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Abstract
It is well known that the drug treatment is always combined with the injection of
immune factors. In this paper, a virus infection model with state-dependent impulsive
control is considered. Firstly, by deriving three categories of Bendixson domain and
using the methods of geometry and successor function, we establish some criteria for
the existence of positive order-1 periodic solution for a general model, which extends
the existing results in the literature. Further, the criteria are used to obtain the
existence of positive order-1 periodic solutions in the two cases that the positive
equilibrium point is on the left or right side of the pulse line, respectively. Finally, an
example is presented to illustrate our results.
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1 Introduction
With respect to the mathematical analysis of virus copies in vivo, differential equations are
important tools modeling the evolution mechanism of normal cells and virus [1–4]. With-
out the treatment of drugs, the turnover of free virus is much faster than that of infected
cells, which allows them to make a quasi-steady-state assumption, whereby the amount of
free virus is proportional to and hence incorporated into the number of infected cells [5,
6]. Practically, the amount of uninfected cells and the virus load is the main criterion in
the control of disease. Therefore, we simplify the virus infection model as follows:

⎧
⎨

⎩

dx
dt = f (x) – vg(x),
dv
dt = v[g(x) – a],

(1.1)

where x(t) and v(t) are the densities of uninfected cells and virus particles, respectively.
The positive constant a is the natural death rate of free virus. f (x) is the growth rate at
which new target cells are generated, which incorporating the natural death rate of the
cells; g(x) represents the rate at which an uninfected cell infected by virus. In fact, sys-
tem (1.1) can also be characterized as a predator–prey model when one regards x(t) as
the density of prey and v(t) as that of predator. As is well known, the different functional
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response between predator and prey is depicted by the function g(x), such as Holling type
I or Holling type II. In vivo dynamics, the normal cell is produced by the specific organ
often at a constant rate, while the death rate is constrained by the density of itself, which
causes the growth function f (x) to decrease. Hence, we assume that

(A1) f ∈ C1(R, R), f (0) = λ > 0, f ′(x) < 0 and there exists a positive number n such that
f (n) = 0;

(A2) g ∈ C1(R, R), g(0) = 0, g ′(x) > 0, and there exists a number m ∈ (0, n) such that
g(m) = a.

Define

ϕ(x) =
f (x)
g(x)

.

As is well known, system (1.1) possesses two possible equilibria,

E0 = (n, 0), E1 =
(
x∗, v∗) =

(

m,
f (m)
g(m)

)

=
(
m,ϕ(m)

)
. (1.2)

Since f (m) > 0, the equilibrium E1 is asymptotically stable, which will be verified in the
following section. Therefore, the virus cannot be eradicated without control under the
assumptions (A1)–(A2).

The principle of controlling the virus infection is either eradicating the virus or keeping
the virus concentration at a low level while the ‘good’ cells at a high level. Since some
classes of virus replicate so rapidly and irregularly that it is hardly possible to eradicate,
the strategy of controlling the virus infection is to find a certain dynamical balance which
does not lead to a disaster.

In fact, people often take measures to control the infected system before it reaches the
worst case. For example, some scientists suggest that an HIV-1 infected person should
receive a corresponding treatment when the amount of CD4+T decreases to 350 or
500 mm–3. So the value 350 or 500 is regarded as one of the ‘therapy thresholds’. The-
oretically, if the density of normal cells is always higher than the ‘therapy threshold’, we
need not take the corresponding treatment measure. Otherwise, we must find an effec-
tive therapy to suppress the decline of ‘good’ cells. It is well known that a regular therapy
for HIV infection is a continuous ART (antiretroviral therapy). However, in view of the
viral reservoir it cannot be sufficiently targeted, the latent virus will be productive after a
discontinuation of ART, which will lead to a burst of virus. Therefore, an integrate ther-
apy is required. For example, in the treatment of HIV/SIV infection, the combination of
Ad26/MVA vaccination and TLR7 stimulation results in decreased levels of viral DNA
in lymph nodes and peripheral blood as well as in delays viral rebound for eight weeks
following ART discontinuation [7].

Compared with the process of the disease, the impact of taking drugs or immune factors
is short enough for it to be assumed that the therapy leads to an impulsive effect. On one
hand, the drugs and immune injectors suppress the reproduction of the virus particles
as well as the target cells at a certain rate; on the other hand, the immune injectors will
stimulate the increasing of target cells.
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Thus, we introduce a state-dependent impulsive model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = f (x) – vg(x),
dv
dt = v[g(x) – a],

⎫
⎬

⎭
x > h,

�x(t) = τ – px(t),

�v(t) = –qv(t),

⎫
⎬

⎭
x = h,

x(0+) = x+
0 > h, y(0+) = v+

0 > 0,

(1.3)

where 0 < p < 1, 0 < q < 1 are the impulsive rate at which the target cells and virus decrease
due to the cytotoxicity of drugs, respectively. The constant τ represents the average in-
creasing amount of activated target cells after each time immunization. h is the therapy
threshold which is associated with a critical state. � x(t) = x(t+) – x(t).

The existence and the stability of positive periodic solutions are key issues on the study
of mathematical biology models, so do for state-dependent impulsive differential equa-
tions (see [8–21] and the references therein). In [13] and [14], the first integral of a system
exists and therefore the Lambert W function is used to establish the existence of periodic
solutions. However, if the first integral or the explicit solution of a system cannot be solved,
then it is difficult to use the Lambert W function. For a start, Zeng, Chen and Sun [14]
established a Poincaré–Bendixson ring-domain principle which is associated with a com-
pression mapping. Some researchers considered such models by the geometric methods
or successor function [15, 16, 18], and obtained some existence results of order-1 peri-
odic solution. The difficulty lies in the fact that the non-tangent property is necessary to
consider when we utilize the continuity of a successor function.

Motivated by the previous work, we are aiming to establish some criteria for different
Bendixson domains, and hence to obtain an impulsive control strategy for system (1.3). We
try to find the sufficient conditions that ensure the existence of order-1 periodic solution
which is superior to the ‘critical state’, or consider whether the control is required.

The structure of this paper is as follows. In Sect. 2, we begin with the qualitative analysis
for system (1.1) without impulse, then introduce some notation and lemmas which will be
used in the next sections. In particular, we derive three categories of Bendixson domain
to deal with the tangent segment and to extend the existing Poincaré–Bendixson ring-
domain principle in [14]. In Sect. 3, we obtain main results under two cases x∗ < h and
x∗ > h (x∗ = m). For the former, we consider the existence of positive order-1 periodic
solution by constructing an appropriate Bendixson domain. Under the case x∗ > h, we
discuss how to determine an impulsive control based on the parameter q and the initial
value. Finally, a conclusion and some examples are put forward in Sect. 4.

Throughout this paper, we assume:
(A3) τ > ph (the stimulation of immune injectors on target cells is stronger than the sup-

pression on them);
(A4) m < h + (τ – ph) < n (once the cells are infected, the stimulation of immune injectors

is limited).

2 Preliminaries
First, we start from system (1.1). Set a Cartesian coordinate system xOv, and let x axis be
the horizontal axis. Denote any solution (x(t), v(t)) of system (1.1) by (x, v).
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Lemma 2.1 Any solution of system (1.1) is positive for positive initial value and the region

Ω =
{

(x, v)
∣
∣
∣x > 0, v > 0, x + v ≤ f (0)

a
+ n

}

is positively invariant.

Proof From the second equation of (1.1), it follows that

v(t) = v(0) exp

{

–at +
∫ t

0
g
(
x(s)

)
ds

}

.

If v(0) > 0, then v(t) > 0. Moreover, when x(0) = 0,

ẋ(0) = f (0) = λ > 0,

which implies that any solution of system (1.1) is positive with positive initial values.
Denote l1 : x = n and l2 : L(x, v) = 0, where L(x, v) = x + v – ( f (0)

a + n).
Calculating the time derivative of l1 and l2 along the trajectories of system (1.1), respec-

tively, gives

dl1

dt
=

dx
dt

∣
∣
∣
∣
x=n

= f (n) – vg(n) = –vg(n) < 0

and

dl2

dt
=

(
dx
dt

+
dv
dt

)∣
∣
∣
∣
L(x,v)=0

= f (x) – f (0) – a(n – x) < 0 for 0 < x < n.

Consequently, the region Ω is positively invariant. �

Lemma 2.2 Under the assumptions (A1) and (A2), the positive equilibrium E1 of system
(1.1) is asymptotically stable and E0 is unstable.

Proof The Jacobian matrix along system (1.1) is

J =

[
f ′(x) – vg ′(x) –g(x)

g ′(x)v g(x) – a

]

.

The Jacobian matrix J at the equilibrium E0(n, 0) takes the form

J0 =

[
f ′(n) –g(n)

0 g(n) – a

]

.

By a direct calculation, we have the eigenvalues such that λ1 = f ′(n) < 0 and λ2 = g(n) – a >
0. Therefore, E0 is unstable.

At the equilibrium E1(m,ϕ(m)), the Jacobian matrix is given by

J1 =

[
f ′(m) – ϕ(m)g ′(m) –g(m)

g ′(m)ϕ(m) 0

]

,
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and the characteristic equation is

λ2 –
[
f ′(m) – ϕ(m)g ′(m)

]
λ + g ′(m)f (m) = 0.

Since the eigenvalues λ1 and λ2 satisfy λ1 + λ2 = f ′(m) – ϕ(m)g ′(m) < 0 and λ1 + λ2 =
g ′(m)f (m) > 0, E1 is asymptotically stable. �

From Lemma 2.1, it follows that the solutions of (1.3) are positive with positive initial
values since �x(t) = τ – px(t), �v(t) = –qv(t) and 0 < p < 1, 0 < q < 1.

The signs of the derivatives ẋ and v̇ on t are shown in Fig. 1. The expression of the
uninfected cells’ isoline ẋ = 0 is v = ϕ(x).

Denote

h̄ = h + (τ – ph), v0 = ϕ(h̄), ω0 = ϕ(h),

th =
f (0)

a
+ n – h, th̄ =

f (0)
a

+ n – h̄.

Then we have four characteristic points named

P0(h̄, v0), W0(h,ω0), Th(h, th), Th̄(h̄, th̄).

Obviously, the trajectory of system (1.1) is tangent to line x = h, x = h̄ at P0 and W0, re-
spectively. Also, the line l2: x + v = f (0)

a + n intersects with line x = h̄, x = h at Th and Th̄,
respectively.

The general location of characteristic points and domains, see Fig. 2.

Figure 1 The sign of derivative ẋ and v̇ on t

Figure 2 The general location of the characteristic points. (a) x∗ < h; (b) h < x∗ < h̄, the trajectory from P0 can
hit the line x = h; (c) h < x∗ < h̄, the trajectory from P0 cannot hit the line x = h
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Lemma 2.3 Under the assumptions (A1)–(A4), we have

v0 < th̄; (2.1)

v0 < ω0. (2.2)

Proof It follows from (A1)–(A2) that ϕ(x) is decreasing on x, and (A3)–(A4) gives

v0 = ϕ(h̄) < ϕ(m) < ϕ(m) + n – h̄ <
f (0)

a
+ n – h̄ = th̄.

Similarly, h < h̄ implies v0 = ϕ(h̄) < ϕ(h) = ω0. �

Let two subsets M and N be

M =
{

(x, v)|v > 0, x = h
}

, N =
{

(x, v)|v > 0, x = h̄
}

and the impulsive function be I . Then I(M) ⊆ N .
We define the positive orbit (or solution) starting from P(x(t), v(t)) ∈ R

2
+ by O+(P) and

the negative orbit arriving at it by O–(P). Obviously, the positive trajectories initiated from
N will intersect with the impulse segment M or cannot approach it. Similarly, the nega-
tive trajectory initiated from M will be reachable or unreachable to the segment N . If
O+(Pn)(h̄, vn) intersects firstly with M at point Qn � (h, ṽn), we denote O+

M(Pn) = Qn.
If O–(Qn) intersects with the phase line N at unique point Pn(h̄, vn), we denote O–

N (Qn) =
Pn; If O–(Qn) intersects with N at two points P̄n and Pn in recent time series, which lie
above P0 and below P0, respectively, we denote O–

N (P̄n) = Pn, O+
N (Pn) = P̄n and O+

M(Pn) =
O+

M(Pn) = Qn. And hence, O+
M , O–

N , and O+
N can be regarded as maps from N to M or

inverse direction (see Fig. 3, O–
N may be a multi-valued map).

For any A, B ∈ N , if A lies above B, we denote A > B. Moreover, we define AB = B – A =
vB – vA, where vA, vB is the ordinates of A and B, respectively.

If O+
M(Pn) �= ∅ for any Pn(h̄, vn) ∈ N , we define a Poincaré map F and a successor function

F as follows:

F(Pn) = IO+
M(Pn) = Pn+1, F(Pn) = IO+

M(Pn) – Pn = vn+1 – vn. (2.3)

Figure 3 The illustration for O+
M , O

–
N , O

+
N and I, where I(Qn) = Pn+1
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Thus F(Pn) and F(Pn) are continuous on Pn due to the continuity of I and continuous
dependence on the initial value of the solutions to system (1.1).

Lemma 2.4 [12] The successor function is continuous if it is well defined.

Based on the definition of order-k periodic solution for an impulsive dynamics system
in [12], we give the definition of order-1 periodic solution.

Definition 2.1 ([12]) A trajectory O+(Pn) of system (1.3) together with the impulsive line
QnPn is called an order-1 cycle if vn+1 = vn.

From (2.3), F(Pn) = 0 implies the existence of order-1 periodic solution.
To ensure that the successor function is well defined, we consider three categories of

Bendixson domain for system (1.3).

Definition 2.2 For system (1.3), suppose a Bendixson domain D is composed of M, N , L1

and L2, and such that
(i) there is no singularity in it;

(ii) trajectory L1 intersects with N , M at A0 and B0 in order; trajectory L2 intersects
with N , M at A1 and B1 in order, respectively;

(iii) segments A0A1 and B0B1 cannot be tangent to trajectories of system (1.3) except at
the end point.

If L1 is tangent to N at A0, and A0 < A1 gives B0 < B1, then we call the region D a parallel
trajectory rectangle (see Fig. 4(a));

If L1 is tangent to N at A0, and A0 > A1 gives B0 < B1, then we call the region D a sub-
parallel trajectory rectangle (see Fig. 4(b));

If L1 is tangent with M at B0 and intersects with N at A0 and Ā0 in order, L2 intersects
with N at A1 and Ā1 in order, and A0 > A1, then we call the region D a semi-ring domain
(see Fig. 4(c)).

Lemma 2.5 Suppose a parallel or sub-parallel domain D is composed of Ã0B0, A0A1, Ã1B1

and B0B1 and with F(A0)F(A1) < 0. Then there exists an order-1 periodic solution in D.

Proof Since D is parallel or sub-parallel as defined above, we have O+
M(An) �= ∅ for any

An ∈ A0A1. As the successor function F(An) is continuous on An ∈ A0A1, it follows from

Figure 4 The illustration for three categories of Bendixson domain. A0 is a tangent point in (a) and (b), while
B0 is a tangent point in (c)



Wang et al. Advances in Difference Equations         (2019) 2019:35 Page 8 of 18

F(A0)F(A1) < 0 that there must exist an AN ∈ A0A1 such that F(AN ) = 0, which implies the
existence of an order-1 periodic solution in D. �

Lemma 2.6 Suppose a semi-ring domain D of system (1.3) is composed of Ã0B0, A0A1, Ã1B1

and B0B1. Then we have the following principle:
(i) if F(A0A1) ⊆ A0A1 or F(A0A1) ⊆ Ā0Ā1, then there exists an order-1 periodic solution

which is initiated from A0A1 or Ā0Ā1,respectively;
(ii) if F(A0A1) ⊆ Ā0A0, then there is no order-1 periodic solution in D.

Proof (i) Obviously, if F(A0A1) ⊆ A0A1, then the continuous map F = IO+
M is a compres-

sion mapping. Thus there exists a fixed point An ∈ A0A1 such that F(An) = An, which im-
plies the existence of order-1 periodic solution initiated from A0A1. If F(A0A1) ⊆ Ā0Ā1,
then F(Ā0)F(Ā1) < 0, which implies the existence of order-1 periodic solution initiated
from Ā0Ā1.

(ii) If F(A0A1) ⊆ A0Ā0, then all the trajectories initiated from A0A1 will be mapped onto
A0Ā0, from which the trajectories will not approach M since L2 is tangent to M at B0.
Therefore, there is no order-1 periodic solution in D. �

3 Main results
Suppose O+

M(P0) = Q0 � (h, ṽ0) and denote the trajectories P̃0Q0, P̃1Q1 by functions v0(x)
and v1(x), respectively. Then we have the following lemmas.

Lemma 3.1 Under the assumption (A1)–(A4), if O+
M(P0) �= ∅, then v0(x) > ϕ(x) for x ∈ (h, h̄).

Proof Provided that there exists an x0 ∈ (h, h̄) such that v0(x0) = ϕ(x0), then the trajectory
P̃0Q0 will intersect with the trajectory initiated from (x0,ϕ(x0)) which is tangent to the line
x = x0. It will contradict the uniqueness of the solution to system (1.1). �

Lemma 3.2 Suppose O+
M(P0) �= ∅. If F(P0) > 0, then there exists a point P ∈ N which lies

above P0 such that F(P) ≤ 0.

Proof Let O+
M(P0) = Q0. Then all the trajectories initiated from N will approach M. F(P0) >

0 implies IO+
M(P0) = P1 > P0. We consider two cases:

Case 1: x∗ = m < h.
We claim F(Pk) < F(Pk–1) (k = 1, 2, . . .).
Firstly, we prove that Q0Q1 < (1 – q)P0P1.
Since x∗ < h < h̄ < n, there does not exist any equilibrium which lies between M and N .

Therefore v0(x) and v1(x) are continuous on [h, h̄] and derivative on the open interval (h, h̄).
Based on the Cauchy mean theorem, there exists a ξ ∈ (h, h̄) such that

v1(h) – v1(h̄)
v0(h) – v0(h̄)

=
v′

1(ξ )
v′

0(ξ )
=

v1(ξ )[g(ξ )–a]
f (ξ )–v1(ξ )g(ξ )
v0(ξ )[g(ξ )–a]
f (ξ )–v0(ξ )g(ξ )

=
v1(ξ )[f (ξ ) – v0(ξ )g(ξ )]
v0(ξ )[f (ξ ) – v1(ξ )g(ξ )]

=
ϕ(ξ )
v0(ξ ) – 1
ϕ(ξ )
v1(ξ ) – 1

. (3.1)

Since P1 > P0, we have v1(ξ ) > v0(ξ ) for ξ ∈ (h, h̄). Furthermore, Lemma 3.1 implies that
v0(ξ ) > ϕ(ξ ). Therefore ϕ(ξ )

v1(ξ ) – 1 < ϕ(ξ )
v0(ξ ) – 1 < 0 (i = 0, 1). Thus (3.1) gives

v1(h) – v1(h̄)
v0(h) – v0(h̄)

< 1. (3.2)
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Figure 5 There exists a P ∈ N such that F(P) ≤ 0 when F(P0) > 0

In view of v′
0(x) < 0 for x ∈ (h, h̄) (which can also be illustrated by Fig. 1), we have v0(h) >

v0(h̄). Hence, (3.2) implies v1(h) – v1(h̄) < v0(h) – v0(h̄), that is, v1(h) – v0(h) < v1(h̄) – v0(h̄)
or Q0Q1 < P0P1.

Next, we get

P2 – P1 = I(Q1) – I(Q0) = (1 – q)(Q1 – Q0) < (1 – q)(P1 – P0), (3.3)

which implies F(P1) < (1 – q)F(P0).
Similarly, by induction, we can prove that F(Pk+1) < (1 – q)F(Pk) (k = 1, 2, . . .), which im-

plies F(Pk) < (1 – q)kF(P0) (k = 1, 2, . . .). Since (1 – q)kF(P0) → 0 as k → +∞, there exists a
point P ∈ N which lies above P0 such that F(P) ≤ 0 (see Fig. 5(a)).

Case 2: h < x∗ = m < h̄.
In this case, the trajectories reach the highest point at x = m. Suppose O+(P0)∩{x = m} =

Q′
0. Since (1 – q)Q0 > P0 and vQ′

0
> vQ0 , we have (1 – q)Q′

0 > (1 – q)Q0 > P0. Obviously, v0(x)
and v1(x) are continuous on [m, h̄] and derivative on the open interval (m, h̄). We apply the
Cauchy mean theorem on interval [m, h̄]. It follows from the proof of (i) that there exists
a point P ∈ N which lies above P0 such that (1 – q)Q′ ≤ P, where Q′ = O+(P) ∩ {x = m}.
Similarly, we have vQ′ > vQ, which gives (1 – q)Q < (1 – q)Q′ < P, that is, F(P) ≤ 0 (see
Fig. 5(b)). �

In the following, we discuss the existence of periodic solutions in the cases of x∗ < h and
h < x∗ < h̄.

3.1 x∗ < h
If x∗ = m < h, then all the trajectories initiated from N intersect with M and cross it since
the equilibrium E1 is asymptotically stable.

Theorem 3.1 Suppose x∗ < h holds. Then there must exist an order-1 periodic solution for
(1.3) under the assumptions (A1)–(A4).

Proof We consider two possible cases according to F(P0).
Case 1. Suppose F(P0) > 0 holds. By Lemma 3.2, there exists a P ∈ N which lies above P0

such that F(P) ≤ 0. Therefore, the domain composed of P̃0Q0, P0P, P̃Q and Q0Q is parallel,
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Figure 6 Case 2 F(P0) < 0

and thus F(P0)F(P) < 0. By Lemma 2.5, there exists an order-1 periodic solution initiated
from P0P.

Case 2. Suppose F(P0) < 0 holds (see Fig. 6).
Since P0 is the tangent point and P1 < P0, the region D composed of P̃0Q0, P0P1, P̃1Q1

and Q1Q0 is sub-parallel. Obviously, F(P1) > 0. Otherwise, it contradicts the fact that I is
increasing. Hence, F(P0)F(P1) < 0, by Lemma 2.5, there exists an order-1 periodic solution
in D.

Claim The periodic solution is initiated from P0P1 when F(P0) < 0. We need only to prove
that P2 < P̄1. Provided P2 > P̄1, then P1P2 > P0P̄1 as P1 < P0. However, by Lemma 3.2, we have
Q0Q1 < P0P̄1, which gives P1P2 = (1 – q)Q0Q1 < P0P̄1 < P1P2. It comes to a contradiction (see
Fig. 6(c)). �

Corollary 3.1 Suppose that x∗ < h holds. Under the assumptions (A1)–(A4), if

1 – q ≤ th̄
th

, (3.4)

then there must exist an order-1 periodic solution under the line x + v = f (0)
a + n for system

(1.3).

Proof By Lemma 2.1, O+
M(Th̄) � Sh(h, sh) < Th. It follows from 1–q ≤ th̄

th
that I(Sh) < I(Th) =

(1 – q)th < th̄, which gives F(Th̄) < 0.
If F(P0) > 0, then Th̄ can be regarded as P in Theorem 3.1. Since v0 < th̄, the order-1

periodic solution, which initiated from P0Th̄, lies below the line x + v = f (0)
a + n.

If F(P0) < 0, by Theorem 3.1 there must exist an order-1 periodic solution initiated from
P0P1, which lies below the line x + v = f (0)

a + n. �

Remark 3.1 In fact, according to Lemma 2.5, if 1 – q ≤ th̄
sh

, then there must exist an order-1
periodic solution under the line x + v = f (0)

a + n for system (1.3). Obviously, the condition
1 – q ≤ th̄

th
is stronger than 1 – q ≤ th̄

sh
in the sense that sh < th. In view of the computation of

th being more visible than sh, we prefer the former. On the other hand, if it does not hold,
there maybe exists an order-1 periodic solution above the line x + v = f (0)

a + n. However,
the state is not optimal because of the higher load of v.

3.2 h < x∗ < h̄
In this case, the trajectory O+(P0) does not necessarily approach the line x = h.
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Lemma 3.3 Suppose h < x∗ < h̄ holds. We have:
(i) O–

N (W0) = ∅ ⇐⇒ O+
M(P0) �= ∅;

(ii) if ω0 > th, then O–(W0) will intersect with x = h̄ at unique point W –
0 � (h̄,ω–

0 ), and
such that ω–

0 > th̄.

Proof (i) If O–
N (W0) = ∅, then the trajectory O–(W0) intersects with the isoline v = ϕ(x) at

the point which lies on the left to P0 (see Fig. 1 and Fig. 2(b)). It is obvious that O+(P0) will
intersect with M, otherwise, O+(P0) will pass through O–(W0) and approach E1, which
contradicts the uniqueness of solution to system (1.1).

Suppose that O+
M(P0) = Q0(h, ṽ0) �= ∅. By Lemma 3.1, we have ṽ0 = v0(h) > ϕ(h) = ω0.

Therefore, the trajectory O–(W0) will intersect with the isoline v = ϕ(x) at the point that
lies on the left to P0, which means O–

N (W0) = ∅. The proof for (i) is completed.
(ii) We divided the proof into three steps.
Firstly, we prove that O–

N (W0) �= ∅. Assume that O–
N (W0) = ∅. According to the result of

(i), we have O+
M(P0) = Q0(h, ṽ0) �= ∅ and ṽ0 = v0(h) > ϕ(h) = ω0, which implies the trajectory

O+(P0) will go out from Ω . Thus O–
N (W0) �= ∅.

Next, we prove that O–
N (W0) > Th̄. Otherwise, O–

N (W0) < Th̄ will lead to a similar contra-
diction that the trajectory passing through W0 goes out from Ω .

Finally, we prove that O–(W0) intersects with x = h̄ at unique point. Assume that O–(W0)
intersects with N at two points above Th̄. The tangent point P0 will lie between the two
intersected points, which means v0 > th̄, it is a contradiction to the fact that v0 < th̄.

Thus O–(W0) will intersect with x = h̄ at a unique point and ω–
0 > th̄ (see Fig. 7). �

Theorem 3.2 If ω0 ≥ th, then there is no periodic solution below the line x + v = f (0)
a + n for

system (1.3).

Proof If ω0 > th, according to Lemma 3.3, O–(W0) will intersect with x = h̄ at unique point
W –

0 , which implies that all the trajectories, initiated from the points under W –
0 in N , will

not hit the line x = h. Further ω–
0 > th̄, therefore, there is no order-1 periodic solution that

lies in the domain Ω for system (1.3). �

Remark 3.2 Theorem 3.2 implies that we may take no measure to control the system (1.1)
if ω0 ≥ th and the initial point (x+

0 , v+
0 ) lies in the domain Ω ∩ {(x, v)|x > h}.

Theorem 3.3 Suppose ω0 < th. We have:
(i) If O–

N (W0) = ∅, then there must exist an order-1 periodic solution; particularly, if
1 – q < th̄

th
, then the order-1 periodic solution is below the line x + v = f (0)

a + n for (1.3).

Figure 7 The case ω0 ≥ th
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Figure 8 The case ω0 < th

(ii) If O–(W0) intersects with N at an unique intersected point W –
0 (h̄,ω–

0 ) and
1 – q < v0

th
, then there is no order-1 periodic solution below the line x + v = f (0)

a + n for
system (1.3).

(iii) If O–(W0) intersects with N at two points W –
0 (h̄,ω–

0 ) and W –
0 (h̄,ω–

0 ), provided
ω–

0
ω0

< 1 – q < th̄
th

or 1 – q < ω–
0

th
, then there exists an order-1 periodic solution initiated

from W –
0 Th̄ or from the line segment between W –

0 and I(W0), respectively.

Proof (i) If O–
N (W0) = ∅, then O+(P0) hits x = h and the equilibrium E1 is under the trajec-

tory (Fig. 8(a)). The proof is similar to that in the case x∗ < h.
(ii) From ω0 < th, it gives W0 < Th. Since O–(W0) intersects with N at an unique inter-

sected point W –
0 , we have O+(P0) = ∅. Obviously, W –

0 > P0, that is, ω–
0 > v0. It follows from

1 – q < v0
th

that 1 – q < ω–
0

th
, which implies that all the points in W0Th will be mapped onto

the segment below W –
0 by impulsive map I , and the trajectories initiated from segment

under W –
0 will not hit M any more. Therefore, there is no order-1 periodic solution under

the line x + v = f (0)
a + n (see Fig. 8(b)).

(iii) Since O–(W0) intersects with N at two points W –
0 � (h0, ω̄–

0 ) and W –
0 � (h0,ω–

0 ),
ω̄–

0
ω0

< 1 – q < th̄
th

implies F(Th̄)F(W –
0 ) < 0 and the domain composed of ˜̄W –

0 W0, W0Sh, T̃h̄Sh

and ThW̄ –
0 is parallel. By Lemma 2.5, there exists an order-1 periodic solution which is

initiated from W –
0 Th̄. Similarly, it follows from 1 – q < ω–

0
th

that 1 – q < ω–
0

ω0
, that is, I(W0) �

U < W –
0 . Denote O+

M(U) = Ũ . Then the domain composed of W̃ –
0 W0, W0Ũ , ˜UŨ and UW –

0

is semi-ring. It is obvious that I(W0Ũ) ⊆ UW –
0 . By Lemma 2.6, there is an order-1 periodic

solution which is initiated from UW –
0 (see Fig. 8(c)). �

Now, we will consider the stability of the order-1 periodic solution for system (1.3).

Lemma 3.4 (Analog of Poincaré criterion [10, 11, 15]) The T-periodic solution x = ξ (t),
y = η(t) of the system

⎧
⎨

⎩

dx
dt = P(x, y), dy

dt = Q(x, y), if φ(x, y) �= 0,

�x = I1(x, y), �y = I2(x, y), if φ(x, y) = 0,
(3.5)

is orbitally asymptotically stable, where P, Q are continuous differentiable functions and φ

is a sufficiently smooth function with ∇φ �= 0, if the Floquet multiplier μ such that |μ| < 1,
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where

μ =
n∏

j=1

κj exp

{∫ T

0

[
∂P(ξ (t),η(t))

∂x
+

∂Q(ξ (t),η(t))
∂y

]

dt
}

(3.6)

with

κj =
( ∂I2

∂y
∂φ

∂x – ∂I2
∂x

∂φ

∂y + ∂φ

∂x )P+ + ( ∂I1
∂x

∂φ

∂y – ∂I1
∂y

∂φ

∂x + ∂φ

∂y )Q+
∂φ

∂x P + ∂φ

∂y Q
(3.7)

and P, Q, ∂I1
∂x , ∂I1

∂y , ∂I2
∂x , ∂I2

∂y , ∂φ

∂x , ∂φ

∂y are calculated at the point (ξ (τj),η(τj)), P+ = P(ξ (τ+
j ),

η(τ+
j )), Q+ = Q(ξ (τ+

j ),η(τ+
j )), and τj is the time of the jth jump.

Theorem 3.4 Let (X(t), V (t)) be the order-1 periodic solution of system (1.3) with period T .
If g ′(x) ≥ g(x)

x for x > 0, and

∣
∣
∣
∣
v0 – (1 – q)V (T)

ω0 – V (T)

∣
∣
∣
∣
g(h̄)h
g(h)h̄

< 1, (3.8)

then (X(t), V (t)) is orbitally asymptotically stable, where V (T) is the load of virus when
X(T) = h.

Proof Suppose that (X, V ) intersects the sections M and N at points O(h, V (T)) and
O+(h̄, (1 – q)V (T)), respectively.

Rewriting the system (1.3) as the form of (3.5) gives

P(x, v) = f (x) – vg(x), Q(x, v) = v
[
g(x) – a

]
,

I1(x, v) = τ – px, I2(x, v) = –qv, φ(x, v) = x – h

and

∂P
∂x

= f ′(x) – vg ′(x),
∂Q
∂v

= g(x) – a,
∂I1

∂x
= –p,

∂I2

∂v
= –q,

∂φ

∂x
= 1,

∂I1

∂v
=

∂I2

∂x
=

∂φ

∂v
= 0.

Then it follows from (3.7) that

κ1 =
( ∂I2

∂v
∂φ

∂x – ∂I2
∂x

∂φ

∂v + ∂φ

∂x )P+ + ( ∂I1
∂x

∂φ

∂v – ∂I1
∂v

∂φ

∂x + ∂φ

∂v )Q+
∂φ

∂x P + ∂φ

∂v Q

=
(1 – q)[f (h̄) – g(h̄)(1 – q)V (T)]

f (h) – g(h)V (T)
. (3.9)
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Since f ′(x) < 0 and g ′(x) ≥ g(x)
x for x > 0, we have

∫ T

0

∂P(X, V )
∂X

dt

=
∫ T

0

[
f ′(X(t)

)
– V (t)g ′(X(t)

)]
dt

<
∫ T

0

f (X(t)) – V (t)g(X(t))
X(t)

dt =
∫ h

h̄

dx
x

= ln
h
h̄

. (3.10)

Moreover,

∫ T

0

∂Q(X, V )
∂V

dt =
∫ T

0

(
g
(
X(t)

)
– a

)
dt =

∫ V (T)

(1–q)V (T)

dv
v

= ln
1

1 – q
. (3.11)

Hence,

exp

{∫ T

0

[
∂P(X, V )

∂X
+

∂Q(X, V )
∂V

]

dt
}

< exp

{

ln
h
h̄

+ ln
1

1 – q

}

=
h

(1 – q)h̄
. (3.12)

Therefore, from (3.8), (3.9) and (3.12), we have

|μ| <
∣
∣
∣
∣
(1 – q)[f (h̄) – g(h̄)(1 – q)V (T)]

f (h) – g(h)V (T)

∣
∣
∣
∣

h
(1 – q)h̄

=
∣
∣
∣
∣
v0 – (1 – q)V (T)

ω0 – V (T)

∣
∣
∣
∣
g(h̄)h
g(h)h̄

< 1,

which implies the order-1 periodic solution (X(t), V (t)) is orbitally asymptotically stable.
�

4 Example
Choosing f (x) = λ – dx and g(x) = βx, we obtain the following model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx
dt = λ – dx – βxv,
dv
dt = βxv – av,

⎫
⎬

⎭
x > h,

�x(t) = τ – px(t),

�v(t) = –qv(t),

⎫
⎬

⎭
x = h,

(4.1)

where d is the natural death rate of uninfected cells; β represents the rate at which an
uninfected cell contacted by virus. It is not difficult to compute that n = λ

d , m = a
β

. If λβ >
ad, then m < n and the system possesses one positive equilibrium E1 = (x∗, v∗) = ( a

β
, λβ–ad

aβ
),

which is asymptotically stable. The region

Ω =
{

(x, v)
∣
∣
∣x > 0, v > 0, x + v ≤ λ

a
+

λ

d

}

is positive invariant. Further, the characteristic points are

P0(h̄, v0), W0(h,ω0), Th(h, th), Th̄(h̄, th̄)
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with

v0 =
λ – dh̄

βh̄
, ω0 =

λ – dh
βh

, th =
λ

a
+

λ

d
– h, th̄ =

λ

a
+

λ

d
– h̄.

Assume that λβ > ad. According to Theorems 3.1–3.3 and Corollary 3.1, we have the fol-
lowing results.

Proposition 4.1 If a
β

< h, then there must exist an order-1 periodic solution for (4.1). Ad-
ditionally, if 1 – q < th̄

th
, then the order-1 periodic solution lies below the line x + v ≤ λ

a + λ
d .

Proposition 4.2 Suppose h < a
β

< h̄ holds. We have
(i) if λ–dh

βh > λ
a + λ

d – h, then there is no order-1 periodic solution lies below the line
x + v ≤ λ

a + λ
d ;

(ii) if O+
N (P0) �= ∅ and 1 – q <

λ
a + λ

d –h̄
λ
a + λ

d –h
, then there must exist an order-1 periodic solution

below the line x + v ≤ λ
a + λ

d for (4.1).

Moreover, g(x) = βx shows that g ′(x) ≥ g(x)
x . Suppose (X(t), V (t)) is an order-1 periodic

solution of system (4.1). According to Theorem 3.4, we have the following.

Proposition 4.3 If

∣
∣
∣
∣
λ – dh̄ – (1 – q)V (T)]

λ – dh – V (T)

∣
∣
∣
∣ < 1, (4.2)

then the order-1 periodic solution of system (4.1) is orbitally asymptotically stable, where
V (T) is the load of virus when X(T) = h.

To verify the conditions of Propositions 4.1–4.3, we choose global parameters p = 0.1,
τ = 0.5 and h = 3.5, which implies h̄ = 3.65.

When λ = 8, a = 0.1, d = 0.4, β = 0.05, q = 0.5, we have x∗ = 2 < 3.5 = h. It is easy to
computer the characteristic value v0 = 35.8356, ω0 = 37.7143, th = 56.5 and th̄ = 56.35.
Obviously, 1 – q = 0.5 < th̄

th
= 0.9973. Numerical simulation gives ṽ0 = 38.9002 and the

periodic solution initiated from (3.65, 19.5478) such that V (T) = 39.0939. Substituting
V (T) = 39.0939 into (4.2), it is verified that |μ| = 0.4003 < 1. Thus the conditions of Propo-
sition 4.1 and Proposition 4.3 hold. Figures 9(a) and 9(b) illustrate the existence and sta-
bility of order-1 periodic solution for (4.1), respectively.

Let λ = 0.6, a = 0.053, d = 0.01, β = 0.015, q = 0.7. Then x∗ = 3.533 > 3.5, v0 = 10.2922,
ω0 = 10.7619, th = 67.8208, th̄ = 67.6708. Obviously 1 – q = 0.3 < th̄

th
= 0.9978. Numerical

simulation shows that O+
N (P0) �= ∅ and there is an order-1 periodic solution which initiates

from (3.65, 3.2535) and V (T) = 10.8476. Similarly, substituting V (T) = 10.8476 into (4.2),
it is verified that |μ| = 0.0085 < 1. Thus the second condition in Proposition 4.2 and the
conditions in Proposition 4.3 hold. The numerical simulations are presented by Figs. 10(a)
and 10(b).
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Figure 9 λ = 8, d = 0.4, β = 0.05, a = 0.1, q = 0.5 and x∗ < h

Figure 10 λ = 0.6, d = 0.01, β = 0.015, a = 0.053, q = 0.7 and h < x∗ < h̄

5 Conclusion and discussion
Theoretically, we are aiming to establish some criteria for the existence of order-1 periodic
solution based on the Bendixson domain types. Lemmas 2.5 and 2.6 can be extended to
other models.

From the biological point of view, we are aiming to control the system when E1 is asymp-
totically stable since the natural state may lead to a disaster. We hope that the impulsive
treatment can improve the natural state.

In the case x∗ < h, by Theorem 3.1, the impulsive treatment can prevent the deterioration
since there always exists an order-1 periodic solution between M and N . Further, when
1 – q < v0

ṽ0
, the periodic solution lies in a sub-parallel domain. The periodic solution lies in

a parallel domain while 1 – q > v0
ṽ0

. Obviously, the former is superior to the latter because
of the lower load of v and higher load of x. As is shown in Corollary 3.1, if 1 – q < th̄

th
, the

periodic solution will lie under the line x + v = f (0)
a + n. Therefore, we hold that 1 – q is the

smaller the better.
In the case h < x∗ < h̄, if ω0 > th and the initiate value of v is small enough, then there is

no need to control the system in the sense that any trajectory cannot cross the line x = h
or the natural state is superior to the critical state; if ω0 < th and O+

M(P0) �= ∅, then it is
necessary to take the measure and let 1 – q < th̄

th
, so that there exist an order-1 periodic
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solution that lies in Ω ; if ω0 < th and O+
M(P0) = ∅, as long as the impulsive point in N is

close enough to P0, the impulsive control can prevent the trajectories from crossing the
line x = h. This also contributes to the fulfillment of the condition (3.8).
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