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Abstract
This paper is devoted to study the permanence and periodic solution of a
competitive system with infinite delay, feedback control, and the Allee effect. We
derive sufficient conditions for the permanence and existence of a periodic solution
in a competitive system with infinite delay, feedback control, and the Allee effect by
using the differential inequality theory and constructing the Lyapunov function. We
provide explicit estimates of the lower and upper bounds of the population density.
This study reveals that the Allee effect plays an essential role in the permanence and
increases the risk of population extinction.
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1 Introduction
A basic question of theoretical and practical importance in population biology concerns
the long-term survival of each species. Permanence, addressing the long-term survival of
each component of a system, has emerged as the most important notion for the systems
in ecology. Ahmad [1] studied the permanence of the following traditional two-species
nonautonomous Lotka–Volterra system

⎧
⎨

⎩

x′
1(t) = x1(t)[a1(t) – b11(t)x1(t) – b12(t)x2(t)],

x′
2(t) = x2(t)[a2(t) – b21(t)x1(t) – b22(t)x2(t)].

(1.1)

The functions ak(t) and bkj(t) (1 ≤ k, j ≤ 2) defined on (–∞, +∞) are positive continuous
upper bounded and have positive lower bounds. Letting

gL(gM) = inf(sup)
{

g(t) : t ∈ R
}

for each bounded function g : R → R, he showed that one of them will be driven to ex-
tinction whereas the other will stabilize at a certain solution to the corresponding logistic
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equations if the inequalities

a1L > b12M
a2M

b22L
, a2M ≤ b21L

a1L

b11M
(1.2)

hold, that is, there can be no coexistence of the two species.
Under the above conclusion, the permanence of the traditional two-species Lotka–

Volterra system with finite delays is also extended and attracts more and more attention
to mathematics and mathematical biology (Teng [2–4], Zhao and Jiang [5], Chen [6, 7],
Lisena [8], and Muroya [9]).

Oca and Vivas [10] investigated the dynamic behavior of the two-species Lotka–Volterra
system of integro-differential equations with infinite delay

⎧
⎨

⎩

x′
1(t) = x1(t)[a1(t) – b11(t)x1(t) – b12(t)

∫ t
–∞ k1(t – s)x2(s) ds],

x′
2(t) = x2(t)[a2(t) – b21(t)

∫ t
–∞ k2(t – s)x1(s) ds – b22(t)x2(t)].

(1.3)

The parameters are the same as in model (1.1). Oca and Vivas showed that if (1.2) holds,
then the results of [1] still hold for system (1.3) by applying the fluctuation theorem (Tieno
[11] or Hirsch et al. [12]).

The feedback control method of population ecosystem is applied, and many scholars
have studied the stability and persistent adaptation of the ecosystem with feedback control
to accelerate the degraded ecosystem to the equilibrium state or to adjust the equilibrium
state to a new position. Xiao et al. [13] had proposed the following two-species competitive
system with feedback controls:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)[a1(t) – b11(t)x1(t) – b12(t)x2(t) – c1(t)u1(t)],

x′
2(t) = x2(t)[a2(t) – b21(t)x1(t) – b22(t)x2(t) + c2(t)u2(t)],

u′
1(t) = –e1(t)u1(t) + d1(t)x1(t),

u′
2(t) = f (t) – e2(t)u2(t) – d2(t)x2(t).

(1.4)

The functions ai(t), bij(t), ei(t), di(t), fi(t) (i, j = 1, 2) are positive continuous upper
bounded and have positive lower bounds.

According [14], for any positive solution (x1(t), x2(t)) of system (1.3), we have x2(t) → 0
as t → +∞ and x1(t) – x∗(t) → 0 as t → +∞, where x∗(t) is the solution of some logistic
equation. However, this result breaks the equilibrium state of the two-species competitive
system, so it needs to be adjusted by feedback control to make the ecosystem rebalance.

It is well known that the role of feedback control is enabling the ecosystem to reach
and maintain equilibrium or steady state, and the result of feedback is to suppress and
attenuate the changes that occur to the originally changed component.

In [13], the authors searched for certain schemes (such as harvesting procedure) to en-
sure the system to coexist with condition (1.2), where c2(t)u2(t) indicates the size to be
used to make the population x2(t) not extinct, and c2(t) is the proportional coefficient
of input; meanwhile, c1(t)u1(t) is the size that reduces the number of x1(t) by periodic
capture, and c1(t) is the proportional coefficient capture. Population u1(t) has a negative
growth rate of a proportional coefficient e1(t); we adjust it by the proportional coefficient
d1(t) to avoid extinction; f (t) is the initial population size of u2(t), e2(t) acts in the same
way as e1(t), and d2(t) has the same effect as d1(t).
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They showed that assuming, in addition to (1.2), that

a1L –
a2Mb12M

b22L
>

c1Ma1Md1M

e1Lb11L
+

b12Mc2MfM

b22Le2L
,

c2L

e2M

[

fL –
d2Ma2Me2L + d2Mc2MfM

b22Le2L

]

>
a1Mb21M

b11L
– a2L,

(1.5)

system (1.4) is permanent. In other words, by selecting appropriate feedback control vari-
ables, the extinction of species can be kept. We easily find that the additional work associ-
ated with the ecosystem with feedback controls is improved and extended for the present
paper; see [15–27].

In addition, the ecological system is usually affected by seasonal factors, so that the sys-
tem parameters show the changing characteristics of the cycle. Therefore, it is of great
theoretical and practical significance to consider the ecosystem with feedback control and
infinite delay effect and to study its stability and durability. Chen [14] considers the fol-
lowing two-species competitive system with feedback controls and infinite delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)[a1(t) – b11(t)x1(t) – b12(t)

∫ t
–∞ k1(t – s)x2(s) ds

– c1(t)
∫ t

–∞ h1(t – s)u1(s) ds],

x′
2(t) = x2(t)[a2(t) – b21(t)

∫ t
–∞ k2(t – s)x1(s) ds – b22(t)x2(t)

+ c2(t)
∫ t

–∞ h2(t – s)u2(s) ds],

u′
1(t) = –e1(t)u1(t) + d1(t)

∫ t
–∞ k3(t – s)x1(s) ds,

u′
2(t) = f (t) – e2(t)u2(t) – d2(t)

∫ t
–∞ k4(t – s)x2(s) ds.

(1.6)

The parameters in this model are the same as in model (1.4). The delay kernels are non-
negative measurable, where

∫ +∞

0
ki(s) ds = 1,

∫ +∞

0
hi(s) ds = 1, (1.7)

and

ki : [0, +∞) → (0, +∞), i = 1, . . . , 4; hi : [0, +∞) → (0, +∞), i = 1, 2.

They showed that system (1.6) is permanent if there are positive constants α, β such
that

0 < α ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ β < +∞,

0 < α ≤ lim inf
t→+∞ ui(t) ≤ lim sup

t→+∞
ui(t) ≤ β < +∞,

(1.8)

and (1.2) and (1.5) are satisfied.
On the other hand, Allee effects are phenomena in population biology that arise if per-

capita growth rates increase initially with increasing population sizes or densities. The
phenomena were first observed by Allee in the 1930s in [28–30] and have received con-
siderable attention recently due to fragmentation of habitats, invasion of exotic species,



Shi et al. Advances in Difference Equations        (2018) 2018:400 Page 4 of 14

biology control of pest, and so on. A corresponding result of a different Allee effect form is
presented in [31–33]. Moreover, some scholars have been committed to studying the effect
of Allee effect on the persistence of competition systems with infinite delay and feedback
control.

In this paper, the most representative expression of Allee effect is (1 – A+c
x1(t)+c ) [31, 32],

where A is the Allee threshold, A > 0 means the strong Allee effect, and A < 0 means the
feeble Allee effect, c is an auxiliary parameter (c > 0, c ≥ –A); when A + c = 0, the Allee
effect expression value 1 indicates that the species has no Allee effect. The parameter c
affects the growth curve of species, which flattens out as it increases. When x1(t) < A, that
is, the population density of species is less than A, the Allee effect is less than zero, and the
population grows negatively; conversely, when x1(t) > A, the population density of species
is greater than A, the Allee effect is greater than zero, and the population shows a positive
growth trend.

This analysis motivated us to propose the following two-species competitive system with
infinite delay, feedback, and Allee effect:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = x1(t)[a1(t)(1 – b11(t)

a1(t) x1(t))(1 – A+c
x1(t)+c ) – b12(t)

∫ t
–∞ k1(t – s)x2(s) ds

– c1(t)
∫ t

–∞ h1(t – s)u1(s) ds],

x′
2(t) = x2(t)[a2(t) – b21(t)

∫ t
–∞ k2(t – s)x1(s) ds – b22(t)x2(t)

+ c2(t)
∫ t

–∞ h2(t – s)u2(s) ds],

u′
1(t) = –e1(t)u1(t) + d1(t)

∫ t
–∞ k3(t – s)x1(s) ds,

u′
2(t) = f (t) – e2(t)u2(t) – d2(t)

∫ t
–∞ k4(t – s)x2(s) ds.

(1.9)

The parameters are the same as in model (1.6). We consider (1.9) together with the initial
conditions

xi(s) = φi(s), s ∈ (–∞, 0], i = 1, 2,

ui(s) = ψi(s), s ∈ (–∞, 0], i = 1, 2,
(1.10)

where φi,ψi ∈ BC+, and

BC+ =
{
φ ∈ C

((
–∞, 0], [0, +∞))

: φ(0) > 0 and φ is bounded
}

, i = 1, 2.

It is well known that system (1.9) has a unique solution (x1(t), x2(t), u1(t), u2(t)) satisfying
the initial condition (1.10) is said to be positive [34], and xi(t) > 0, ui(t) > 0 for all i = 1, 2.

Although feedback control can help avoid extinction, but the Allee effect of two species
coexist according to it ecological significance. The aim of this paper is to explore the Allee
effect to affect the permanence of the two-species competitive system with feedback con-
trols and infinite delay by using the differential inequality theory and differential equation
comparison principle.

2 Permanence
To investigate the persistence for system (1.9), we introduce the following lemmas. The
following lemma is Lemma 3 of Oca and Vivas [10].
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Lemma 2.1 Let x : R → R be a bounded nonnegative continuous function, and let k :
[0, +∞) → (0, +∞) be a continuous kernel such that

∫ ∞
0 k(s) ds = 1. Then

lim
t→+∞ inf x(t) ≤ lim inf

t→+∞

∫ t

–∞
k(t – s)x(s) ds

≤ lim sup
t→+∞

∫ t

–∞
k(t – s)x(s) ds

≤ lim sup
t→+∞

x(t).

As a direct corollary of Lemma 1.4 of Chen [17], we have the following:

Lemma 2.2 If a > 0, b > 0, ẋ ≥ b – ax, and x(0) > 0, then we have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > 0, b > 0, ẋ ≤ b – ax, and x(0) > 0, then we have

lim sup
t→+∞

x(t) ≤ b
a

.

As a direct corollary of Lemma 2.2 of Chen [35], we have the following:

Lemma 2.3 If a > 0, b > 0, ẋ ≥ x(b – ax), and x(0) > 0, then we have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > 0, b > 0, ẋ ≤ x(b – ax), and x(0) > 0, then we have

lim sup
t→+∞

x(t) ≤ b
a

.

Now, we show that system (1.9) is permanent. From the view point of biology, this im-
plies that the two species will always coexist at any time and any location of the inhabit
domain, no matter what their Allee effect coefficients are.

Theorem 2.1 System (1.9) is permanent if there are positive constants δ, θ (θ > δ > 0) such
that

0 < δ ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ θ < +∞,

0 < δ ≤ lim inf
t→+∞ ui(t) ≤ lim sup

t→+∞
ui(t) ≤ θ < +∞

for any solution (x1(t), x2(t), u1(t), u2(t)) of (1.9) with initial conditions (1.8) and inequalities
(1.2), (1.5) are satisfied. Here the kernels ki(s), i = 1, 2, 3, 4, and hi(s), i = 1, 2, are positive
functions and satisfy (1.7).
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Proof Let (x1(t), x2(t), u1(t), u2(t)) be any positive solution of system (1.9) with initial con-
ditions (1.10). The ecological background and definition of the Allee effect shows that
1 – A+c

x1(t)+c < 1. Clearly, from the first and last equations of system (1.9) we get

x′
1(t) = x1(t)

[
(
a1(t) – b11(t)x1(t)

)
(

1 –
A + c

x1(t) + c

)

– b12(t)
∫ t

–∞
k1(t – s)x2(s) ds – c1(t)

∫ t

–∞
h1(t – s)u1(s) ds

]

≤ x1(t)
[
(
a1(t) – b11(t)x1(t)

)
(

1 –
A + c

x1(t) + c

)]

≤ x1(t)
(
a1(t) – b11(t)x1(t)

)

≤ x1(t)
(
a1M – b11Lx1(t)

)
,

u′
2(t) ≤ fM – e2Lu2(t).

(2.1)

Thus, from Lemmas 2.2 and 2.3 we have

lim sup
t→+∞

x1(t) ≤ a1M

b11L

def= x̄1,

lim sup
t→+∞

u2(t) ≤ fM

e2L

def= ū2.
(2.2)

Evidently, from (2.1) and Lemma 2.1 we have

lim sup
t→+∞

∫ t

–∞
k2(t – s)x1(s) ds ≤ lim sup

t→+∞
x1(t) ≤ x̄1, (2.3)

and

lim sup
t→+∞

∫ t

–∞
h2(t – s)u2(s) ds ≤ lim sup

t→+∞
u2(t) ≤ ū2,

lim sup
t→+∞

∫ t

–∞
k3(t – s)x1(s) ds ≤ lim sup

t→+∞
x1(t) ≤ x̄1.

(2.4)

For any small positive constant ε > 0, from (2.4) it follows that there exists T1 > 0 such
that, for t > T1,

∫ t

–∞
h2(t – s)u2(s) ds ≤ ū2 + ε,

∫ t

–∞
k3(t – s)x1(s) ds ≤ x̄1 + ε.

(2.5)

Inequality (2.5), together with the second and third equations of system (1.9), leads to

x′
2(t) ≤ x2(t)

[
a2M + c2M(ū2 + ε) – b22Lx2(t)

]
,

u′
1(t) ≤ –e1Lu1(t) + d1M(x̄1 + ε).

(2.6)
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Again, applying Lemmas 2.2 and 2.3 to (2.6), we obtain

lim sup
t→+∞

x2(t) ≤ a2M + c2M(ū2 + ε)
b22L

,

lim sup
t→+∞

u1(t) ≤ d1M(x̄1 + ε)
e1L

.

Setting ε → 0 in these inequalities, we get

lim sup
t→+∞

x2(t) ≤ a2M + c2Mū2

b22L

def= x̄2,

lim sup
t→+∞

u1(t) ≤ d1Mx̄1

e1L

def= ū1.
(2.7)

Thus, from (2.7) and Lemma 2.1 we easily have that

lim sup
t→+∞

∫ t

–∞
ki(t – s)x2(s) ds ≤ lim sup

t→+∞
x2(t) ≤ x̄2, i = 1, 4,

lim sup
t→+∞

∫ t

–∞
h1(t – s)u1(s) ds ≤ lim sup

t→+∞
u1(t) ≤ ū1.

(2.8)

For any small positive constant ε > 0, from (2.8) it follows that there exists T2 > T1 such
that, for t > T2,

∫ t

–∞
ki(t – s)x2(s) ds ≤ x̄2 + ε, i = 1, 4,

∫ t

–∞
h1(t – s)u1(s) ds ≤ ū1 + ε.

(2.9)

Hence, for t > T2, inequality (2.9), together with the first and last equations of system
(1.9), leads to

x′
1(t) = x1(t)

[
(
a1(t) – b11(t)x1(t)

)
(

1 –
A + c

x1(t) + c

)

– b12(t)
∫ t

–∞
k1(t – s)x2(s) ds – c1(t)

∫ t

–∞
h1(t – s)u1(s) ds

]

≥ x1(t)
[
(
a1(t) – b11(t)x1(t)

)
–

(
a1(t) – b11(t)x1(t)

)
(

A + c
x1(t) + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)
]

= x1(t)
[
(
a1(t) – b11(t)x1(t)

)
– a1(t)

(
A + c

x1(t) + c

)

+ b11(t)x1(t)
(

A + c
x1(t) + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)
]

= x1(t)
[
(
a1(t) – b11(t)x1(t)

)
– a1(t)

(

A – A +
A + c

x1(t) + c

)

+ b11(t)x1(t)

·
(

A + c
x1(t) + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)
]



Shi et al. Advances in Difference Equations        (2018) 2018:400 Page 8 of 14

= x1(t)
[
(
a1(t) – b11(t)x1(t)

)
– a1(t)A + a1(t)

(

A –
A + c

x1(t) + c

)

+ b11(t)x1(t)

·
(

A + c
x1(t) + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)
]

= x1(t)
[

a1(t)(1 – A) – b11(t)x1(t) + a1(t)
(

Ax1(t) + Ac – A – c
x1(t) + c

)

+ b11(t)x1(t)
(

A + c
x1(t) + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)
]

= x1(t)
[

a1(t)(1 – A) + a1(t)
(

Ac – A – c
x1(t) + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)

– b11(t)x1(t) +
(

a1(t)A
x1(t) + c

)

x1(t) + b11(t)x1(t)
(

A + c
x1(t) + c

)]

≥ x1(t)
[

a1L(1 – A) + a1L

(
Ac – A – c

x̄1 + c

)

– b12M(x̄2 + ε) – c1M(ū1 + ε)

–
(

b11M –
(

a1LA
x̄1 + c

)

– b11L

(
A + c
x̄1 + c

))

x1(t)
]

.

Here, from (1.5), without loss of generality, we may choose ε small enough such that

a1L(1 – A) + a1Lb11L( Ac–A–c
a1M+cb11L

) – b12M( e2La2M+c2MfM
e2Lb22L

+ ε) – c1M( d1Ma1M
e1Lb11L

+ ε)

b11M – ( b11La1LA
a1M+cb11L

) – b2
11L( A+c

a1M+cb11L
)

> 0.

Integrating this inequality, we get

a1L(1 – A) + a1L( Ac–A–c
x̄1+c ) – b12M(x̄2 + ε) – c1M(ū1 + ε)

b11M – ( a1LA
x̄1+c ) – b11L( A+c

x̄1+c )
> 0.

Also, because of

u′
2(t) ≥ fL – d2M(x̄2 + ε) – e2Mu2(t), (2.10)

as a conclusion, we have

fL –
d2Ma2Me2L + d2Mc2MfM

b22Le2L
– d2Mε > 0,

Integrating the above inequality, we get

fL – d2M(x̄2 + ε) > 0.

Thus, applying Lemmas 2.2 and 2.3, we have

lim inf
t→+∞ x1(t) ≥ a1L(1 – A) + a1L( Ac–A–c

x̄1+c ) – b12M(x̄2 + ε) – c1M(ū1 + ε)

b11M – ( a1LA
x̄1+c ) – b11L( A+c

x̄1+c )
> 0,

lim inf
t→+∞ u2(t) ≥ fL – d2M(x̄2 + ε)

e2M
> 0.
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Letting ε → 0 in this inequality leads to

lim inf
t→+∞ x1(t) ≥ a1L(1 – A) + a1L( Ac–A–c

x̄1+c ) – b12Mx̄2 – c1Mū1

b11M – ( a1LA
x̄1+c ) – b11L( A+c

x̄1+c )
def= x1 > 0,

lim inf
t→+∞ u2(t) ≥ fL – d2Mx̄2

e2M

def= u2 > 0.

(2.11)

From (2.11) and Lemma 2.1 we obtain

lim inf
t→+∞

∫ t

–∞
h2(t – s)u2(s) ds ≥ lim inf

t→+∞ u2(t) ≥ u2,

lim inf
t→+∞

∫ t

–∞
k3(t – s)x1(s) ds ≥ lim inf

t→+∞ x1(t) ≥ x1.
(2.12)

For any small positive constant ε > 0, from the second inequality of (1.5) we may choose
ε small enough such that

ε <
1
2

min{u2, x1}

and

a2L – b21M(x̄1 + ε) + c2L(u2 + ε) > 0.

For such ε > 0, from (2.3) and (2.12) it follows that there exists T3 > T2 > 0 such that, for
t > T3,

∫ t

–∞
k2(t – s)x1(s) ds ≤ x̄1 + ε,

∫ t

–∞
h2(t – s)u2(s) ds ≥ u2 – ε,

∫ t

–∞
k3(t – s)x1(s) ds ≥ x1 – ε,

(2.13)

Inequality (2.13), together with the second and third equations of system (1.9), leads to

x′
2(t) ≥ x2(t)

[
a2L – b21M(x̄1 + ε) + c2L(u2 – ε) – b22Mx2(t)

]
,

u′
1(t) ≥ –e1Mu1(t) + d1L(x1 – ε).

(2.14)

Again, applying Lemmas 2.2 and 2.3 to (2.6), we obtain

lim inf
t→+∞ x2(t) ≥ a2L – b21M(x̄1 + ε) + c2L(u2 – ε)

b22M
> 0,

lim inf
t→+∞ u1(t) ≥ d1L(x1 – ε)

e1M
> 0.
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There exists small ε → 0 such that

lim inf
t→+∞ x2(t) ≥ a2L – b21Mx̄1 + c2Lu2

b22M

def= x2 > 0,

lim inf
t→+∞ u1(t) ≥ d1Lx1

e1M

def= u1 > 0.
(2.15)

Now, let δ = 1
2 min{xi, ui, i = 1, 2} and θ = 2 max{x̄i, ūi, i = 1, 2}. Then δ, θ are indepen-

dent of any positive solution of system (1.9). Also, from (2.2), (2.7), (2.11), and (2.15) it
immediately follows that

0 < δ ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ θ < +∞,

0 < δ ≤ lim inf
t→+∞ ui(t) ≤ lim sup

t→+∞
ui(t) ≤ θ < +∞.

The above inequality shows that system (1.9) is permanent. �

3 Periodic solution
Theorem 3.1 ([14]) Assume (2.2), (2.7), (2.11) hold. Then

K =
{(

x1(t), x2(t), u1(t), u2(t)
)

: xiL ≤ xi(t) ≤ xiM, uiL ≤ ui(t) ≤ uiM, i = 1, 2
}

is an ultimately bounded region of system (1.9).

In this section, we suppose that system (1.9) is an ω-period system. For X = (x1, x2, u1,
u2) ∈ R4, we define the norm as

‖X‖ = |x1| + |x2| + |u1| + |u2|.

We can define a Poincaré map on K ⊂ R4 (the Banach space with previously defined
norm), and by the Brower fixed-point theorem and Theorem 3.1 we obtain the following:

Theorem 3.2 ([14]) Assume that (2.2), (2.7), (2.11) hold. Then the ω-period system (1.9)
has at least one ω-period solution.

Theorem 3.3 Assume that (2.2), (2.7), (2.11) hold and that there exists positive constants
pi, qi, li, mi (i = 1, 2) such that

q1d1Lx1 > p1

(

–b11L –
b11L(A + c)

x + c

)

+ p2b21Mx̄1,

p2b22L > p1b12Mx2 + q2d2Mx2, q1e1L > p1c1Lu1, q2e2L > p2c2Mū2.

Then system (1.9) has a periodic solution that is globally attractive.

Proof Suppose W (t) = {x1(t), x2(t), u1(t), u2(t)} is any solution of system (1.9) with positive
initial value and W0(t) = {x10(t), x20(t), u10(t), u20(t)} is a strictly positive periodic solution
of system (1.9).
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Consider the Lyapunov function V (t) as follows:

V (t) =
2∑

j=1

[
pj

∣
∣ln xj(t) – ln xj0(t)

∣
∣ + qj

∣
∣uj(t) – uj0(t)

∣
∣
]
.

Calculating the right derivative D+V of V along the solution of (1.9), we get

D+V (t) = D+

{ 2∑

j=1

[
pj

∣
∣ln xj(t) – ln xj0(t)

∣
∣ + qj

∣
∣uj(t) – uj0(t)

∣
∣
]
}

=
{

p1

(

–b11(t) +
(a1(t) – b11(t)(A + c))

x1(t) + c

)

– p2b21(t)D+
(∫ t

–∞
k2(t – s)x1(s) ds

)

+ q1d1(t)D+
(∫ t

–∞
k3(t – s)x1(s) ds

)}

· |x1 – x10|

+
{

–p1b12(t)D+
(∫ t

–∞
k1(t – s)x2(s) ds

)

– p2b22(t) – q2d2(t)D+
(∫ t

–∞
k4(t – s)x2(s) ds

)}

· |x2 – x20|

+
{

–p1c1(t)D+
(∫ t

–∞
h1(t – s)u1(s) ds

)

– q1e1(t)
}

· |u1 – u10|

+
{

p2c2(t)D+
(∫ t

–∞
h2(t – s)u2(s) ds

)

– q2e2(t)
}

· |u2 – u20|

≤
{

p1

(

–b11L –
b11L(A + c)

x + c

)

– p2b21LD+
(∫ t

–∞
k2(t – s)x1(s) ds

)

+ q1d1M

· D+
(∫ t

–∞
k3(t – s)x1(s) ds

)}

· |x1 – x10|

+
{

–p1b12LD+
(∫ t

–∞
k1(t – s)x2(s) ds

)

– p2b22L

– q2d2LD+
(∫ t

–∞
k4(t – s)x2(s) ds

)}

· |x2 – x20|

+
{

–p1c1LD+
(∫ t

–∞
h1(t – s)u1(s) ds

)

– q1e1L

}

· |u1 – u10| +
{

p2c2MD+
(∫ t

–∞
h2(t – s)u2(s) ds

)

– q2e2L

}

· |u2 – u20|

≤
{

p1

(

–b11L –
b11L(A + c)

x + c

)

+ p2b21M(x̄1 + ε) – q1d1L(x1 – ε)
}

· |x1 – x10|

+
{

p1b12M(x2 – ε) – p2b22L + q2d2M(x2 – ε)
} · |x2 – x20|

+
{

p1c1L(u1 – ε) – q1e1L
}

· |u1 – u10| +
{

p2c2M(ū2 + ε) – q2e2L
} · |u2 – u20|

=
{

p1

(

–b11L –
b11L(A + c)

x + c

)

+ p2b21Mx̄1 – q1d1Lx1

}

· |x1 – x10|

+ {p1b12Mx2 – p2b22L + q2d2Mx2} · |x2 – x20| + {p1c1Lu1 – q1e1L}
· |u1 – u10| + {p2c2Mū2 – q2e2L} · |u2 – u20|(ε = 0)
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= –m1|x1 – x10| – m2|x2 – x20| – l1|u1 – u10| – l2|u2 – u20|

≤ –m
2∑

i=1

[|xi – xi0| + |ui – ui0|
]

≤ –m
∥
∥W (t) – W0(t)

∥
∥,

where

m = min{mi, li, i = 1, 2}, m1 = q1d1Lx1 – p1

(

–b11L –
b11L(A + c)

x + c

)

– p2b21Mx̄1,

m2 = {p2b22L – p1b12Mx2 – q2d2Mx2}, l1 = {q1e1L – p1c1Lu1},
l2 = {q2e2L – p2c2Mū2}.

Then V (t) is decreasing on [0,∞); thus 0 ≤ V (t) ≤ V (0), and

lim
t→∞ V (t) = V ∗ ≥ 0, | ln xi| ≤ | ln xi – ln xi0| + | ln xi0| ≤ V (t) + | ln xi0|.

So xi (i = 1, 2) is bounded. By the same reason, we have that ui (i = 1, 2) is bounded.
Hence, W (t) is bounded; by the usual mean value theorem there are positive constants β0,
β1 such that

1
β0

|xi – xi0| + |ui – ui0| ≤ | ln xi – ln xi0| + |ui – ui0| ≤ 1
β1

|xi – xi0| + |ui – ui0| (i = 1, 2).

From this it follows that there are positive constants β2, β3 such that

1
β3

∥
∥W (t) – W0(t)

∥
∥ ≤ V (t) ≤ 1

β2

∥
∥W (t) – W0(t)

∥
∥,

And thus D+V (t) ≤ –mβ2V (t). We claim that V ∗ = 0. Otherwise, V ∗ > 0, and we have
V (t) ≥ V ∗ > 0, so D+V (t) ≤ –mβ2V ∗, and then

V (t) ≤ V (0) – mβ2V ∗ → –∞ (t → ∞).

This contradicts with positivity of V (t), so V ∗ = 0, and we have

0 ≤ lim
t→∞

∥
∥W (t) – W0(t)

∥
∥ ≤ lim

t→∞β3V (t) = 0,

And thus the periodic solution W0(t) is globally attractive. �

4 Discussion
In [14], it was shown that, for infinite delay ecosystem, feedback controls can avoid the
extinction of the species without the Allee effect, and the upper bound of x1(t) is a1M

b11L
,

whereas the lower bound is a1L–b12Mx̄2–c1Mū1
b11M

. This paper introduces the Allee effect, and
we easily prove that the upper bound of x1(t) with Allee effect is invariant, and the lower
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bound is
a1L(1–A)+a1L( Ac–A–c

x̄1+c )–b12Mx̄2–c1Mū1

b11M–( a1LA
x̄1+c )–b11L( A+c

x̄1+c )
. If A = c = 0, then we prove that the lower bound

of x1(t) with Allee effect is equal to the lower bound without Allee effect. By contrast,
the lower bound of x1(t) becomes greater, and then our analysis reveals that the Allee
effect increases the risk of one population extinction and is unfavorable for two species to
achieve persistence.

As well known, the periodic solution is an important topic in the study of dynamics for
differential equations and population models. Weng [36] and Liu [37] studied the periodic
solution to the two-species competitive system with feedback controls. Peng [38], Seifert
[39], and Muhammadhaji [40] studied the periodic solution to the two-species competitive
system with infinite delay and pure delays. Moreover, in this paper, we obtain the periodic
solution of system (1.9), which overcomes some limitations and deficiency of the existing
ones.
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