. Generally, harvesting can be divided
into three types [21]: (i) constant rate of harvesting, where a fixed number of individuals
are harvested per unit time; (ii) proportionate harvesting, where the catch rate is propor-
tional to the stock and effort; and (iii) nonlinear harvesting (Holling type II, Michaelis–
Menten type). In [16], the authors studied a toxic phytoplankton–zooplankton model with
proportionate harvesting, including the stability of equilibria and Hopf bifurcation. They
suggested that harvesting can enlarge the stable range of the coexisting equilibrium to a
certain extent. But when the harvesting exceeds some critical value, zooplankton will die
out.

The functional response of predators to prey density is important for predator–prey
models [22–25]. In ecology, many factors, such as predator hunting ability, prey escape
ability, and structure of the prey habitat, can affect functional responses. Generally, func-
tional responses can be divided into types: prey-dependent (such as Holling I–IV) and
prey–predator-dependent (such as Beddington–DeAngelis, Crowley–Martin, Hassel–
Varley). Holling IV type functional response is a kind of important functional responses
and can enrich the dynamics of predator–prey models. Zhou et al. studied a predator–prey
discrete-time model with Holling IV type functional response and obtained some suffi-
cient conditions for the permanence of the system with variable coefficients [26]. Huang
et al. considered a predator–prey system with Holling type IV functional response and
showed that there exists a unique degenerate positive equilibrium which is a degenerate
Bogdanov–Takens singularity of codimension three for other values of parameters [27]. In
[28], Sharma et al. use Holling IV type functional for zooplankton to represent the effect
of toxication by TPP population. They proposed a delayed phytoplankton–zooplankton
model

Ṗ(t) = rP – aP2 –
cPZ(t – τ )

P2/e + P + b
,

Ż(t) =
sPZ

P2/e + P + b
– (d + E)Z,

(1.1)

where P(t) and Z(t) represent the population density of TPP species and zooplankton at
time t, respectively. All parameters involved with the model are positive. Parameter r is
the growth rate of TPP species. c and s are the maximum ingestion and conversion rate by
zooplankton population, respectively. a is the mortality rate of phytoplankton population
due to intra specific competition between the species and d is the natural death rate of
zooplankton population. E is a constant rate of harvesting. τ is time delay in zooplankton
predation. The term P/(P2/e+P+b) represents the effect of harmful phytoplankton species
on zooplankton, where e is the tolerance limit of zooplankton and b is the half-saturation
constant. In [28], authors studied the stability and Hopf bifurcation at positive equilibrium
and gave numerical simulation.

In the lakes or oceans, because of currents and turbulent diffusion or other reasons,
plankton may move. Phytoplankton and zooplankton population densities are of the prop-
erty of spatial variation. Many authors have modeled this spatial variation of population
in phytoplankton and zooplankton by reaction diffusion equations [29–31]. Many other
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scholars have studied the predator–prey system with diffusion [32–35]. Comparing with
the work without spatial variation, they suggested that diffusion may induce Turing insta-
bility and spatially non-homogeneous bifurcating periodic solution. In this paper, we will
study the effect of spatial variation on model (1.1). In ocean, there are many factors that
can affect the spatial variation of phytoplankton and zooplankton, but we cannot consider
all these factors at the moment. We just consider the physical diffusion of the phytoplank-
ton and zooplankton population. Assume that the water is closed with no plankton species
entering and leaving at the boundary. We consider a reaction–diffusion phytoplankton–
zooplankton model taking the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂P(x,t)
∂t = d1�P + rP – aP2 – cPZ(t–τ )

P2/e+P+b , x ∈ (0, lπ ), t > 0,
∂Z(x,t)

∂t = d2�Z + sPZ
P2/e+P+b – (d + E)Z, x ∈ (0, lπ ), t > 0,

Px(0, t) = Zx(0, t) = 0, Px(lπ , t) = Zx(lπ , t) = 0, t > 0,

P(x, θ ) = P0(x, θ ) ≥ 0, Z(x, θ ) = Z0(x, θ ) ≥ 0, x ∈ [0, lπ ], θ ∈ [–τ , 0].

(1.2)

The aim of this paper is to study the dynamical properties of system (1.2). The stability
of equilibrium is considered to show whether Turing instability occurs for a non-delay
system and a delay system. Hopf bifurcation analysis is carried out to discuss whether the
spatially homogeneous and non-homogeneous bifurcating periodic solutions exist. The
effect of harvesting parameter, conversion rate, and half-saturation constant on system
(1.2) are investigated to show that they can be used in controlling the bloom of plankton
population.

The rest of this paper is organized as follows. In Sect. 2, we study the stability of equilibria
for system (1.2) without delay. In Sect. 3, we study the effect of delay on the model including
stability and Hopf bifurcation at positive equilibrium. We also study the direction and
stability of the bifurcating solution by using a normal form theory and center manifold
theorem. In Sect. 4, we give some numerical simulation.

2 Stability analysis of the model without delay
Without delay, system (1.2) becomes

∂P
∂t

= d1�P + rP – aP2 –
cPZ

P2/e + P + b
,

∂Z
∂t

= d2�Z +
sPZ

P2/e + P + b
– (d + E)Z.

(2.1)

According to [28], system (1.2) has two boundary equilibria E0(0, 0), E1(r/a, 0). If the
following equation

P2 + e
(

1 –
s

d + E

)

P + eb = 0

has a positive root P∗ such that P∗ < r/a and E < s – d, then system (1.2) has a positive
equilibrium E∗(P∗, Z∗), where Z∗ = (P2∗/e+P∗+b)(r–aP∗)

c . In the following, we always assume
that system (1.2) has a positive equilibrium E∗(P∗, Z∗).

Define the real-valued Sobolev space

X :=
{

(u, v)T : u, v ∈ H2(0, lπ ), (ux, vx)|x=0,lπ = 0
}
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and the complexification of X to be

XC := X ⊕ iX = {x1 + ix2|x1, x2 ∈ X}.

The linearization of (1.2) near E∗(P∗, Z∗) has the form

U̇(t) = d�U(t) + LU(t), (2.2)

where d = diag(d1, d2),

dom(d�) =
{

(u, v) ∈ X|∂νu(t, x) = ∂νv(t, x) = 0, x = 0, lπ
}

,

L(b) :=

(
a1 a2

b1 b2

)

,

and

a1 = P∗
(

–a +
c(1 + 2P∗/e)Z∗
(b + P∗ + P2∗/e)2

)

, a2 = –
cP∗

b + P∗ + P2∗/e
,

b1 =
s(b – P2∗/e)

(b + P∗ + P2∗/e)2 , b2 = 0.
(2.3)

Obviously, a2 < 0. Then the characteristic equation of Eq. (2.2) is given by

λy – d�y – Ly = 0 for some y ∈ dom(d�) \ {0}. (2.4)

It is well known that the operator u �→ �u with ∂νu = 0 at 0 and lπ has eigenvalues –n2/l2

(n ∈ N0) with corresponding eigenfunctions cos(nx/l). Let

φ =
∞∑

n=0

(
an

bn

)

cos

(
n
l

x
)

be an eigenfunction for �+L with eigenvalue λ, see also [36]. Hence, Eq. (2.4) is equivalent
to the following equations:

λ2 – λTn(b) + Dn(b) = 0, n = 0, 1, 2, . . . , (2.5)

where
⎧
⎨

⎩

Tn = –(d1 + d2) n2

l2 + a1,

Dn = d1d2
n4

l4 – d2a1
n2

l2 – a2b1.
(2.6)

Clearly, the roots of Eq. (2.5) are given by

λ
(n)
1,2 =

1
2

[
Tn ±

√

T2
n – 4Dn

]
, n = 0, 1, 2, . . . . (2.7)

Obviously, if

(H1) a1 < 0 and b1 > 0
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holds, then Tn < 0 and Dn > 0 for n ∈N0, implying that the roots of Eq. (2.5) have negative
real parts.

Theorem 2.1 For system (2.1), if (H1) holds, then the equilibrium E∗(P∗, Z∗) is locally
asymptotically stable.

Remark 2.1 Similarly, we can obtain that (0, 0) is always unstable. If aers/(a2be + aer + r2) –
d – E < 0 (> 0), E1(r/a, 0) is locally asymptotically stable (unstable). From b2 = 0, we can
obtain that for system (2.1), Turing instability at E∗(P∗, Z∗) will not happen.

3 The effect of delay on the system
3.1 Stability analysis and existence of Hopf bifurcation
In the following, by analyzing the associated characteristic equation at E∗(P∗, Z∗), we in-
vestigate the stability of E∗(P∗, Z∗) and the existence of Hopf bifurcation for system (1.2).
We assume that (H1) always holds.

Denote

u1(t) = P(·, t), u2(t) = Z(·, t), U = (u1, u2)T ,

X = C
(
[0, lπ ],R2), and Cτ := C

(
[–τ , 0], X

)
.

Linearizing system (1.2) at E∗(P∗, Z∗), we have

U̇ = D�U(t) + L(Ut), (3.1)

where

D� = diag(d1�, d2�),

dom(D�) =
{

(u, v)T : u, v ∈ C2([0, lπ ],R2), ux, vx = 0 at x = 0, lπ
}

,

and L : Cτ �→ X is defined by

L(φt) = L1φ(0) + L2φ(–τ )

for φ = (φ1,φ2)T ∈ Cτ with

L1 =

(
a1 0
b1 0

)

, L2 =

(
0 a2

0 0

)

,

φ(t) =
(
φ1(t),φ2(t)

)T , φt(·) =
(
φ1(t + ·),φ2(t + ·))T .

From Wu [37], we obtain that the characteristic equation for linear system (3.1) is

λy – d�y – L
(
eλy

)
= 0, y ∈ dom(d�), y 	= 0. (3.2)

It is well known that the eigenvalue problem

–ϕ′′ = μϕ, x ∈ (0, lπ ); ϕ′(0) = ϕ′(lπ ) = 0
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has eigenvalues μn = n2/l2 (n = 0, 1, . . .) with corresponding eigenfunctions

ϕn(x) = cos
nπ

l
, n ∈N0.

Substituting

y =
∞∑

n=0

(
y1n

y2n

)

cos
nπ

l

into the characteristic equation (3.2), it follows that

(
a1 – d1

n2

l2 a2e–λτ

b1 –d2
n2

l2

)(
y1n

y2n

)

= λ

(
y1n

y2n

)

, n = 0, 1, . . . .

Therefore the characteristic equation (3.2) is equivalent to

�n(λ, τ ) = λ2 + λAn + Bn – a2b1e–λτ = 0, (3.3)

where

An = (d1 + d2)
n2

l2 – a1, Bn = d1d2
n4

l4 – a1d2
n2

l2 .

When τ = 0, system (1.2) becomes (2.1). If (H1) holds, then all the roots of Eq. (3.3) with
τ = 0 have negative real parts for n ∈N0 and �n(0, τ ) > 0.

We shall seek critical values of τ such that there exists a pair of simple purely imaginary
eigenvalues. iω (ω > 0) is a root of Eq. (3.3) if and only if ω satisfies

–ω2 + iωAn + Bn – a2b1(cosωτ – i sinωτ ) = 0.

Then we have
⎧
⎨

⎩

–ω2 + Bn – a2b1 cosωτ = 0,

ωAn + a2b1 sinωτ = 0,

which leads to

ω4 + ω2(A2
n – 2Bn

)
+ B2

n – a2
2b2

1 = 0. (3.4)

Let z = ω2, then (3.4) can be rewritten into the following form:

z2 + z
(
A2

n – 2Bn
)

+ B2
n – a2

2b2
1 = 0, (3.5)

and its roots are given by

z± =
1
2

[
–
(
A2

n – 2Bn
) ±

√
(
A2

n – 2Bn
)2 – 4

(
B2

n – a2
2b2

1
)]

.
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By computation, we have

A2
n – 2Bn =

(

a1 – d1
n2

l2

)2

+ d2
2

n4

l4 > 0,

Bn – a2b1 = d1d2
n4

l4 – a1d2
n2

l2 – a2b1,

Bn + a2b1 = d1d2
n4

l4 – a1d2
n2

l2 + a2b1.

Obviously, Bn – a2b1 = Dn > 0 and B0 + a2b1 < 0 under (H1). Since Bn + a2b1 is increasing
with n ∈N0, there exists N1 ∈ N0 such that Bn + a2b1 < 0 (n = 0, 1, . . . , N1) and Bn + a2b1 > 0
(n > N1). Hence, for (n = 0, 1, . . . , N1), Eq. (3.5) has one positive root z+, and Eq. (3.3) has a
pair of purely imaginary roots ±iωn at τ

j
n (j ∈ N0), where

ωn =
√

z+, τ j
n = τ 0

n +
2jπ
ωn

(j ∈N0),

τ 0
n = τ 0

n =
1
ωn

arccos
Bn – ω2

n
a2b1

.
(3.6)

Lemma 3.1 Suppose that (H1) is satisfied. Then τ
j
n+1 > τ

j
n for 0 ≤ n ≤ N1 and j ∈N0 where

τ
j
n is defined as in (3.6).

Proof From (3.6), we have

ω2
n =

1
2

[√(
A2

n – 2Bn
)2 – 4

(
B2

n – a2
2b2

1
)

–
(
A2

n – 2Bn
)]

=
2(a2

2b2
1 – B2

n)
√

(A2
n – 2Bn)2 – 4(B2

n – a2
2b2

1) + A2
n – 2Bn

=
2

√
(A2

n–2Bn)2

(a2
2b2

1–B2
n)2 + 4

a2
2b2

1–B2
n

+ A2
n–2Bn

a2
2b2

1–B2
n

.

Under (H1), we have A2
n – 2Bn > 0, and a2

2b2
1 – B2

n > 0 for 0 ≤ n ≤ N1. In addition, A2
n – 2Bn

and B2
n is strictly increasing with n and a2

2b2
1 – B2

n is strictly decreasing with n for 0 ≤ n ≤
N1. Then we have ω2

n+1 < ω2
n for 0 ≤ n ≤ N1. From (3.6), τ j

n+1 > τ
j
n holds for 0 ≤ n ≤ N1. �

Let λn(τ ) = αn(τ ) + iωn(τ ) be the root of (3.3) satisfying αn(τ j
n) = 0 and ωn(τ j

n) = ωn when
τ is close to τ

j
n. Then we have the following transversality condition.

Lemma 3.2 Suppose that (H1) is satisfied. Then

α′
n
(
τ j

n
)

=
dλ

dτ

∣
∣
∣
∣
τ=τ

j
n

> 0 for 0 ≤ n ≤ N1 and j ∈ N0.

Proof Differentiating two sides of (3.3) with respect τ , we have

(
dλ

dτ

)–1

=
2λ + An + τa2b1e–λτ

–λa2b1e–λτ
.
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Then

Re

(
dλ

dτ

)–1

τ=τ
j
n

=
A2

n – 2Bn + 2ω2
n

a2
2b2

1
=

√

(A2
n – 2Bn)2 – 4(B2

n – a2
2b2

1)

a2
2b2

1
> 0.

Therefore α′
n(τ j

n) > 0. �

Notice that τ
j
m = τ k

n for some m 	= n may occur. In this paper, we do not consider this
case. In other words, we consider

τ ∈D :=
{
τ j

n : τ j
m 	= τ k

n , m 	= n, 0 ≤ m, n ≤ N1, j, k ∈N0
}

.

According to the above analysis, we have the following theorem.

Theorem 3.1 For system (1.2), suppose that (H1) holds. Then the following statements are
true:

(i) If τ ∈ [0, τ 0
0 ), then the equilibrium P(u0, v0) is locally asymptotically stable.

(ii) If τ > τ 0
0 , then the equilibrium P(u0, v0) is unstable.

(iii) τ = τ
j
0 (j ∈N0) are Hopf bifurcation values of system (1.2), and the bifurcating

periodic solutions are spatially homogeneous, which coincide with the periodic
solutions of the corresponding functional differential equation system; when
τ ∈D/{τ k

0 : k ∈N0}, system (1.2) also undergoes a Hopf bifurcation and the
bifurcating periodic solutions are spatially non-homogeneous.

Remark 3.1 From Lemma 3.1, we can obtain that, for system (1.2), time delay induced
Turing instability at E∗(P∗, Z∗) will not happen.

3.2 Stability and direction of Hopf bifurcation
In this section, we shall study the direction of Hopf bifurcation and the stability of the bi-
furcating periodic solution by applying the center manifold theorem and the normal form
theorem of partial functional differential equations [36, 37]. We compute the following
values (see the Appendix for details of the computation):

c1(0) =
i

2ωnτ
j
n

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
1
2

g21, μ2 = –
Re(c1(0))
Re(λ′(τ j

n))
,

T2 = –
1

ωnτ
j
n

[
Im

(
c1(0)

)
+ μ2 Im

(
λ′(τ j

n
))]

, β2 = 2 Re
(
c1(0)

)
.

(3.7)

Theorem 3.2 For any critical value τ
j
n, we have:

(i) μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (resp. < 0), then the
Hopf bifurcation is forward (resp. backward), that is, the bifurcating periodic
solutions exists for μ > 0 (resp. μ < 0).

(ii) β2 determines the stability of the bifurcating periodic solutions on the center
manifold: if β2 < 0 (resp. > 0), then the bifurcating periodic solutions are orbitally
asymptotically stable (resp. unstable). In particular, the stability of the bifurcating
periodic solutions from the first critical value is the same as that on the center
manifold.
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(iii) T2 determines the period of bifurcating periodic solutions: if T2 > 0 (resp. T2 < 0),
then the period increases (resp. decreases).

4 Numerical simulations
In this section, we give some numerical simulations to suppose the theoretical findings of
the present model and understand the complex dynamical behavior of the model clearly.
Numerical study of this model is performed by MATLAB. Remarks (2.1) and (3.1) suggest
that Turing instability at E∗ will not happen, so we just fix d1 = d2 = 1 and l = 1. Fix other
parameters

r = 0.72, a = 1, c = 1.9, e = 0.25,

b = 1, s = 1.2, d = 0.2, E = 0.02.
(4.1)

Then system (4.2) becomes

∂P
∂t

= �P + 0.72P – P2 –
1.9PZ

P2/0.25 + P + 1
,

∂Z
∂t

= �Z +
1.2PZ

P2/0.25 + P + 1
– (0.2 + 0.02)Z.

(4.2)

4.1 Effect of harvesting
For model (4.2), E∗(0.3118, 0.3654) is the unique positive equilibrium, and a1 ≈ –0.0503,
a2 ≈ –0.3483, b1 ≈ 0.2536. Then (H1) holds and E∗(0.3118, 0.3654) is locally asymptoti-
cally stable, shown in Fig. 1. In addition, aers/(a2be + aer + r2) – d – E > 0 and E1(0.72, 0)
is unstable, shown in Fig. 2. From Fig. 1, we know that for model (4.2), P(x, t) and Z(x, t)
converge to the unique positive equilibrium E∗(0.3118, 0.3654) when t > 1000. From Fig. 2,
we know that for model (4.2), P(x, t) and Z(x, t) are away from the equilibrium E1(0.72, 0)
when the initial condition is near E1(0.72, 0). These coincide with our conclusion.

If we increase harvesting rate with E = 0.03, then a1 ≈ –0.0924, a2 ≈ –0.3642, b1 ≈
0.1636. Hence, (H1) holds and aers/(a2be + aer + r2) – d – E < 0. There are two positive
equilibria E∗(0.3601, 0.3559) (stable), E′∗(0.6942, 0.0491) (unstable), and a boundary equi-
librium E1(0.72, 0) (stable), shown in Fig. 3 and Fig. 4. When E crosses a certain criti-
cal value, say E∗ = 0.04, the positive equilibrium E∗(P∗, Z∗) disappears, and E1(r/a, 0) is a
unique stable equilibrium. Ecologically, it can be predicted that an increased harvesting
rate of zooplankton may cause extinction of zooplankton, leaving phytoplankton alive.

Figure 1 The numerical simulations of system (4.2) with initial condition near E∗
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Figure 2 The numerical simulations of system (4.2) with initial condition (0.7, 0.01)

Figure 3 The numerical simulations of system (4.2) with E = 0.03 and initial condition (0.3, 0.35)

Figure 4 The numerical simulations of system (4.2) with E = 0.03 and initial condition (0.7, 0.01)

4.2 Effect of time delay
Under parameters (4.1), we can obtain τ 0

0 ≈ 0.5717 and ω0 ≈ 0.2951. By Theorem 3.1(i),
we know that if τ ∈ [0, τ 0

0 ), then the equilibrium E∗(0.3118, 0.3654) is locally asymptotically
stable, shown in Fig. 5. By Theorem 3.1(iii), we conclude that the equilibrium E∗(P∗, Z∗)
loses its stability and Hopf bifurcation occurs when τ crosses τ 0

0 . By Theorem 3.2,

μ2 ≈ 5.9603 > 0, β2 ≈ –0.5118 < 0, and T2 ≈ 1.1687 > 0.

Hence, the direction of the bifurcation is forward, the bifurcating period solutions are
locally asymptotically stable, and the period of bifurcating periodic solutions increases,
shown in Fig. 6.
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Figure 5 The numerical simulations of system (1.2) with τ = 0.5

Figure 6 The numerical simulations of system (1.2)

Figure 7 Bifurcation diagram for time delay and
constant harvesting

It indicates that there is a threshold limit of hunting delay below which the system does
not have any excitable nature; and above it, system shows excitability in the form of oscil-
lations.

4.3 Bifurcation diagram analysis
Fixing other parameters (4.1), varying the harvesting parameter and time-delay, we give a
bifurcation diagram for time delay and constant harvesting, shown in Fig. 7. Appropriately
increasing harvesting parameter E may stabilize the unstable equilibrium E∗ (Fig. 7) of the
delay system. Fixing other parameters (4.1), varying the conversion rate and time-delay, we
give a bifurcation diagram for time delay and conversion rate, shown in Fig. 8. It suggests
that increasing the conversion rate s may destabilize the stable equilibrium E∗ of the delay
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Figure 8 Bifurcation diagram for time delay and
conversion rate

Figure 9 Bifurcation diagram for time delay and
half-saturation constant

system and cause phytoplankton and zooplankton oscillation. Fixing other parameters
(4.1), varying half-saturation constant and time-delay, we give a bifurcation diagram for
time delay and half-saturation constant, shown in Fig. 9. It suggests that increasing half-
saturation constant b may stabilize the unstable equilibrium E∗ of the delay system.

5 Conclusion
In this paper, we consider a diffusive phytoplankton–zooplankton model with time de-
lay subject to the Neumann boundary condition. We study local asymptotic stability of
equilibria and Hopf bifurcation at the positive equilibrium. By using the theory of normal
form and center manifold, an algorithm for determining the direction and stability of Hopf
bifurcation is derived.

We consider the effect of diffusion on the non-delay and delay phytoplankton–zoo-
plankton models. For the non-delay model, we conclude that diffusion driven Turing insta-
bility cannot happen. For the delay model, we prove that τ 0

0 is the minimum critical value,
suggesting that Turing instability (that is, time delay induced Turing instability) cannot
happen. The spatially non-homogeneous bifurcating periodic solutions induced by diffu-
sion may occur. In addition, we studied the effect of delay on the partial differential system
phytoplankton–zooplankton model. Similar to the conclusion in [28], it shows that there
is a threshold limit of hunting delay below which the system does not have any excitable
nature; and above it, system shows excitability in the form of oscillations. But when time
delay τ ∈ D/{τ k

0 : k ∈ N0}, the system undergoes a Hopf bifurcation, and the bifurcating
periodic solutions are spatially non-homogeneous.
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Through numerical simulations, we show that appropriately increasing harvesting pa-
rameter E may be advantageous to coexistence of phytoplankton and zooplankton. But
when the harvesting parameter E crosses some critical value, zooplankton may be ex-
tinct and induce phytoplankton population bloom. In [28], Sharma et al. conclude that
increasing of conversion rate may cause planktonic bloom depicted through oscillation,
by using numerical simulation on the non-delay ordinary differential system. For the de-
lay partial differential system, we also get the same conclusion by analyzing bifurcation
diagram for time delay and conversion rate. We also analyze bifurcation diagram for time
delay and half-saturation constant, suggesting that half-saturation constant b can stabilize
the unstable equilibrium E∗ of the delay partial differential system. Through this study, we
suggest that harvesting parameter, conversion rate, and half-saturation constant all can be
used in controlling bloom of plankton population.

Appendix
Let P̃(x, t) = P(x, τ t) – P∗ and Z̃(x, t) = Z(x, τ t) – Z∗. For convenience, we drop the tilde.
Then system (1.2) can be transformed into

⎧
⎨

⎩

∂u
∂t = τ [r(P + P∗) – a(P + P∗)2 – c(P+P∗)(Z(t–1)+Z∗)

(P+P∗)2/e+(P+P∗)+b ],
∂v
∂t = τ [d2�v + s(P+P∗)(Z+Z∗)

(P+P∗)2/e+(P+P∗)+b – (d + E)(Z + Z∗)]
(A.1)

for x ∈ (0, lπ ), and t > 0. Let

τ = τ̃ + μ, u1(t) = P(·, t), u2(t) = Z(·, t), and U = (u1, u2)T ,

and τ̃ is the critical value τ
j
n. When μ = 0, system (1.2) undergoes a Hopf bifurcation at

the equilibrium (0, 0). Then (A.1) can be rewritten in an abstract form in the phase space
C1 := C([–1, 0], X)

dU(t)
dt

= τ̃D�U(t) + Lτ̃ (Ut) + F(Ut ,μ), (A.2)

where Lμ(φ) and F(φ,μ) are defined by

Lμ(φ) = μ

(
a1φ1(0) + a2φ2(–1)

b1φ1(0)

)

, (A.3)

F(φ,μ) = μD�φ + Lμ(φ) + f (φ,μ), (A.4)

with

f (φ,μ) = r
(
φ1(0) + P∗

)
– a

(
φ1(0) + P∗

)2 –
c(φ1(0) + P∗)(φ2(–1) + Z∗)

(φ1(0) + P∗)2/e + (φ1(0) + P∗) + b

– a1φ1(0) – a2φ2(–1),

F2(φ,μ) =
s(φ1(0) + P∗)(φ2(0) + Z∗)

(φ1(0) + P∗)2/e + (φ1(0) + P∗) + b
– (d + E)

(
φ2(0) + Z∗

)
– b1φ1(0),

respectively, for φ = (φ1,φ2)T ∈ C1.
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Consider the linear equation

dU(t)
dt

= τ̃D�U(t) + Lτ̃ (Ut). (A.5)

According to the results in Sect. 2, we know that Λn := {iωnτ̃ , –iωnτ̃ } are characteristic
values of system (A.5) and the linear functional differential equation

dz(t)
dt

= –τ̃D
n2

l2 z(t) + Lτ̃ (zt). (A.6)

By Riesz representation theorem, there exists a 2×2 matrix function ηn(σ , τ̃ ), –1 ≤ σ ≤ 0,
whose elements are of bounded variation functions such that

–τ̃D
n2

l2 φ(0) + Lτ̃ (φ) =
∫ 0

–1
dηn(σ , τ )φ(σ )

for φ ∈ C([–1, 0],R2).
In fact, we can choose

ηn(σ , τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

τE, σ = 0,

0, σ ∈ (–1, 0),

–τF , σ = –1,

(A.7)

where

E =

(
a1 – d1

n2

l2 0
b1 –d2

n2

l2

)

, F =

(
a2 0
0 0

)

. (A.8)

Let A(τ̃ ) denote the infinitesimal generators of semigroup included by the solutions of
Eq. (A.6) and A∗ be the formal adjoint of A(τ̃ ) under the bilinear paring

(ψ ,φ) = ψ(0)φ(0) –
∫ 0

–1

∫ σ

ξ=0
ψ(ξ – σ ) dηn(σ , τ̃ )φ(ξ ) dξ

= ψ(0)φ(0) + τ̃

∫ 0

–1
ψ(ξ + 1)Fφ(ξ ) dξ (A.9)

for φ ∈ C([–1, 0],R2), ψ ∈ C([–1, 0],R2). A(τ̃ ) has a pair of simple purely imaginary eigen-
values ±iωnτ̃ , and they are also eigenvalues of A∗. Let P and P∗ be the center subspace,
that is, the generalized eigenspace of A(τ̃ ) and A∗ associated with Λn, respectively. Then
P∗ is the adjoint space of P and dim P = dim P∗ = 2.

It can be verified that p1(θ ) = (1, ξ )T eiωn τ̃ σ (σ ∈ [–1, 0]), p2(σ ) = p1(σ ) is a basis of A(τ̃ )
with Λn and q1(r) = (1,η)e–iωn τ̃ r (r ∈ [0, 1]), q2(r) = q1(r) is a basis of A∗ with Λn, where

ξ =
–il4ωb1 + l2n2b1d2

l4ω2 + n4d2
2

, η =
il2(eiτωa2 + b1)

l2ω + in2d2
.

Let Φ = (Φ1,Φ2) and Ψ ∗ = (Ψ ∗
1 ,Ψ ∗

2 )T with

Φ1(σ ) =
p1(σ ) + p2(σ )

2
=

(
Re(eiωn τ̃ σ )

Re(ξeiωn τ̃ σ )

)

,
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Φ2(σ ) =
p1(σ ) – p2(σ )

2i
=

(
Im(eiωn τ̃ σ )

Im(ξeiωn τ̃ σ )

)

for θ ∈ [–1, 0], and

Ψ ∗
1 (r) =

q1(r) + q2(r)
2

=

(
Re(e–iωn τ̃ r)

Re(ηe–iωn τ̃ r)

)

,

Ψ ∗
2 (r) =

q1(r) – q2(r)
2i

=

(
Im(e–iωn τ̃ r)

Im(ηe–iωn τ̃ r)

)

for r ∈ [0, 1]. Then we can compute by (A.9)

D∗
1 :=

(
Ψ ∗

1 ,Φ1
)
, D∗

2 :=
(
Ψ ∗

1 ,Φ2
)
, D∗

3 :=
(
Ψ ∗

2 ,Φ1
)
, D∗

4 :=
(
Ψ ∗

2 ,Φ2
)
.

Define (Ψ ∗,Φ) = (Ψ ∗
j ,Φk) =

( D∗
1D∗

2
D∗

3D∗
4

)
and construct a new basis Ψ for P∗ by

Ψ = (Ψ1,Ψ2)T =
(
Ψ ∗,Φ

)–1
Ψ ∗.

Then (Ψ ,Φ) = I2. In addition, define fn := (β1
n ,β2

n), where

β1
n =

(
cos n

l x
0

)

, β2
n =

(
0

cos n
l x

)

.

We also define

c · fn = c1β
1
n + c2β

2
n , for c = (c1, c2)T ∈ C1.

Thus the center subspace of linear equation (A.5) is given by PCNC1 ⊕ PSC1 and PSC1

denotes the complement subspace of PCNC1 in C1,

〈u, v〉 :=
1

lπ

∫ lπ

0
u1v1 dx +

1
lπ

∫ lπ

0
u2v2 dx

for u = (u1, u2), v = (v1, v2), u, v ∈ X and 〈φ, f0〉 = (〈φ, f 1
0 〉, 〈φ, f 2

0 〉)T .
Let Aτ̃ denote the infinitesimal generator of an analytic semigroup induced by the linear

system (A.5), and Eq. (A.1) can be rewritten as the following abstract form:

dU(t)
dt

= Aτ̃ Ut + R(Ut ,μ), (A.10)

where

R(Ut ,μ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0);

F(Ut ,μ), θ = 0.
(A.11)

By the decomposition of C1, the solution above can be written as

Ut = Φ

(
x1

x2

)

fn + h(x1, x2,μ), (A.12)



Li et al. Advances in Difference Equations         (2019) 2019:79 Page 16 of 23

where
(

x1

x2

)

=
(
Ψ , 〈Ut , fn〉

)
,

and

h(x1, x2,μ) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

In particular, the solution of (A.2) on the center manifold is given by

Ut = Φ

(
x1(t)
x2(t)

)

fn + h(x1, x2, 0). (A.13)

Let z = x1 – ix2, and notice that p1 = Φ1 + iΦ2. Then we have

Φ

(
x1

x2

)

fn = (Φ1,Φ2)

(
z+z

2
i(z–z)

2

)

fn =
1
2

(p1z + p1z)fn

and

h(x1, x2, 0) = h
(

z + z
2

,
i(z – z)

2
, 0

)

.

Hence, Eq. (A.13) can be transformed into

Ut =
1
2

(p1z + p1z)fn + h
(

z + z
2

,
i(z – z)

2
, 0

)

=
1
2

(p1z + p1z)fn + W (z, z), (A.14)

where

W (z, z) = h
(

z + z
2

,
i(z – z)

2
, 0

)

.

From [37], z satisfies

ż = iωnτ̃z + g(z, z), (A.15)

where

g(z, z) =
(
Ψ1(0) – iΨ2(0)

)〈
F(Ut , 0), fn

〉
. (A.16)

Let

W (z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (A.17)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · , (A.18)
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from Eqs. (A.14) and (A.17), we have

ut(0) =
1
2

(z + z) cos

(
nx
l

)

+ W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz + W (1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1
2

(ξ + ξz) cos

(
nx
l

)

+ W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz + W (2)
02 (0)

z2

2
+ · · · ,

vt(–1) =
1
2
(
ξze–iωn τ̃ + ξzeiωn τ̃

)
cos

(
nx
l

)

+ W (2)
20 (–1)

z2

2

+ W (2)
11 (–1)zz + W (2)

02 (–1)
z2

2
+ · · · ,

and

F1(Ut , 0) =
1
τ̃

F1 =
1
2

fuuu2
t (0) + fuvut(0)vt(–1) +

1
2

fvvv2
t (–1)

+
1
6

fuuuu3
t (0) +

1
2

fuuvu2
t (0)vt(–1) +

1
2

fuvvut(0)v2
t (–1)

+
1
6

fvvvv3
t (–1) + O(4), (A.19)

F2(Ut , 0) =
1
τ̃

F2 =
1
2

guuu2
t (0) + guvut(0)vt(0) +

1
2

gvvv2
t (0)

+
1
6

guuuu3
t (0) +

1
2

guuvu2
t (0)vt(0) +

1
2

guvvut(0)v2
t (0)

+
1
6

gvvvv3
t (0) + O(4), (A.20)

with

fuu = –2a –
2ce(–be2 – 3beP∗ + P3∗)Z∗

(be + eP∗ + P2∗)3 , fuv =
ce(–be + P2∗)

(be + eP∗ + P2∗)2 ,

guu =
2e(–be2 – 3beP∗ + P3∗)sZ∗

(be + eP∗ + P2∗)3 , guv = –
e(–be + P2∗)s

(be + eP∗ + P2∗)2 ,

fuuu =
6ce(b2e2 – be3 – 4be2P∗ – 6beP2∗ + P4∗)Z∗

(be + eP∗ + P2∗)4 ,

fuuv = –
ce(–be2 – 3beP∗ + P3∗)

(be + eP∗ + P2∗)3 ,

guuu = –
6e(b2e2 – be3 – 4be2P∗ – 6beP2∗ + P4∗)sZ∗

(be + eP∗ + P2∗)4 ,

guuv =
e(–be2 – 3beP∗ + P3∗)s

(be + eP∗ + P2∗)3 ,

fvv = fuvv = fvvv = gvv = guvv = gvvv = 0.

(A.21)

Hence,

F1(Ut , 0) = cos2
(

nx
l

)(
z2

2
χ20 + zzχ11 +

z2

2
χ20

)

+
z2z
2

cos

(
nx
l

)[

W 1
11(0)

(
fuu + e–iτ̃ωnξ fuv

)
+ W 1

20(0)
fuu + eiτ̃ωnξ fuv

2
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+ W 2
11(–1)fuv +

1
2

W 2
20(–1)fuv

]

+
z2z
2

cos3
[

1
8

fuuu +
1

24
(
eiτωnξ + 2e–iτωnξ

)
fuuv

]

+ · · · , (A.22)

F2(Ut , 0) = cos2
(

nx
l

)(
z2

2
ς20 + zzς11 +

z2

2
ς20

)

+
z2z
2

cos
nx
l

[
W 1

11(0)(guu + ξguv)
]

+ W 2
11(0)guv + W 1

20(0)
guu + ξguv

2
+

1
2

W 2
20(0)guv]

+
z2z
2

cos3
[

1
8

guuu +
1

24
(ξ + 2ξ )guuv

]

+ · · · , (A.23)

〈
F(Ut , 0), fn

〉
= τ̃

(
F1(Ut , 0)f 1

n + F2(Ut , 0)f 2
n
)

=
z2

2
τ̃

(
χ20

ς20

)

Γ + zzτ̃

(
χ11

ς11

)

Γ

+
z2

2
τ̃

(
χ20

ς20

)

Γ +
z2z
2

τ̃

(
κ1

κ2

)

+ · · · (A.24)

with

Γ =
1

lπ

∫ lπ

0
cos3

(
nx
l

)

dx,

κ1 =
[
(
fuu + e–iτ̃ωnξ fuv

)
W (1)

11 (0) + fuvW (2)
11 (–1)

+
1
2
(
fuu + eiτ̃ωnξ fuv

)
W (1)

20 (0) +
1
2

(fuv)W (2)
20 (–1)

]
1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx

+
[

1
8

fuuu +
1

24
(
eiτωnξ + 2e–iτωnξ

)
fuuv

]
1

lπ

∫ lπ

0
cos4

(
nx
l

)

dx,

κ2 =
[

(guu + ξguv)W (1)
11 (0) + guvW (2)

11 (0) +
1
2

(guu + ξguv)W (1)
20 (0)

+
1
2

guvW (2)
20 (0)

]
1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx

+
[

1
8

guuu +
1

24
(ξ + 2ξ )guuv

]
1

lπ

∫ lπ

0
cos4

(
nx
l

)

dx

and

χ20 =
1
4

cos2
(

nx
l

)
(
fuu + 2e–iτ̃ωnξ fuv

)
),

χ11 =
1
4

cos2
(

nx
l

)
(
fuu +

(
eiτ̃ωnξ + e–iτ̃ωnξ

)
fuv

)
,

ς20 =
1
4

cos2 nx
l

(guu + 2ξguv),

ς11 =
1
4

cos2 nx
l

(
guu + (ξ + ξ )guv

)
.

(A.25)
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Denote

Ψ1(0) – iΨ2(0) := (γ1 γ2).

Notice that

1
lπ

∫ lπ

0
cos3

(
nx
l

)

dx = 0, n = 1, 2, 3, . . . ,

and we have

(
Ψ1(0) – iΨ2(0)

)〈
F(Ut , 0), fn

〉

=
z2

2
(γ1χ20 + γ2ς20)Γ τ̃ + zz(γ1χ11 + γ2ς11)Γ τ̃

+
z2

2
(γ1χ20 + γ2ς20)Γ τ̃ +

z2z
2

τ̃ [γ1κ1 + γ2κ2] + · · · . (A.26)

Then by (A.16), (A.18), and (A.26), we have g20 = g11 = g02 = 0, for n = 1, 2, 3, . . . . If n = 0,
we have the following quantities:

g20 = γ1τ̃χ20 + γ2τ̃ ς20, g11 = γ1τ̃χ11 + γ2τ̃ ς11, g02 = γ1τ̃χ20 + γ2τ̃ ς20.

And for n ∈N0, g21 = τ̃ (γ1κ1 + γ2κ2).
Now, a complete description for g21 depends on the algorithm for W20(0) and W11(0),

which we shall compute.
From [37], we have

Ẇ (z, z) = W20zż + W11żz + W11zż + W02zż + · · · ,

Aτ̃ W (z, z) = Aτ̃ W20
z2

2
+ Aτ̃ W11zz + Aτ̃ W02

z2

2
+ · · · ,

and W (z, z) satisfies

Ẇ (z, z) = Aτ̃ W + H(z, z),

where

H(z, z) = H20
z2

2
+ W11zz + H02

z2

2
+ · · ·

= X0F(Ut , 0) – Φ
(
Ψ ,

〈
X0F(Ut , 0), fn

〉 · fn
)
. (A.27)

Hence, we have

(2iωnτ̃ – Aτ̃ )W20 = H20, –Aτ̃ W11 = H11, (–2iωnτ̃ – Aτ̃ )W02 = H02, (A.28)

that is,

W20 = (2iωnτ̃ – Aτ̃ )–1H20, W11 = –A–1
τ̃ H11, W02 = (–2iωnτ̃ – Aτ̃ )–1H02.
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(A.29)

Therefore by (A.27), for θ ∈ [–1, 0),

H20(θ ) =

⎧
⎨

⎩

0, n = 1, 2, 3, . . . ,

– 1
2 (p1(θ )g20 + p2(θ )g02) · f0, n = 0,

H11(θ ) =

⎧
⎨

⎩

0, n = 1, 2, 3, . . . ,

– 1
2 (p1(θ )g11 + p2(θ )g11) · f0, n = 0,

H02(θ ) =

⎧
⎨

⎩

0, n = 1, 2, 3, . . . ,

– 1
2 (p1(θ )g02 + p2(θ )g20) · f0, n = 0,

and

H(z, z)(0) = F(Ut , 0) – Φ
(
Ψ ,

〈
F(Ut , 0), fn

〉) · fn,

where

H20(0) =

⎧
⎨

⎩

τ̃
( χ20

ς20

)
cos2( nx

l ), n = 1, 2, 3, . . . ,

τ̃
( χ20

ς20

)
– 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0,

H11(0) =

⎧
⎨

⎩

τ̃
( χ11

ς11

)
cos2( nx

l ), n = 1, 2, 3, . . . ,

τ̃
( χ11

ς11

)
– 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.

(A.30)

By the definition of Aτ̃ and (A.28), we have

Ẇ20 = Aτ̃ W20 = 2iωnτ̃W20 +
1
2
(
p1(θ )g20 + p2(θ )g02

) · fn, –1 ≤ θ < 0.

That is,

W20(θ ) =
i

2iωnτ̃

(

g20p1(θ ) +
g02
3

p2(θ )
)

· fn + E1e2iωn τ̃ θ ,

where

E1 =

⎧
⎨

⎩

W20(0), n = 1, 2, 3, . . . ,

W20(0) – i
2iωn τ̃

(g20p1(θ ) + g02
3 p2(θ )) · f0, n = 0.

Using the definition of Aτ̃ and (A.28), we have that, for –1 ≤ θ < 0,

–
(

g20p1(0) +
g02
3

p2(0)
)

· f0 + 2iωnτ̃E1 – Aτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· f0

)

– Aτ̃ E1 – Lτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· fn + E1e2iωn τ̃ θ

)

= τ̃

(
χ20

ς20

)

–
1
2
(
p1(0)g20 + p2(0)g02

) · f0.



Li et al. Advances in Difference Equations         (2019) 2019:79 Page 21 of 23

As

Aτ̃ p1(0) + Lτ̃ (p1 · f0) = iω0p1(0) · f0

and

Aτ̃ p2(0) + Lτ̃ (p2 · f0) = –iω0p2(0) · f0,

we have

2iωnE1 – Aτ̃ E1 – Lτ̃ E1e2iωn = τ̃

(
χ20

ς20

)

cos2
(

nx
l

)

, n = 0, 1, 2, . . . .

That is,

E1 = τ̃E

(
χ20

ς20

)

cos2
(

nx
l

)

,

where

E =

(
2iωnτ̃ + d1

n2

l2 – a1 –a2e–2iωn τ̃

–b1 2iωnτ̃ + d2
n2

l2

)–1

.

Similarly, from (A.29), we have

–Ẇ11 =
i

2ωnτ̃

(
p1(θ )g11 + p2(θ )g11

) · fn, –1 ≤ θ < 0.

That is,

W11(θ ) =
i

2iωnτ̃

(
p1(θ )g11 – p1(θ )g11

)
+ E2.

Similar to the procedure of computing W20, we have

E2 = τ̃E∗
(

χ11

ς11

)

cos2
(

nx
l

)

,

where

E∗ =

(
d1

n2

l2 – a1 –a2

–b1 d2
n2

l2

)–1

.

Thus, we can compute the following quantities which determine the direction and stability
of bifurcating periodic orbits:

c1(0) =
i

2ωnτ̃

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
1
2

g21, μ2 = –
Re(c1(0))
Re(λ′(τ̃ ))

,

T2 = –
1

ωnτ̃

[
Im

(
c1(0)

)
+ μ2 Im

(
λ′(τ̃ )

)]
, β2 = 2 Re

(
c1(0)

)
.

(A.31)
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