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Abstract
In this paper, we investigate the asymptotic behavior for a kind of resource
competition model with environmental noises. Considering the impact of white
noise on birth rate and death rate separately, we first prove the existence of a positive
solution, and then a sufficient condition to maintain permanence and extinction is
obtained by using a proper Lyapunov functional, stochastic comparison theorem,
strong law of large numbers for martingales, and several important inequalities.
Furthermore, the stochastic final boundedness and path estimation are studied.
Finally, the fact that the intensity of white noise has a very important influence on the
permanence and extinction of the system’s solution is illustrated by some numerical
examples.
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1 Introduction
As we all know, the classical Lotka–Volterra model can well describe the competition
among different populations, thus it has been one of the most important models in the
field of mathematical ecology. In recent decades, it was found that the Lotka–Volterra
model can do nothing about forecasting except portraying the densities of the interactive
population, thus also cannot describe the competitive mechanism. The Lotka–Volterra
model can only do feedback estimation by the result of competition and cannot properly
estimate the important α and β parameters before the competition. During the mid-1970s,
a competitive theory based on competition for resources was developed stimulated by dis-
satisfaction with the classical theory, the so-called resource competition model. Based on
the Monod model, this model mainly focuses on the dynamical behavior while multiple
populations compete for multiple resources. Tilman et al. established different consumer–
resource models in [1, 2]; from then on, a large number of articles emerged, especially dur-
ing the recent two or three decades (see [3–6]). Based on Tillman’s theory, scholars also
proposed a new method that predicted the final competition results by using resource
requirement among competing populations. However, owing to the complexity of com-
petition among populations, that theory is still not perfect. Nowadays, the minimum re-
quirements competition theory of Tillman’s is still popular. The theory considers that the
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final winner will be that population which has the minimum resource requirements. While
the relative growth rate of a population is the minimum function of resources, it enhances
the difficulty of research. Many researchers focused on the competition between two pop-
ulations and one resource. Hsu [7] considered the disturbances from the opponents com-
peting for resources and pointed out that the final winner among the predators depends
on its initial population size. In 1999, Huisman (see [8]) went on studying the model es-
tablished by Tillman in 1977. He pointed out that it was competition for resources that led
to the bio-diversity, thereby studying the resources’ competition model was obvious and
essential. Smith et al. (see [9]) proved, by using matrix theory, that there is no equilibrium
point provided the population size exceeds the number of resources, while also consider-
ing that the relative mortality was equal to the transform rate among resources. There are
many other works about this problem (see [10–15]).

At present, many researches of resources’ competition models are published in various
ecology journals, that is to say, many researches are still based on experiment, while their
theoretical results are scarce. Actually, the resources’ competition theory proposed by Till-
man came from a laboratory chemostat cultivation and focused on the chemostat system
which is still being studied. The model is as follows:

dR
dt

= D(S – R) –
μmRN

(K + R)Y
,

dN
dt

= N
(

μmRN
K + R

– D
)

, (1)

where R is the density of nutrients in the system, D is the dilution rate or the input rate of
nutrients, S denotes the supply of nutrients or resources, μm denotes the maximum birth
rate, N denotes the population density or size, K denotes the half-saturation constant, i.e.,
the amount of nutrients while the birth rate is half of μm, Y is the size of the produced
population for individual units. There have been many results on this kind for chemo-
stat models (see [16–19]). In order to better match up the reality, Tillman generalized the
original model to have n populations and k nutrients (resources). The specific model is as
follows [20]:

dNi(t)
dt

= Ni(t)
(
μi(R1, R2, . . . , Rk) – mi

)
, i = 1, 2, . . . , n, (2)

dRj(t)
dt

= D
(
Sj – Rj(t)

)
–

n∑
i=1

Cjiμi(R1, R2, . . . , Rk)Ni(t), j = 1, 2, . . . , k, (3)

where

μi(R1, R2, . . . , Rk) = min

(
riR1

K1i + R1
,

riR2

K2i + R2
, . . . ,

riRk

Kki + Rk

)
, (4)

Ni denotes the density of population i, ri denotes the maximal growth rate, mi denotes
the relative death rate of population i, Nimi denotes the death rate of population i, Rj de-
notes the amount of the jth available resource, D denotes the transformation rate of the
system, Sj denotes the support of the jth resource, Cji denotes the jth resource that gets
consumed by the ith population,

∑n
i=1 Cjiμi(R1, R2, . . . , Rk)Ni denotes the total consump-

tion by all the populations, DRj denotes the self-consumption rate of the jth resource. The
well-known Monod function in ecology describes the relative birth rate of the population
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which is the function of resources; Kji in the Monod function denotes the corresponding
resources when the population birth rate becomes half of ri. Equation (2) illustrates that
the birth rate of a certain population depends on the resource which has the minimum
support. Equation (3) shows that the amount of the jth resource depends on the support
and consumption of resources.

In [21], Huisman et al. found that there would be several results and chaos when the
number of populations became larger than the number of resources. Therefore, it is very
difficult to study the problem where many populations compete for several resources.
In view of its importance, the authors tried to focus on the asymptotic behavior when
there are n populations competing for k resources. In fact, a biological system is in-
evitably affected by environmental noises (see [22]). May has pointed out that param-
eters in systems exhibited random fluctuations to a greater or lesser extent due to en-
vironmental noises [23]. Thus, it is meaningful to take environmental noises into con-
sideration. The most important parameters for a population ecosystem are the intrin-
sic growth rate (= birth rate μi – death rate mi), so we used the technique of parame-
ter perturbation to examine the effect of environmental noise on intrinsic growth rate:
γi = μi – mi �⇒ (μi + αi1 dB1(t)) – (mi + αi2 dB2(t)). That is, the birth and death rates are
subjected to a normal distribution with means μi and mi. Owing to the complication of the
system, we are only concerned with white noise. For many new conclusions on this kind
of competition model with regime switching or impulsive effect, the readers are referred
to [24–26]. In this paper, we will focus on the following model:

dNi(t) = Ni(t)
(
μi(R1, R2, . . . , Rk) – mi

)
dt

+ αi1Ni(t) dB1(t) – αi2Ni(t) dB2(t), i = 1, 2, . . . , n, (5)

dRj(t) = D
(
Sj – Rj(t)

)
dt –

n∑
i=1

Cjiμi(R1, R2, . . . , Rk)Ni dt

–
n∑

i=1

Cjiαi1Ni(t) dB1(t), j = 1, 2, . . . , k, (6)

where αi1 and αi2 (i = 1, 2, . . . , n) are all positive constants, and the rest are the same as in
the former system. The system is understood in Itô rather than Stratonovich sense. As we
all know, equations in Stratonovich sense are usually used in physics, while Itô equations
are always used in mathematics, especially when the most widely used Euler scheme to find
a numerical solution is employed. Itô approach can give an explicit function of the current
coordinate, whereas Stratonovich approach yields SDEs with implicit solution functions.
All in all, we still use Itô equations in this paper.

Seeing the complication of the stochastic model, only the white noise is considered.
This paper consists of several parts: the existence of solution is studied in Sect. 2, the
stochastic final boundedness is discussed in Sect. 3, path estimation is studied in Sect. 4,
the persistence and extinction are finally discussed in Sect. 5.

2 Existence of positive solutions
Theorem 1 For any given initial condition (Ni(0), Rj(0)) ∈ Rn

+ × Rk
+ (i = 1, 2, . . . , n; j =

1, 2, . . . , k), there exists a unique solution (N(t), R(t)) (where (N(t) = (N1(t), N2(t), . . . ,
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Nn(t)), R(t) = (R1(t), R2(t), . . . , Rk(t))) for system (5)–(6), and this solution remains in Rn
+ ×Rk

+

with probability 1.

Proof Considering that the coefficients satisfy a local Lipchitz condition, there exists a
unique local saturated solution (N(t), R(t)), t ∈ [0, τe) based on the given condition, where
τe is the exploration time. In order to prove that the solution is a global solution, τe = ∞
a.s. is needed. Let m0 be large enough, such that (Ni(0), Rj(0)) ∈ [m–1

0 , m0] (i = 1, 2, . . . , n; j =
1, 2, . . . , k). Then for any m ≥ m0, we define a stopping time

τm = inf
{

t ∈ [0, τe) : min
1≤i≤n;1≤j≤k

{
Ni(t), Rj(t)

} ≤ m–1 or max
1≤i≤n;1≤j≤k

{
Ni(t), Rj(t)

} ≥ m
}

,

where inf∅ = ∞. Based on comparison theory, the following will be deduced under the
condition t ≤ τe:

Ni(t) ∨ Rj(t) ≤ C1, C1 > 0. (7)

Obviously, τm is a monotonically increasing function of m. Let τ∞ = limm→∞ τm, and we
define a twice differentiable function V : Rn

+ → R+ as follows:

V (Ni, Rj) =
n∑

i=1

(
Ni(t) – bi – bi ln

Ni(t)
bi

)
–

k∑
j=1

(
Rj(t) – aj – aj ln

Rj(t)
aj

)
,

where aj (1 ≤ j ≤ k), bi (1 ≤ i ≤ n) are all positive constants to be defined. Then,

dV =
n∑

i=1

(
1 –

bi

Ni(t)

)
dNi +

k∑
j=1

(
1 –

aj

Rj(t)

)
dRj +

1
2

n∑
i=1

bi

N2
i

(dNi)2 +
1
2

k∑
j=1

aj

R2
j

(dRj)2

≤
n∑

i=1

(
1 –

bi

Ni(t)

)(
μi(R1, R2, . . . , Rk) – mi

)
dt

+
k∑

j=1

(
1 –

aj

Rj(t)

)[
D

(
Sj – Rj(t)

)
–

k∑
j=1

n∑
i=1

Cjiμi(R1, R2, . . . , Rk)Ni

]
dt

+
1
2

n∑
i=1

bi
(
α2

i1 + α2
i2
)

dt +
k∑

j=1

n∑
i=1

ajC2
jiα

2
i1 dt

+
n∑

i=1

(
1 –

bi

Ni(t)

)(
αi1Ni dB1(t) – αi2Ni dB2(t)

)

≤
n∑

i=1

Ni(t)μi(R1, R2, . . . , Rk) dt +
n∑

i=1

bimi dt –
n∑

i=1

Ni(t)mi dt

–
n∑

i=1

biμi(R1, R2, . . . , Rk) dt +
k∑

j=1

DSjdt +
k∑

j=1

Dajdt

–
k∑

j=1

n∑
i=1

Cjiμ(R1, R2, . . . , Rk)Ni dt +
k∑

j=1

n∑
i=1

aj

Rj(t)
Cjiμi(R1, R2, . . . , Rk)Ni dt
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+
1
2

n∑
i=1

bi
(
α2

i1 + α2
i2
)

dt +
k∑

j=1

n∑
i=1

ajC2
jiα

2
i1 dt –

n∑
i=1

k∑
j=1

(
1 –

aj

Rj

)
Cjiαi1Ni dB1(t)

+
n∑

i=1

(
1 –

bi

Ni(t)

)(
αi1Ni dB1(t) – αi2Ni dB2(t)

)
.

Let

LV :=
n∑

i=1

Ni(t)μi(R1, R2, . . . , Rk) +
n∑

i=1

bimi –
n∑

i=1

Ni(t)mi –
n∑

i=1

biμi(R1, R2, . . . , Rk)

+
k∑

j=1

DSj +
k∑

j=1

Daj –
k∑

j=1

n∑
i=1

Cjiμ(R1, R2, . . . , Rk)Ni

+
k∑

j=1

n∑
i=1

aj

Rj(t)
Cjiμi(R1, R2, . . . , Rk)Ni

+
1
2

n∑
i=1

bi
(
α2

i1 + α2
i2
)

+
k∑

j=1

n∑
i=1

ajC2
jiα

2
i1.

For any 1 ≤ i ≤ n, 1 ≤ j ≤ k, we choose proper aj and bi such that

n∑
i=1

Ni(t)μi(R1, R2, . . . , Rk) –
n∑

i=1

biμi(R1, R2, . . . , Rk) ≤ 0, (8)

and

–
k∑

j=1

n∑
i=1

Cjiμ(R1, R2, . . . , Rk)Ni +
k∑

j=1

n∑
i=1

aj

Rj(t)
Cjiμi(R1, R2, . . . , Rk)Ni ≤ 0,

then from (7), we know that when t ≤ τe, there exists a K̄ > 0, such that

LV ≤ K̄ ,

thus

dV (Ni, Rj) ≤ K̄ dt +
n∑

i=1

(
1 –

bi

Ni(t)

)(
αi1Ni dB1(t) – αi2Ni dB2(t)

)

–
n∑

i=1

k∑
j=1

(
1 –

aj

Rj

)
Cjiαi1Ni dB1(t).

Integrating from 0 to τm ∧ T , one obtains

E
[
V

(
Ni(τm ∧ T), Rj(τm ∧ T)

)] ≤ V
(
Ni(0), Rj(0)

)
+ K̄T .

Owing to

V
(
Ni(τm,ω), Rj(τm,ω)

) ≥ min
1≤j≤k

{
m – aj – aj ln

m
aj

,
1
m

– aj – aj ln
1

maj

}
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∧ min
1≤j≤n

{
m – bi – bi ln

m
bi

,
1
m

– bi – bi ln
1

mbi

}
,

we obtain

V
(
Ni(0), Rj(0)

)
+ K̄T ≥ E

[
1τk≤T (ω)V

(
Ni(τm,ω), Rj(τm,ω)

)]

≥ P{τm ≤ T}
(

min
1≤j≤k

{
m – aj – aj ln

m
aj

,
1
m

– aj – aj ln
1

maj

}

∧ min
1≤i≤n

{
m – bi – bi ln

m
bi

,
1
m

– bi – bi ln
1

mbi

})
,

where 1τm≤T is the characteristic function of the set {τm ≤ T}. Letting m → ∞, it is easy
to see that

lim
m→∞ P{τm ≤ T} = 0,

that is,

P{τ∞ ≤ T} = 0,

and then for any T > 0, P{τ∞ < ∞} = 0. Therefore, P{τm = ∞} = 1 is obtained. �

3 Stochastic final boundedness of the system solutions
Definition 1 If for any ε ∈ (0, 1), there exists a positive constant Ĥ = Ĥ(ε) such that for
any given initial condition (N(0), R(0)), the solution (N(t), R(t)) of system (5)–(6) satisfies

lim sup
t→∞

P
{∣∣N(t)

∣∣ ≤ Ĥ
} ≥ 1 – ε,

lim sup
t→∞

P
{∣∣R(t)

∣∣ ≤ Ĥ
} ≥ 1 – ε,

then the solution of system (5)–(6) is said to be stochastically finally bounded, where
N(t) = (N1(t), N2(t), . . . , Nn(t)), R(t) = (R1(t), R2(t), . . . , Rk(t)).

Remark 1 For any resource, Rj(t) ≤ Sj (1 ≤ j ≤ k), so it is reasonable to consider the bound-
edness of resource R(t).

Lemma 1 Let θ ∈ (0, 1), D̄ = min1≤i≤n{D, mi}, γ = D̄ + 1
2 (1 – θ ) max1≤i≤n{α2

i2} > 0. Then for
any ξ ∈ (0,γ θ ), there exists Ĥ > 0, such that the solution of system (5)–(6) satisfies

lim sup
t→∞

E
∣∣R(t)

∣∣θ ≤ k
θ
2
θĤ
ξ

, (9)

lim sup
t→∞

E

( n∑
i=1

|Ni|θ
)

≤ ( θĤ
ξ

)θ∑k
j=1(

∑n
i=1 |Cji| θ

θ–1 )θ–1
. (10)

Proof From system (5)–(6), we can see that

dRj +
n∑

i=1

Cji dNi = D(Sj – Rj) dt –
n∑

i=1

CjiNimi dt –
n∑

i=1

Cjiαi2Ni dB2. (11)
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Let

yj = Rj +
n∑

i=1

CjiNi, (12)

and for any θ ∈ (0, 1) define

V
(
N(t), R(t)

)
=

k∑
j=1

yθ
j . (13)

Then

dV
(
N(t), R(t)

)
= LV + θ

k∑
j=1

yθ–1
j

n∑
i=1

Cjiαi2Ni dB2, (14)

where

LV = θ

k∑
j=1

yθ–1
j

[
D(Sj – Rj) dt –

n∑
i=1

CjiNimi

]
1
2
θ (θ – 1)

k∑
j=1

yθ–2
j

n∑
i=1

C2
jiN

2
i α2

i2

≤ θ

k∑
j=1

yθ–2
j

[
–D̄y2

j + DSjyj +
1
2

(θ – 1) max
1≤i≤n

{
α2

i2
}

y2
j

]

= θ

k∑
j=1

yθ–2
j

[
–
(

D̄ +
1
2

(1 – θ ) max
1≤i≤n

{
α2

i2
})

y2
j + DSjyj

]

:= θ

k∑
j=1

yθ–2
j

[
–γ y2

j + DSjyj
]
,

with D̄ = min1≤i≤n{D, mi}, and from lemma assumptions we know that γ = D̄ + 1
2 (1 –

θ ) max1≤i≤n{α2
i2} > 0. Hence for any ξ ∈ (0,γ θ ), from Itô formula, we obtain

d
(
eξ tV

(
N(t), R(t)

))
= eξ t(ξV + LV ) dt + θeξ t

k∑
j=1

yθ–1
j

n∑
i=1

CjiNiαi2 dB2, (15)

where

eξ t(ξV + LV ) ≤ ξeξ t
k∑

j=1

yθ
j + eξ tθ

k∑
j=1

yθ–2
j

[
–γ y2

j + DSjyj
]

= θeξ t
k∑

j=1

yθ–2
j

[
ξ

θ
y2

j – γ y2
j + DSjyj

]

= θeξ t
k∑

j=1

yθ–2
j

[(
ξ

θ
– γ

)
y2

j + DSjyj

]
.
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Thus, there exists a positive constant Ĥ such that

eξ t(ξV + LV ) ≤ θeξ tĤ .

So

d(eξ tV
(
N(t), R(t)

) ≤ θeξ tĤ dt + θeξ t
k∑

j=1

yθ–1
j

n∑
i=1

CjiNiαi2 dB2. (16)

Integrating (16) from 0 to t and taking expectation, we obtain

etE
(
V

(
N(t), R(t)

)) ≤ V
(
N(0), R(0)

)
+

θĤ
ξ

eξ t –
θĤ
ξ

,

that is,

E
(
V

(
N(t), R(t)

)) ≤
(

V
(
N(0), R(0)

)
–

θĤ
ξ

)
e–ξ t +

θĤ
ξ

.

So

lim sup
t→∞

E

( k∑
j=1

yθ
j

)
≤ θĤ

ξ
.

Also because

|y|2 ≤ k max
1≤j≤k

y2
j ,

the following inequality holds:

|y|θ ≤ k
θ
2 max

1≤j≤k
yθ

j ≤ k
θ
2 V

(
N(t), R(t)

)
.

Therefore,

lim sup
t→∞

E
∣∣R(t)

∣∣θ ≤ lim sup
t→∞

E
∣∣y(t)

∣∣θ ≤ k
θ
2
θĤ
ξ

. (17)

Also when 0 < θ < 1, one has

n∑
i=1

CjiNi ≥
( n∑

i=1

|Ni|θ
) 1

θ
( n∑

i=1

|Cji| θ
θ–1

) θ–1
θ

.

Then from (17), we obtain

( n∑
i=1

|Ni|θ
) 1

θ k∑
j=1

( n∑
i=1

|Cji| θ
θ–1

) θ–1
θ

≤
k∑

j=1

|yj|θ ≤ θĤ
ξ

. (18)

The conclusion then follows by taking expectations of both sides of (17). �
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Theorem 2 System (5)–(6) is stochastically finally bounded.

Proof From (9), we know that there exists one positive constant K1 such that

lim sup
t→∞

E
(√

R(t)
) ≤ K1. (19)

For any ε > 0, let H̄ = K2
1

ε2 . Then the following can be obtained by using Chebyshev inequal-
ity:

P
{∣∣R(t)

∣∣ > H̄
} ≤ E(

√
R(t))√
H̄

.

Therefore,

lim sup
t→∞

P
{∣∣R(t)

∣∣ > H̄
} ≤ K1√

H̄
= ε,

that is,

lim sup
t→∞

P
{∣∣R(t)

∣∣ ≤ H̄
} ≥ 1 – ε.

From (10), there exists a positive constant K2 such that

lim sup
t→∞

E
(√

N(t)
) ≤ K2. (20)

We can use the same method to prove that N(t) is also stochastically finally bounded. �

4 Path estimation of the system solutions
Theorem 3 For any given initial value (Ni(0), Rj(0)) ∈ Rn

+ × Rk
+ (1 ≤ i ≤ n; 1 ≤ j ≤ k), the

solution of system (5)–(6) satisfies

lim
t→∞

Rj(t)
t

=
Ni(t)

t
= 0 a.s. (21)

Proof Let y(t) =
∑k

j=1(Rj(t) +
∑n

i=1 CjiNi(t)). We also define

W (y) = (1 + y)η, (22)

where η is a positive real number to be determined. By using Itô formula, we obtain

dW (y) = LW (y) – η(1 + y)η–1
k∑

j=1

n∑
i=1

Cjiαi2Ni dB2, (23)

where

LW (y) = η(1 + y)η–1
k∑

j=1

D
(
Sj – Rj(t)

)
– η(1 + y)η–1

k∑
j=1

n∑
i=1

CjiNimi
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+
1
2
η(η – 1)(1 + y)η–2

k∑
j=1

n∑
i=1

C2
jiα

2
i2N2

i

= η(1 + y)η–2
k∑

j=1

[
D(1 + y)

(
Sj – Rj(t)

)
–

n∑
i=1

CjiNimi

+
1
2

(η – 1)
n∑

i=1

C2
jiα

2
i2N2

i

]
.

Let D̂ = maxi{mi, D}. Then

LW (y) ≤ η(1 + y)η–2
k∑

j=1

[
D̂(1 + y)

(
Sj – Rj(t)

)
–

n∑
i=1

D̂CjiNi

+
1
2

(η – 1)
n∑

i=1

C2
jiα

2
i2N2

i

]

= η(1 + y)η–2

[
D̂(1 + y)

k∑
j=1

Sj – D̂y(1 + y)

+
1
2

(η – 1)
n∑

i=1

C2
jiα

2
i2N2

i

]

= η(1 + y)η–2

[
–D̂y2 + D̂

( k∑
j=1

Sj – 1

)
y + D̂

k∑
j=1

Sj

+
1
2

(η – 1) max
i

{
α2

i2
}

y2

]

= η(1 + y)η–2

{
–
[

D̂ –
(

η – 1
2

∨ 0
)

max
i

{
α2

i2
}]

y2

+ D̂

( k∑
j=1

Sj – 1

)
y + D̂

k∑
j=1

Sj

}
.

Choosing a proper η > 0 such that D̂ – ( η–1
2 ∨ 0) maxi{α2

i2} := γ > 0, we claim that

LW (y) ≤ η(1 + y)η–2

[
–γ y2 + D̂

( k∑
j=1

Sj – 1

)
y + D̂

k∑
j=1

Sj

]
.

For arbitrary ξ ∈ (0,γ η), applying Itô formula, one has

d
[
eξ tW (y)

]
= ξeξ tW (y) dt + eξ t d

(
W (y)

)
=

(
ξeξ tW (y) + eξ tLW (y)

)
dt

– eξ tη(1 + y)η–1
k∑

j=1

n∑
i=1

Cjiαi2Ni dB2,
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where

ξeξ tW (y) + eξ tLW (y)

≤ ξeξ t(1 + y)η + eξ tη(1 + y)η–2

[
–γ y2 + D̂

( k∑
j=1

Sj – 1

)
y + D̂

k∑
j=1

Sj

]

= ηeξ t(1 + y)η–2

[
ξ

η
(1 + y)2 – γ y2 + D̂

( k∑
j=1

Sj – 1

)
y + D̂

k∑
j=1

Sj

]

= ηeξ t(1 + y)η–2

[
–
(

γ –
ξ

η

)
y2 +

(
D̂

( k∑
j=1

Sj – 1

)
+

2ξ

η

)
y + D̂

k∑
j=1

Sj +
ξ

η

]
.

Since ξ ∈ (0,γ η), there exists a positive number J such that

ξeξ tW (y) + eξ tLW (y) ≤ ηJeξ t .

Then

d
[
ξeξ tW (y)

] ≤ ηJeξ t + eξ tη(1 + y)η–1
k∑

j=1

n∑
i=1

Cjiαi2Ni dB2.

Integrating from 0 to t the above inequality, and then taking expectation, we obtain

E
[
ξeξ tW (y)

] ≤ W
(
y(0)

)
+

ηJ
ξ

eξ t –
ηJ
ξ

,

that is,

E
[
W (y)

] ≤
[

W
(
y(0)

)
–

ηJ
ξ

]
e–ξ t +

ηJ
ξ

,

and thus

lim sup
t→∞

E
[(

1 + y(t)
)η] ≤ ηJ

ξ
.

Because the following proof has nothing to do with the stochastic term, and its method is
same as in [19], we omit it. Then

lim
t→∞

y(t)
t

= lim
t→∞

1
t

[ k∑
j=1

(
Rj(t) +

n∑
i=1

CjiNi(t)

)]
= 0 a.s.

For any 1 ≤ i ≤ n, 1 ≤ j ≤ k, due to Ni(t) > 0, Rj(t) > 0, we get

lim
t→∞

Ni(t)
t

= lim
t→∞

Rj(t)
t

a.s.

This completes the proof of Theorem 3. �
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5 Permanence and extinction
In this part, we will discuss the situation when the solution of system (5)–(6) will be per-
manent or extinct under some certain conditions. For the definitions see [27].

Theorem 4 Suppose that the noise intensity satisfies max1≤i≤k{α2
i1 + α2

i2} < 2D. For an ar-
bitrary initial condition (Ni(0), Rj(0)) ∈ Rn

+ × Rk
+, if c max1≤j≤k{Sj} – mi – 1

2 (α2
i1 + α2

i2) < 0
(1 ≤ i ≤ n), then the solution of system (5)–(6) satisfies

lim sup
t→∞

ln Ni(t)
t

≤ c max
1≤j≤k

{Sj} – mi –
1
2
(
α2

i1 + α2
i2
)

< 0 a.s. (1 ≤ i ≤ n),

that is, the solution of system (5)–(6) will exponentially fast become extinct almost surely.
Here c is a positive constant, satisfying max1≤i≤n,1≤j≤k

ri
Kji+Rj

= c.

Proof Integrating from 0 to t both sides of (11) and then dividing by t, we get

1
t

(
Rj +

n∑
i=1

CjiNi(t)

)
–

1
t

(
Rj(0) +

n∑
i=1

CjiNi(0)

)

= D
(

Sj –
1
t

∫ t

0
Rj(s) ds

)
–

n∑
i=1

Cjimi
1
t

∫ t

0
Ni(s) ds

–
n∑

i=1

Cjiαi2
1
t

∫ t

0
Ni(s) dB2,

that is,

1
t

Rj(s) ds +
1
D

n∑
i=1

Cjimi
1
t

∫ t

0
Ni(s) ds = Sj +

αj(t)
D

, (24)

where

αj(t) = –
n∑

i=1

Cjiαi2
1
t

∫ t

0
Ni(s) dB2

+
1
t

(
Rj(0) +

n∑
i=1

CjiNi(0)

)
–

1
t

(
Rj +

n∑
i=1

CjiNi

)
.

Applying Itô formula to (5), we can obtain

d ln Ni =
[
μi – mi –

1
2
(
α2

i1 + α2
i2
)]

dt + αi1 dB1 – αi2 dB2.

Integrating from 0 to t both sides of the above formula and then dividing by t, we get

ln Ni

t
=

1
t

∫ t

0
μi(s) ds – mi –

1
2
(
α2

i1 + α2
i2
)

+
αi1B1

t
–

αi2B2

t
+

ln Ni(0)
t

. (25)
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From assumption and (25), we obtain

ln Ni

t
≤ 1

t
c
∫ t

0
Rj(s) ds – mi –

1
2
(
α2

i1 + α2
i2
)

+
αi1B1

t
–

αi2B2

t
+

ln Ni(0)
t

≤ –
c
D

mi max
1≤j≤k

n∑
l=1

Cjl
1
t

∫ t

0
Nl(s) ds + c max

1≤j≤k
Sj

– mi –
1
2
(
α2

i1 + α2
i2
)

+ βi(t)

= c max
1≤j≤k

Sj –
(

mi +
1
2
(
α2

i1 + α2
i2
))

–
c
D

mi max
1≤j≤k

n∑
l=1

Cjl
1
t

∫ t

0
Nl(s) ds + βi(t),

where βi(t) = c maxj{αj(t)}
D + αi1B1

t – αi2B2
t + ln Ni(0)

t . From Theorem 3 and the law of large num-
bers, we know that, when max1≤i≤n{α2

i1 + α2
i2} < 2D holds, limt→∞ βi(t) = 0 a.s.

From the assumptions of the theorem, we get that for any 1 ≤ i ≤ n, if mi + 1
2 (α2

i1 + α2
i2) >

c max1≤j≤k Sj, and

lim sup
t→∞

ln Ni(t)
t

≤ c max
1≤j≤k

Sj –
(

mi +
1
2
(
α2

i1 + α2
i2
))

< 0 a.s. (1 ≤ i ≤ n), (26)

then

lim
t→∞ Ni(t) = 0 a.s.,

which implies that the solution of system (5)–(6) becomes extinct in probability. �

Remark 2 From (26) we know that population will become extinct when the input of re-
sources tends to zero.

Theorem 5 Assume that the noise intensity satisfies max1≤j≤k{α2
i1 + α2

i2} < 2D. Then for
any given initial condition (Ni(0), Rj(0)) ∈ Rn

+ × Rk
+, if ci min1≤j≤k{Sj} – mi – 1

2 (α2
i1 + α2

i2) > 0
(1 ≤ i ≤ n), system (5)–(6) satisfies

lim inf
t→∞

1
t

∫ t

0
Ni(s) ds ≥ ci min1≤j≤k{Sj} – mi – 1

2 (α2
i1 + α2

i2)
D

> 0 a.s. (1 ≤ i ≤ n),

that is, the solution of system (5)–(6) will be persistent in the mean.

Proof Similarly as in the proof of Theorem 4, we can get

ln Ni

t
=

1
t

∫ t

0
μi

(
R1(s), R2(s), . . . , Rk(s)

)
ds – mi –

1
2
(
α2

i1 + α2
i2
)

+
αi1B1

t
–

αi2B2

t
+

ln Ni(0)
t

. (27)
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Notice that μi(R1, R2, . . . , Rk) = min1≤j≤k{ riRj
Kji+Rj

}, where Kji ≤ Sj, Rj ≤ Sj, so for any 1 ≤ i ≤
n, 1 ≤ j ≤ k,

riRj

Kji + Rj
≥ riRj

2Sj
≥ riRj

2 max1≤j≤k Sj
,

and then

ln Ni

t
≥ ri

2 max1≤j≤k Sj

1
t

∫ t

0
Rj(s) ds – mi –

1
2
(
α2

i1 + α2
i2
)

+
αi1B1

t
–

αi2B2

t
+

ln Ni(0)
t

:= – ci

n∑
i=1

Cjimi
1
t

∫ t

0
Ni(s) ds + ciSj – mi –

1
2
(
α2

i1 + α2
i2
)

+ βi(t)

≥ – D
1
t

∫ t

0
Ni(s) ds + ciSj – mi –

1
2
(
α2

i1 + α2
i2
)

+ βi(t),

where βi(t) = ci minj{αj(t)}
D + αi1B1

t – αi2B2
t + ln Ni(0)

t , ci = riRj
2 max1≤j≤k Sj

.
Using Theorem 3 and the law of large numbers, limt→∞ βi(t) = 0 a.s., whenever

max1≤j≤k{α2
i1,α2

i2} < 2D holds. From Lemma 5.1 of [28], we know that

lim inf
t→∞

1
t

∫ t

0
Ni(s) ds ≥ ciSj – mi – 1

2 (α2
i1 + α2

i2)
D

> 0 a.s. (1 ≤ i ≤ n).

The proof is completed. �

6 Numerical examples
In this section we demonstrate the efficiency of the proposed condition of permanence
and extinction with some illustrative examples.

Example 1 Consider the following two populations competing for two resources:

dN1 = N1(μ1 – m1) dt + α11N1 dB1 – α12N2 dB2,

dN2 = N2(μ2 – m2) dt + α21N1 dB1 – α22N2 dB2,

dR1 =
[
D(S1 – R1) – C11μ1N1 – C12μ2N2

]
dt – C11α11N1 dB1 – C12α21N2 dB1,

dR2 =
[
D(S2 – R2) – C21μ1N1 – C22μ2N2

]
dt – C11α11N1 dB1 – C12α21N2 dB1,

where μ1(R1, R2) = min( r1R1
K11+R1

, r1R2
K21+R2

), μ2(R1, R2) = min( r2R1
K12+R1

, r2R2
K22+R2

).
Let α11 = 0.12, α12 = 0.145, α21 = 0.15, α22 = 0.1, r1 = 0.35, r2 = 0.35, K11 = 0.4, K12 = 0.5,

K21 = 0.3, K22 = 0.5, m1 = 0.5, m2 = 0.5, S1 = 411.5, S2 = 411.35, D = 0.2, C11 = 0.15, C12 =
0.15, C21 = 0.13, C22 = 0.15.

Since

max
1≤i≤2

{
α2

i1 + α2
i2
}

= 0.035 < 2D = 0.4.
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Figure 1 Time evolution of the system in Example 1 with initial condition (1, 400) whenm1 = 0.5,m2 = 0.5

Figure 2 Time evolution of the system in Example 1 with initial condition (1, 400) whenm1 = 0.325,
m2 = 0.315

Figure 1 illustrates that under given initial conditions, i.e., when N1(t) = 1, N2(t) = 1,
R1(t) = 400, R2(t) = 400, Ni(t) (i = 1, 2) will get extinct simultaneously since they satisfy the
extinction condition, while only N2 will become extinct and N1 will stay alive permanently
in Fig. 2.

Let α11 = 0.12, α12 = 0.145, α21 = 0.15, α22 = 0.1, r1 = 0.35, r2 = 0.35, K11 = 0.4, K12 = 0.5,
K21 = 0.3, K22 = 0.5, m1 = 0.325, m2 = 0.315, S1 = 411.5, S2 = 411.35, C11 = 0.15, C12 = 0.15,
C21 = 0.13, C22 = 0.15.

Since

max
1≤i≤2

{
α2

i1 + α2
i2
}

= 0.035 < 2D = 0.4.

Figure 3 illustrates that population N1 will become extinct and N2 will be permanent,
given the initial conditions N1(t) = 1, N2(t) = 1, R1(t) = 400, R2(t) = 400.
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Figure 3 Time evolution of the system in Example 1 with initial condition (1, 400) whenm2 = 0.325,
m1 = 0.315

Figure 4 Time evolution of the system in Example 1 with initial condition (1, 400) whenm1 = 0.5,m2 = 0.315

Let α11 = 0.12, α12 = 0.145, α21 = 0.15, α22 = 0.1, r1 = 0.35, r2 = 0.35, K11 = 0.4, K12 = 0.5,
K21 = 0.3, K22 = 0.5, m1 = 0.5, m2 = 0.315, S1 = 411.5, S2 = 411.35, C11 = 0.15, C12 = 0.15,
C21 = 0.13, C22 = 0.15.

Since

max
1≤i≤2

{
α2

i1 + α2
i2
}

= 0.035 < 2D = 0.4.

Figure 4 illustrates that population N1 and N2 will be both permanent, given the initial
conditions N1(t) = 1, N2(t) = 1, R1(t) = 400, R2(t) = 400.

More precisely, it can be observed that the populations get extinct or will both be per-
manent depending on the relationship between the intensity of environmental noises αi,
death rate mi, transformation rate of system D and supply of resources Si. That is, having
enough resources and a lower death rate is beneficial to the survival of the population (see
Fig. 4), and on the contrary, if there is a high-intensity environmental fluctuation, the pop-
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ulation may suffer extinction (see Figs. 1–3). Thus, the environmental noise may affect the
evolution trend of a population.

7 Conclusion
From a biological point of view, it is an interesting topic to consider the survival of the re-
source competition system with stochastic surrounding noises. In this paper, we suppose
that the birth and death rates of the population system are both influenced by white noises
of different intensity, and then study the stochastic resources’ competition system with n
populations competing for k necessary resources. By using stochastic analysis, stochastic
final boundedness of the ith population, moment boundedness and extinction or perma-
nence under certain conditions in the system (5)–(6) are obtained. It is found that the
requirement of white noise is identical with those in existing results, that is, populations
will get extinct when the noise is very strong. Furthermore, a path estimate of the ith
population is also obtained. For resources’ competition system, the birth rate of the popu-
lation described by the minimum function is indeed affected by the number of resources,
which is compatible with the known theory, in which those who have the least resource
consumption will maintain persistence. However, as we know, there are many different
random perturbations that should be considered, such as the telephone noise, Levy noise,
etc. Due to the complexity of the system with n populations competing for k resources,
in this paper, we only consider the white noise, however, we can consider the Markovian
switching into model (5)–(6) in future, which takes the following form:

dNi(t) = Ni(t)
(
μi

(
ξ (t)

)
– mi

(
ξ (t)

))
dt + αi1

(
ξ (t)

)
Ni(t) dB1(t) – αi2

(
ξ (t)

)
Ni(t) dB2(t),

dRj(t) = D
(
Sj – Rj(t)

)
dt –

n∑
i=1

Cjiμi
(
ξ (t)

)
Ni dt –

n∑
i=1

Cjiαi1
(
ξ (t)

)
Ni(t) dB1(t),

where i = 1, 2, . . . , n, j = 1, 2, . . . , k, ξ (t) is a right-continuous Markov chain on a finite state
space S = 1, 2, . . . , N (for the definition of a Markov chain, the readers can see [29, 30]).
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