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Abstract
This paper considers numerical methods for solving the viscous incompressible
steady-state Stokes–Darcy problem that can be implemented by the use of existing
surface water and groundwater codes. In the porous medium problem for subsurface
flow, a mixed discretization, which describes the macroscopic properties of a filtration
process and is vigorous with respect to the variations in the material data, is often
advocated. However, the theory of mixed spacial discretizations to Stokes–Darcy
problems is far less developed than non-mixed versions. We develop herein a new
robust stabilized fully mixed discretization technique in the porous media region
coupled with the fluid region via the physically appropriate coupling conditions on
the interface. The method developed here does not use any Lagrange multiplier and
introduces a stabilization term in the temporal discretization to ensure the stability of
the finite element scheme. The well-posedness of the finite element scheme and its
convergence analysis are also derived. Finally, the efficiency and accuracy of the
numerical methods are illustrated by several testing examples.

Keywords: Stokes–Darcy problem; Mixed finite element; Free flow; Porous media
flow; Stabilized scheme

1 Introduction
Many important applications require accurate solution of multi-domain, multi-physics
coupling of groundwater and surface flows. The Stokes–Darcy fluid flow model is a cou-
pling among surface and subsurface flows, which occurs in many natural and indus-
trial events such as biomedicine, industrial processes, blood flow motion in the arteries,
groundwater fluid flow in a karst aquifer, biofluid dynamics, hydrology, contaminant trans-
port in a groundwater geometry through rivers, industrial filtration, petroleum engineer-
ing, spontaneous combustion of coal stockpiles, and so on [1–5]. A dynamical fluid model
describes the free fluid flow in the conduit and porous medium fluid flow in the matrix
separated by a shared interface.

Coupling two separate models via an interface generally needs some appropriate and
effective interface conditions. For Stokes–Darcy model, the coupling conditions are well
studied and usually modeled by three interface conditions. The first two consist of the
continuity of the normal velocity across the interface, which is a consequence of the con-
servation of mass, and the balance of normal force across the interface. The third interface
condition is a benchmark boundary condition invented by Beavers–Joseph in 1967 by con-
ducting several experiments [6]. In the Beavers–Joseph interface condition, the tangential
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component of the stress force of the flow in the free medium at the interface is propor-
tional to the jump of the tangential velocity across the interface. Saffman modified this
interface condition in [7], and found that the velocity of the porous medium is smaller
and can be dropped. Jones [8] reinterpreted this law for application to the curved bound-
aries and non-tangential flows.

After the rigorous investigation of Beavers and Joseph on the coupling condition be-
tween conduit and matrix, the study of Stokes–Darcy fluid flow model has become one of
the most attractive research topics. The study of Stokes–Darcy fluid flow model started
with intense numerical implementation [9, 10] while theoretical analysis begun with [11,
12]. The equilibrium Stokes–Darcy problem has only been understood recently in [11–
14], and there has been an intense development of extensions and refinements thereafter.
Over the last few decades, a great deal of effort has been devoted to developing an appro-
priate approximate solution to study the Stokes–Darcy model. Many different techniques
and numerical methods were applied to investigate the Stokes–Darcy fluid flow model,
such as coupled finite elements methods [15–21], two-grid/multi-grid methods [22–28],
discontinuous Galerkin finite element methods [29–32], partitioned time stepping meth-
ods [33–36], least squares methods [37–39], domain decomposition methods [1, 2, 4,
40–48], local-parallel finite element methods [49], interface relaxation method [50, 51],
motar finite element methods [52, 53], Lagrange multiplier methods [11, 54–59]. Among
them, the theory and research literature about mixed spatial discretizations had been far
less developed than that of non-mixed versions.

In [11], Layton, Schieweck and Yotov investigated a mixed variational formulation in
both domains based on Beavers–Joseph–Saffman interface conditions and utilized a La-
grange multiplier on the interface to prove the well-posedness of the weak solution, which
allowed us to decouple the coupled problem into two subproblems. Discacciati et al.
studied the Navier/Stokes–Darcy fluid flow model and proposed an iterative subdomain
method by using continuous finite elements in both regions with a second order elliptic
problem in the Darcy domain and a standard mixed element method in the Stokes do-
main in [43, 47]. A locally conservative numerical method was applied to investigate the
coupled free and porous medium flow by Rivière et al. in [30, 31], where a mixed finite
element method was used for Darcy domain and a discontinuous Galerkin finite element
method for Stokes region. A study of porous medium with small and large cavities using
mixed finite element couple with the vuggy medium on the microscopic scale using Stokes
equations was performed by Arbogast et al. in [15]. Mu and Xu studied mixed Stokes–
Darcy fluid flow model using the two-grid method in [22]. A unified stabilized method
was studied by Burman et al. [60], where they consider the lowest possible approxima-
tion order. A preconditioning technique was applied in [61] for mixed Stokes–Darcy fluid
flow model by Cai et al. In [57–59], Gatica et al. extended the work of Layton [11] in a
new dimension considering conforming mixed finite elements where the matrix subdo-
main is completely enclosed by the conduit region. The interface conditions allowed the
introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier.
The finite element subspaces defining the discrete formulation employ Bernardi–Raugel
and Raviart–Thomas elements for the velocities, piecewise constants for the pressures and
continuous piecewise-linear elements for the Lagrange multiplier. For more work on the
mixed formulation, the reader can check [62–66].
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In this paper, we investigate an approximate solution of the stationary Stokes–Darcy
problem by developing a fully mixed stabilized finite element technique. The mixed for-
mulation discussed in [11, 57–59, 62, 63] essentially needs a Lagrange multiplier, and the
implementation is not easy in order to derive stability and convergence analysis. The fully
mixed finite element scheme is proposed herein without introducing any Lagrange multi-
plier and computation is straightforward. A fully-discrete finite element algorithm is pro-
posed, and we introduce a stabilized term essentially to ensure the stability of the temporal
discretization. The stability of the finite element scheme is derived and the convergence
analysis is discussed. To show the validity and efficiency of the numerical methods, we
perform two numerical experiments which confirm the optimal convergence order con-
sidering an exact solution of the model problem. The effects of the stabilization parameter
are investigated by considering different values of the stabilization parameter, which helps
us to choose an accurate value of the stabilization parameter to obtain the optimal con-
vergence order.

The rest of the paper is organized as follows. In Sect. 2, we describe the well known
Stokes–Darcy fluid flow model with interface conditions. In Sect. 3, we present some no-
tations, preliminaries, and variational formulation. The stabilized finite element method
and its stability are discussed in Sect. 4. Section 5 contains a convergence analysis of the
finite element scheme. In Sect. 6, we present two numerical tests to show the accuracy of
the numerical methods. Finally, we conclude with a summary in Sect. 7.

2 The model problem
Let the two bounded domains be denoted by �f , �p ⊂ Rd (d = 2 or 3) and lie across an
interface � from each other. Here �f ∩ �p = ∅, and �f ∩ �p = �, � = �f ∪ �p, nf and np

are the unit outward normal vectors on ∂�f and ∂�p, respectively, and τ i, i = 1, . . . , d – 1,
are the unit tangential vectors on the interface �, �f = ∂�f \ �, �p = ∂�p \ �. Note that
np = –nf on �. Figure 1 shows a sketch of the problem domain, its boundaries and some
other notations.

The fluid velocity and pressure uf (x) and p(x) are governed by the Stokes equation in
�f :

–∇ ·T = –2ν∇ ·D(uf ) + ∇p = ff in �f , (2.1)

∇ · uf = 0 in �f , (2.2)

Figure 1 Global domain � consisting of the fluid region �f and the porous media region �p separated by
the interface �
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where T = –pI + 2νD(uf ) denotes the stress tensor, and D(uf ) = 1
2 (∇uf + (∇uf )T ) repre-

sents the deformation tensor. The porous media flow is governed by the following Darcy
equations on �p through the fluid velocity up(x) and the piezometric head φ(x):

up = –K∇φ in �p, (2.3)

∇ · up = fp in �p. (2.4)

We impose impermeable boundary conditions, up ·np = 0 on �p, on the exterior boundary
of the porous media region, and no slip conditions, uf = 0 on �f , in the Stokes region. Both
selections of boundary conditions can be modified. On � the interface coupling conditions
are conservation of mass, balance of forces and a tangential condition on the fluid region’s
velocity on the interface. The correct tangential condition is not completely understood
(possibly due to matching a pointwise velocity in the fluid region with an averaged or
homogenized velocity in the porous region). In this paper, we take the Beavers–Joseph–
Saffman (–Jones), see [6–8, 13], interfacial coupling

uf · nf + up · np = 0 on �, (2.5)

–nf ·T · nf = p – 2νnf ·D(uf ) · nf = ρgφ on �, (2.6)

–nf ·T · τi = –2nf ·D(uf ) · τi =
α√

τi · Kτi
uf · τi, 1 ≤ i ≤ (d – 1) on �. (2.7)

This is a simplification of the original and more physically realistic Beavers–Joseph con-
ditions (in which uf · τi in (2.8) is replaced by (uf – up) · τi); see [6]. Here we denote

ff , fp – body forces in the fluid region and source in the porous region,

K – symmetric positive definite (SPD) hydraulic conductivity tensor,

ν – kinematic viscosity of fluid,

α – constant parameter.

We shall also assume that all material and fluid parameters defined above are uniformly
positive and bounded, i.e.,

0 ≤ kmin ≤ λ(K) ≤ kmax < ∞. (2.8)

3 Notations and the variational formulation
In this part, we first introduce some Sobolev spaces [67] and norms. We denote the usual
L2 norm by ‖ · ‖ for square integrable scalar/vector/matrix-valued functions defined on
domain �f or �p, and the corresponding inner product by (·, ·), and similarly the L2-norm
in L2(�) by ‖ · ‖� , for instance,

‖p‖ :=

( d∑
i=1

∫
�f

|p|2 dx

)1/2

, for p ∈ L2(�f ),

‖vf ‖ :=

( d∑
i=1

∥∥vi
f
∥∥2

)1/2

, for vf =
(
v1

f , . . . , vd) ∈ L2(�f )d,
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‖∇vf ‖ :=

( d∑
i=1

∥∥∇vi
f
∥∥2

)1/2

, for vf =∈ L2(�f )d,

and the inner product over � by

(φ1,φ2)� =
∫

�

φ1φ2 d�.

By setting the space

Hdiv = H(div;�p) :=
{

vp ∈ L2(�p)d : ∇ · vp ∈ L2(�p)
}

,

we introduce the following spaces:

Xf :=
{

vf ∈ H1(�f )d : vf = 0 on �f
}

,

Qf := L2(�f ),

Xp :=
{

vp ∈ H(div;�p) : vp · np = 0 on �p
}

,

Qp := L2(�p).

For the spaces Xf , Xp, we define the following norms:

‖vf ‖1 =
√

‖vf ‖2 + |vf |21, with |vf |1 = ‖∇vf ‖ ∀vf ∈ Xf ,

‖vp‖div =
√

‖vp‖2 + ‖∇ · vp‖2 ∀vp ∈ Xp.

The variational formulation of the steady-state Stokes–Darcy problem (2.1)–(2.7) reads
as: Find (uf , p; up,φ) ∈ (Xf , Qf ; Xp, Qp) satisfying

af (uf , vf ) – bf (vf , p) + c�(vf ,φ) = (ff , vf ) ∀vf ∈ Xf , (3.1)

bf (uf , q) = 0 ∀q ∈ Qf , (3.2)

ap(up, vp) – bp(vp,φ) – c�(vp,φ) = 0 ∀vp ∈ Xp, (3.3)

bp(up,ψ) = ρg(fp,ψ) ∀ψ ∈ Qp, (3.4)

where the bilinear forms are defined as

af (uf , vf ) := 2ν
(
D(uf ),D(vf )

)
+

d–1∑
i=1

α√
τi · Kτi

(uf · τi, vf · τi)� ,

ap(up, vp) := ρg
(
K–1up, vp

)
,

bf (vf , p) := (p,∇ · vf ),

bp(vp,φ) := ρg(φ,∇ · vp),

c�(vf ,φ) := ρg(φ, vf · nf )� .
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After introducing

L(uf , p, up,φ; vf , q, vp,ψ) := af (uf , vf ) – bf (vf , p) + bf (uf , q)

+ ap(up, vp) – bp(vp,φ) + bp(up,ψ) + c�(vf – vp,φ),

the variational formulation (3.1)–(3.4) can be equivalently rewritten as follows: Find
(uf , p; up,φ) ∈ (Xf , Qf ; Xp, Qp) satisfying

L(uf , p, up,φ; vf , q, vp,ψ) = (ff , vf ) + ρg(fp,ψ) (3.5)

for all (vf , q; vp,ψ) ∈ (Xf , Qf ; Xp, Qp). It is easy to verify that this variational formulation is
well-defined.

To end this section, we recall the following Poincaré, Korn’s and the trace inequalities,
which will be used in the later analysis. There exist constants CP , CK , Cv, only depending
on �f , such that for all vf ∈ Xf ,

‖vf ‖ ≤ CP|vf |1, |vf |1 ≤ CK
∥∥D(vf )

∥∥, ‖vf ‖L2(�) ≤ Cv‖vf ‖1/2|vf |1/2
1 .

Besides, there exists a constant C̃v that only depends on �p such that for all ψ ∈ Qp,

‖ψ‖L2(�) ≤ C̃v‖ψ‖1/2|ψ |1/2
1 . (3.6)

Hereafer, all the constants are positive unless otherwise specified.

4 The stabilized finite element method and its stability
First, we consider the family of triangulations Th of �, consisting of Tf

h and Tp
h , which are

regular triangulations of �f and �p, respectively, where h > 0 is a positive parameter. We
also assume that on the interface � the two meshes of Tf

h and Tp
h , which form the regular

triangulation Th := Tf
h ∪ Tp

h , coincide.
The domain of the uniformly regular triangulation �̄f ∪ �̄p is such that �̄ = {∪K : K ∈

Th} and h = maxK∈Th hK . There exist positive constants c1 and c2 satisfying c1h ≤ hK ≤
c2ρK . To approximate the diameter hK of the triangle (tetrahedral) K , ρK is the diameter of
the greatest ball included in K . Based on the subdivisions Tf

h and Tp
h , we can define finite el-

ement spaces Xfh ⊂ Xf , Qh
fh ⊂ Qf , Xph ⊂ Xp, Qph ⊂ Qp. We consider the well-known MINI

elements (P1b – P1) to approximate the velocity and pressure in the conduit for Stokes
equation [68]. To capture the fully mixed technique in the porous medium region linear
Lagrangian elements, P1 are used for hydraulic (piezometric) head and Brezzi–Douglas–
Marini (BDM1) piecewise constant finite elements are used for Darcy velocity [69]. In the
fluid flow region, we select for the Stokes problem the finite element spaces (Xfh, Qfh) that
satisfy the velocity–pressure inf–sup condition:

There exists a constant βf > 0, independent of h, such that

Xfh ⊂ Xf , Qfh ⊂ Qf ,

inf
0 =qh∈Qfh

sup
0 =vh

f ∈Xfh

bf (vh
f , qh)

|vh
f |1‖qh‖ ≥ βf .

(4.1)
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In the porous region, we use the finite element spaces (Xph, Qph) that also satisfy a standard
inf–sup condition:

There exists a βp > 0 such that for all φh ∈ Qph,

Xph ⊂ Xp, Qph ⊂ Qp,

βp
∥∥φh∥∥ ≤ sup

0 =vh
p∈Xph

bp(vh
p ,φh)

‖vh
p‖div

.
(4.2)

From the inf–sup assumption (4.1), for a given arbitrary but fixed pressure ph ∈ Qfh, we
can get wh

f ∈ Xfh such that

bf
(
wh

f , ph) ≥ C̃1
∥∥wh

f
∥∥

1

∥∥ph∥∥. (4.3)

By normalizing ‖wh
f ‖1 = λ1‖ph‖, thus

bf
(
wh

f , ph) ≥ C1
∥∥ph∥∥2. (4.4)

In a similar way, from the inf–sup assumption (4.2), for φh ∈ Qph, there exists a wh
p ∈ Xph

such that

bp
(
wh

p,φh) ≥ C̃2
∥∥wh

p
∥∥
div

∥∥φh∥∥. (4.5)

Assume that wh
p is normalized so that ‖wh

p‖div = λ2‖φh‖, thus

bp
(
wh

p,φh) ≥ C2
∥∥φh∥∥2. (4.6)

Moreover, we need the inverse inequalities in both Xfh and Qph: there exist constants
Cinv and C̃inv, which depend on the minimum angles in the finite element mesh used on
�f and �p, such that

∣∣vh
f
∣∣
1 ≤ Cinvh–1∥∥vh

f
∥∥ ∀vh

f ∈ Xfh, (4.7)∣∣ψh∣∣
1 ≤ C̃invh–1∥∥ψh∥∥ ∀ψh ∈ Qph. (4.8)

4.1 The stabilized finite element method
In this section, we present a stabilized finite element scheme for the Stokes–Darcy prob-
lem.

Algorithm 4.1 Find (uh
f , ph, uh

p,φh) ∈ (Xfh, Qfh,Xph, Qph) satisfying

L̃
(
uh

f , ph, uh
p,φh; vh

f , qh, vh
p ,ψh) =

(
ff , vh

f
)

+ ρg
(
fp,ψh), (4.9)

for any (vh
f , qh, vh

p ,ψh) ∈ (Xfh, Qfh, Xph, Qph), where

L̃
(
uh

f , ph, uh
p,φh; vh

f , qh, vh
p ,ψh) = L

(
uh

f , ph, uh
p,φh; vh

f , qhvh
p ,ψh)

+
δ

h
((

uh
f – uh

p
) · nf ,

(
vh

f – vh
p
) · nf

)
�

,
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and the term

δ

h
((

uh
f – uh

p
) · nf ,

(
vh

f – vh
p
) · nf

)
�

=
δ

h

∫
�

((
uh

f – uh
p
) · nf

)((
vh

f – vh
p
) · nf

)
d�,

is the stabilized term for the Stokes–Darcy problem.

4.2 The stability of the stabilized finite element method
In this section, we prove the stability of the stabilized finite element scheme.

Theorem 1 (Continuity of L̃) There exists a constant C such that

L̃
(
uh

f , ph, uh
p,φh; vh

f , qh, vh
p ,ψh) ≤ C

(∣∣∣∣∣∣(uh
f , ph, uh

p,φh)∣∣∣∣∣∣)(∣∣∣∣∣∣(vh
f , qh, vh

p ,ψh)∣∣∣∣∣∣),

where

∣∣∣∣∣∣(vh
f , qh, vh

p ,ψh)∣∣∣∣∣∣ =
∥∥vh

f
∥∥

1 +
∥∥qh∥∥ +

∥∥vh
p
∥∥
div

+
∥∥ψh∥∥ + h–1/2∥∥(

vh
f – vh

p
)∥∥

�
.

Proof By the Schwarz inequality (3.6) and the inverse inequality (4.8), we have

c�

(
uh

f – uh
p,φh) ≤ ρg

∥∥(
uh

f – uh
p
) · nf

∥∥
�

∥∥φh∥∥
�

≤ ρgC̃vC̃invh–1/2∥∥(
uh

f – uh
p
) · nf

∥∥
�

∥∥φh∥∥
and

δ

h
((

uh
f – uh

p
) · nf ,

(
vh

f – vh
p
) · nf

)
�

≤ δh–1/2∥∥(
uh

f – uh
p
) · nf

∥∥
�

h–1/2∥∥(
vh

f – vh
p
) · nf

∥∥
�

.

Thus we can prove that L̃ is continuous, i.e.,

L̃
(
uh

f , ph, uh
p,φh; vh

f , qh, vh
p ,ψh)

= af
(
uh

f , vh
f
)

– bf
(
vh

f , ph) + bf
(
uh

f , qh)
+ ap

(
uh

p, vh
p
)

– bp
(
vh

p ,φh) + bp
(
uh

p,ψh)
+

δ

h
((

uh
f – uh

p
) · nf ,

(
vh

f – vh
p
) · nf

)
+ c�

(
vh

f – uh
p,φh)

≤ C
(∣∣∣∣∣∣(uh

f , ph, uh
p,φh)∣∣∣∣∣∣)(∣∣∣∣∣∣(vh

f , qh, vh
p ,ψh)∣∣∣∣∣∣).

The proof is complete. �

Theorem 2 (Coercivity of L̃) There exists a constant β > 0 such that the following in-
equality holds for all (uh

f , ph, uh
p,φh) ∈ (Xfh, Qfh, Xph, Qph):

sup
(vh

f ,qh ,vh
p ,ψh)∈(Xfh ,Qfh ,Xph ,Qph)

L̃(uh
f , ph, uh

p,φh; vh
f , qh, vh

p ,ψh)
|||(vh

f , qh, vh
p ,ψh)||| ≥ β

∣∣∣∣∣∣(uh
f , ph, uh

p,φh)∣∣∣∣∣∣. (4.10)
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Proof We will construct (v̂h
f , q̂h, v̂h

p , ψ̂h) such that

L̃
(
uh

f , ph, uh
p,φh; v̂h

f , q̂h, v̂h
p , ψ̂h

) ≥ C
(∣∣∣∣∣∣(uh

f , ph, uh
p,φh)∣∣∣∣∣∣)(∣∣∣∣∣∣(v̂h

f , q̂h, v̂h
p , ψ̂h

)∣∣∣∣∣∣)

using the following three steps.
Step 1. By setting (vh

f , qh, vh
p ,ψh) = (uh

f , ph, uh
p,φh + ∇ · uh

p), we derive

L̃
(
uh

f , ph, uh
p,φh; uh

f , ph, uh
p,φh + ∇ · uh

p
)

=
∥∥uh

f
∥∥2

1 +
∥∥uh

p
∥∥2
div

+
δ

h
∥∥(

uh
f – uh

p
) · nf

∥∥2
�

+ c�

(
uh

f – uh
p,φh).

Note that

c�

(
uh

f – uh
p,φh) ≥ –ρgC̃vC̃invh–1/2∥∥(

uh
f – uh

p
) · nf

∥∥
�

∥∥φh∥∥
≥ –

ρ2g2C̃2
v C̃2

inv
γ hC2

∥∥(
uh

f – uh
p
) · nf

∥∥2
�

–
γ C2

4
∥∥φh∥∥2,

where γ is a real positive parameter, which will be determined later.
Step 2. By selecting (vh

f , qh, vh
p ,ψh) = (–γ wh

f , 0, –γ wh
p, 0) where wh

f , wh
p satisfy (4.5) and

(4.6), respectively, and normalizing ‖(wh
f – wh

p) · nf ‖� = λ3‖(uh
f – uh

p) · nf ‖� , together with
(4.3)–(4.6), we have

L̃
(
uh

f , ph, uh
p,φh; –γ wh

f , 0, –γ wh
p, 0

)
= –γ af

(
uh

f , wh
f
)

– γ ap
(
uh

p, wh
p
)

+ γ bf
(
wh

f , ph) + γ bp
(
wh

p,φh)
–

γ δ

h
((

uh
f – uh

p
) · nf ,

(
wh

f – wh
p
) · nf

)
�

– γ c�

(
wh

f – wh
p,φh)

≥ –γ λ1
∥∥uh

f
∥∥

1

∥∥ph∥∥ – γ λ2
∥∥uh

p
∥∥
div

∥∥φh∥∥ + γ C1
∥∥ph∥∥2 + γ C2

∥∥φh∥∥2

–
γ δλ3

h
∥∥(

uh
f – uh

p
) · nf

∥∥2
�

– γ λ3ρgC̃vC̃invh–1/2∥∥(
uh

f – uh
p
) · nf

∥∥
�

∥∥φh∥∥
≥ –

γ λ2
1

2C1

∥∥uh
f
∥∥2

1 –
γ λ2

2
C2

∥∥uh
p
∥∥2
div

+
γ C1

2
∥∥ph∥∥2 +

γ C2

2
∥∥φh∥∥2

–
γ δλ3

h
∥∥(

uh
f – uh

p
) · nf

∥∥2
�

–
γ λ2

3ρ
2g2C̃2

v C̃2
inv

hC2

∥∥(
uh

f – uh
p
) · nf

∥∥2
�

,

here the following two main Young inequalities are used:

γ λ2
∥∥uh

p
∥∥
div

∥∥φh∥∥ ≤ γ λ2
2

C2

∥∥uh
p
∥∥2
div

+
γ C2

4
∥∥φh∥∥2,

γ λ3ρgC̃vC̃invh–1/2∥∥(
uh

f – uh
p
) · nf

∥∥
�

∥∥φh∥∥
≤ γ λ2

3ρ
2g2C̃2

v C̃2
inv

hC2

∥∥(
uh

f – uh
p
) · nf

∥∥2
�

+
γ C2

4
∥∥φh∥∥2,

where δ is another real positive parameter to be determined soon.
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Step 3. Choosing (v̂h
f , q̂h, v̂h

p , ψ̂h) = (uh
f – γ wh

f , ph, uh
p – γ wh

p,φh + ∇ · uh
p), we can obtain by

the above arguments the following inequality:

L̃
(
uh

f , ph, uh
p,φh; uh

f – γ wh
f , ph, uh

p – γ wh
p,φh + ∇ · uh

p
)

≥
(

1 –
γ λ2

1
2C1

)
‖uf ‖2 +

(
1 –

γ λ2
2

C2

)∥∥uh
p
∥∥2

div +
γ C1

2
∥∥ph∥∥2 +

γ C2

4
∥∥φh∥∥2

+
(

δ(1 – γ λ3)
h

–
ρ2g2C̃2

v C̃2
inv

γ hC2
–

γ λ2
3ρ

2g2C̃2
v C̃2

inv
hC2

)∣∣∣∣∣∣(uh
f , ph, uh

p,φh)∣∣∣∣∣∣2.

Then we enforce the following conditions on γ and δ:

1 –
γ λ2

1
2C1

≥ 1
2

, 1 –
γ λ2

2
C2

≥ 1
2

, 1 – γ λ3 ≥ 1
4

,

δ(1 – γ λ3)
h

–
ρ2g2C̃2

v C̃2
inv

γ hC2
–

γ λ2
3ρ

2g2C̃2
v C̃2

inv
hC2

≥ δ

2h
.

This encourages us to select sufficiently small γ and large δ as follows:

γ ≤ min

{
C1

λ2
1

,
2C2

λ2
2

,
1

4λ3

}
, δ ≥ 4ρ2g2C̃2

v C̃2
inv(1 + γ 2λ2

3)
γ C2

.

To this end, we can obtain

L̃
(
uh

f , ph, uh
p,φh; uh

f – γ wh
f , ph, uh

p – γ wh
p,φh + ∇ · uh

p
)

≥
(

1 –
γ λ2

1
2C1

)
‖uf ‖2 +

(
1 –

γ λ2
2

C2

)∥∥uh
p
∥∥2

div +
γ C1

2
∥∥ph∥∥2 +

γ C2

4
∥∥φh∥∥2

+
(

δ

h
–

γ δλ3

h
–

ρ2g2C̃2
v C̃2

inv
γ hC2

–
γ λ2

3ρ
2g2C̃2

v C̃2
inv

hC2

)∣∣∣∣∣∣(uh
f , ph, uh

p,φh)∣∣∣∣∣∣2

≥ C4
(∣∣∣∣∣∣(uh

f , ph, uh
p,φh)∣∣∣∣∣∣)(∣∣∣∣∣∣(uh

f – γ wh
f , ph, uh

p – γ wh
p,φh + ∇ · uh

p
)∣∣∣∣∣∣)

= C
(∣∣∣∣∣∣(uh

f , ph, uh
p,φh)∣∣∣∣∣∣)(∣∣∣∣∣∣(v̂h

f , q̂h, v̂h
p , ψ̂h

)∣∣∣∣∣∣).

The proof is complete. �

5 Error estimate for the stabilized finite element method
In this section, we prove the error estimate for the stabilized finite element method for the
scheme.

Theorem 3 Assume that (uf , p; up,φ) is an exact solution, the norms ‖up‖2, ‖uf ‖2, ‖p‖1,
and ‖φ‖1 are bounded from above, and, moreover, (uh

f , ph; uh
p,φh) is the stabilized finite

element solution, then we have

∥∥uf – uh
f
∥∥

1 +
∥∥p – ph∥∥ +

∥∥up – uh
p
∥∥

div +
∥∥φ – φh∥∥ ≤ Ch. (5.1)
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Proof First, by subtracting (4.9) from (3.5), thanks to the interface condition (2.5), we get
the error equation as follows:

L
(
uf , p, up,φ; vh

f , qh, vh
p ,ψh) – L̃

(
uh

f , ph, uh
p,φh; vh

f , qh, vh
p ,ψh)

= L̃
(
uf , p, up,φ; vh

f , qh, vh
p ,ψh) – L̃

(
uh

f , ph, uh
p,φh; vh

f , qh, vh
p ,ψh)

= L̃
(
uf – uh

f , p – ph, up – uh
p,φ – φh; vh

f , qh, vh
p ,ψh) = 0. (5.2)

By introducing (ū, p̄, ūp, φ̄) as the interpolation of (uf , p, up,φ) from (Xf , Qf , Xp, Qp) onto
the finite element spaces (Xfh, Qfh, Xph, Qph), we split the errors into two parts as

uf – uh
f = (uf – ūf ) +

(
ūf – uh

f
)
� ēf + eh

f ,

p – ph = (p – p̄) +
(
p̄ – ph) � η̄ + ηh,

up – uh
p = (up – ūp) +

(
ūp – uh

p
)
� ēp + eh

p,

φ – φh = (φ – φ̄) +
(
φ̄ – φh) � θ̄ + θh,

The interpolation error are listed below:

‖ēf ‖1 + ‖η̄‖ ≤ Ch
(‖uf ‖2 + ‖p‖1

)
, ‖ēp‖div + ‖θ̄‖ ≤ Ch

(‖up‖2 + ‖φ‖1
)
.

Substituting them into the error equation (5.2), we get

L̃
(
eh

f ,ηh, eh
p, θh; vh

f , qh, vh
p ,ψh) = –L̃

(
ēf , η̄, ēp, θ̄ ; vh

f , qh, vh
p ,ψh).

From the coercivity and the continuity of L̃, trace and inverse inequalities, we obtain

β
∣∣∣∣∣∣(eh

f ,ηh, eh
p, θh)∣∣∣∣∣∣

≤ sup
(vh

f ,qh ,vh
p ,ψh)

L̃(eh
f ,ηh, eh

p, θh; vh
f , qh, vh

p ,ψh)
|||(vh

f , qh, vh
p ,ψh)|||

= sup
(vh

f ,qh ,vh
p ,ψh)

–L̃(ēf , η̄, ēp, θ̄ ; vh
f , qh, vh

p ,ψh)
|||(vh

f , qh, vh
p ,ψh)|||

≤ C
∣∣∣∣∣∣(ēf , η̄, ēp, θ̄ )

∣∣∣∣∣∣ ≤ C
(‖ēf ‖1 + ‖η̄‖ + ‖ēp‖div + ‖θ̄‖ + h–1/2∥∥(ēf – ēp)

∥∥
�

)
≤ C

(‖ēf ‖1 + ‖η̄‖ + ‖ēp‖div + ‖θ̄‖ + h–1(‖ēf ‖ + ‖ēp‖
))

≤ Ch
(‖uf ‖2 + ‖p‖1 + ‖up‖2 + ‖φ‖1

)
.

Finally, together with the interpolation error, we derive the error estimate (5.2). �

6 Numerical experiments
In this section, we present two numerical experiments to illustrate the accuracy and effi-
ciency of the proposed stabilized fully mixed finite element method. The global domain
� consists of two subdomains with free fluid flow region �f = [0, 1] × [1, 2] and porous
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medium domain �p = [0, 1] × [0, 1] for both numerical tests. The interface of the current
computational domain is � = [0, 1] × {1}.

The finite element spaces are constructed by the well-known MINI elements (P1b – P1)
for Stokes problem. To capture the fully mixed technique in the porous medium region,
linear Lagrangian elements P1 are used for hydraulic (piezometric) head and Brezzi–
Douglas–Marini (BDM1) piecewise constant finite elements are used for Darcy velocity.
In the first numerical test, the influence of the stabilization parameter on the temporal
discretization is examined by considering different values of δ and then the optimal con-
vergence for the spacing h is checked. In the second numerical test, we focus on showing
the effects of the hydraulic conductivity parameter K for gradual decreasing. All the nu-
merical tests are executed by a specialized free domain software known as FreeFEM++
[70]. Graphs and figures are drawn by using MATLAB and Tecplot software.

6.1 Convergence test 1
As the first numerical test example, we choose the following exact solution, which satisfies
the Beavers–Joseph–Saffman interface conditions (2.5)–(2.7):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf =

⎛
⎝ [x2(y – 1)2 + y]

[– 2
3 x(y – 1)3] + [2 – π sin(πx)]

⎞
⎠ ,

p = [2 – π sin(πx)] sin(0.5πy),

φ = [2 – π sin(πx)][1 – y – cos(πy)],

up = –K∇φ.

(6.1)

The Dirichlet boundary condition and source term of the model problem are chosen in
such a way that the above-listed functions are the exact solutions of the model problem.
For computational convenience in the first numerical experiment, all the physical param-
eters ν , ρ , g , K, α are simply taken as 1.0.

To investigate the impact of the stabilization parameter on the convergence order for
the finite element scheme, we perform several numerical tests from different aspects in
the following. First, for the different values of δ = 10k (k = 3, 2, 1, –1, –2, –3, –4, –5, 0), we
use Fig. 2 to demonstrate the order of the convergence of ‖uh

f – uf ‖1,�f and ‖uh
p – up‖0,�p .

This study admits that the relatively large and small values of the stabilization parame-
ter δ significantly affect the convergence orders of velocity and/or pressure. Without as-
suming the stabilization parameter δ (namely, δ = 0), the convergence order is also not
accurate. We can obtain the accurate convergence order for the value of the stabilization
parameter δ = 0.1. In Figs. 3 and 4, we present the velocity and pressure contours for the
approximate and exact solutions with the different values of the stabilization parameter
δ = 0.1, 1.0, 1000, 0.00001 and 0. These figures also illustrate that the velocity and pres-
sure contours are simultaneously regular for an approximate and exact solutions with the
value of the stabilization parameter δ = 0.1. In fact, considering the small values of the
stabilization parameter δ = 0.0001 and 0, the velocity contour changed dramatically for
approximate solutions. The same illustration can be seen for the large values of δ = 1000
on the pressure contour. From the figures, we can conclude that for the relatively small
and large values of the stabilization parameter δ cause a significant effect on the accuracy
of the convergence order, velocity and pressure contours. The above discussion leads us
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Figure 2 The order of convergence for the different values of the stabilization parameter δ for test 1. (Left)
The order of the convergence of ‖uh

f – uf ‖1,�f
; (Right) The order of the convergence of ‖uh

p – up‖0,�p

Figure 3 An illustration of the velocity contour with different values of the stabilization parameter for test 1:
true solution (top-left); δ = 0.1 (top-middle); δ = 1 (top-right); δ = 1000 (down-left); δ = 0.0001 (down-middle);
δ = 0 (down-right)
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Figure 4 An illustration of the pressure contour for the true solution and approximate solution with the
different values of the stabilization parameter: true solution (top-left); δ = 0.1 (top-middle); δ = 1 (top-right);
δ = 1000 (down-left); δ = 0.0001 (down-middle); δ = 0 (down-right)

Table 1 Approximate error of the stabilized finite element scheme for test 1

h ‖uh
f – uf ‖0,�f

‖uh
f – uf ‖1,�f

‖ph – p‖0,�f
‖φh – φ‖0,�p ‖φh – φ‖1,�p ‖uh

p – up‖0,�p

1/4 0.06698400 0.2051800 0.9868740 0.25280000 0.5592480 0.11349000
1/8 0.01689870 0.1022890 0.2969910 0.03583200 0.1964390 0.02378000
1/16 0.00423272 0.0510305 0.0972678 0.00861098 0.0957356 0.00583354
1/32 0.00105840 0.0254780 0.0332221 0.00213774 0.0475719 0.00145604
1/64 0.00026471 0.0127283 0.0115640 0.00051766 0.0237599 0.00036354

to consider the value of the stabilization parameter δ = 0.1 to perform the numerical tests
which ensure an optimal convergence order and generate velocity and pressure contours
accurately.

To demonstrate the order of convergence of the finite element stabilized scheme, we in-
troduce Table 1, the errors between the computed and exact solutions with varying spac-
ing h = 1/4, 1/8, 1/16, 1/32, 1/64. Figure 5 is the log–log plot of the data in Table 1. We can
observe from the figures that the optimal convergence order is obtained, which supports
the theoretical analysis.
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Figure 5 The order of convergence of L2-norm (left) and H1-norm (right) for the change on the convergence
order of the stabilized finite element scheme for test 1

6.2 Convergence test 2
The main purpose of the second numerical is to show the influence of the physical param-
eter hydraulic conductivity K on the convergence order inspired by [33] for the stabilized
finite element scheme. In this experiment, we set all the values of the physical parameters
ν , ρ , g , K, α, δ the same as in the previous computation, except for different values of the
hydraulic conductivity parameter K where K = kI, k = 0.1, 0.01, 0.001.

The exact solution for the second numerical test satisfying the Beavers–Joseph–Saffman
interface conditions is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf =

⎛
⎝(y2 – 2y + 1)

(x2 – x)

⎞
⎠ ,

p = [2ν(x + y – 1) + gn
3k ],

φ = [ n
k (x(1 – x)(y – 1) + 1

3 y3 – y2 + y) + 2ν
g x],

up = –K∇φ.

(6.2)

The Dirichlet boundary condition and source terms of the model problem are chosen
in such a way that the above-listed functions are the exact solutions of the model prob-
lem.

In Tables 2, 3 and 4, the approximation errors in differential norms are listed for
the stabilized finite element scheme with varying hydraulic conductivity K = 0.1I, 0.01I,
0.001I. From these tables we observe that the order of the magnitude of the Stokes and
Darcy pressure p and φ gradually increases with the decrease of the value of the parame-
ter K. From Fig. 6, we can see that the optimal convergence order is also obtained, which
confirms the theoretical analysis.

7 Conclusion
In this contribution, we investigated a new fully mixed finite element method to solve the
Stokes–Darcy fluid flow model without introducing any Lagrange multiplier. We proposed
a stabilized finite element scheme and introduced a stabilization term to ensure the well-
posedness of the temporal discretization. The desired stability and convergence analysis,
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Table 2 Approximate error of the stabilized finite scheme for test 2 with K = 0.1I

h ‖uh
f – uf ‖0,�f

‖uh
f – uf ‖1,�f

‖ph – p‖0,�f
‖φh – φ‖0,�p ‖φh – φ‖1,�p ‖uh

p – up‖0,�p

1/4 0.0161660000 0.1895230 0.05247790 0.048723100 1.4312000 0.0205940000
1/8 0.0040720000 0.0944033 0.01628890 0.011688300 0.7203930 0.0054969900
1/16 0.0010201200 0.0471172 0.00525163 0.002889210 0.3606690 0.0014169300
1/32 0.0002548480 0.0235401 0.00174311 0.000721144 0.1804010 0.0003594990
1/64 6.37027e–005 0.0117660 0.00059351 0.000180326 0.0902083 9.05304e–005

Table 3 Approximate error of the stabilized finite element scheme for test 2 with K = 0.01I

h ‖uh
f – uf ‖0,�f

‖uh
f – uf ‖1,�f

‖ph – p‖0,�f
‖φh – φ‖0,�p ‖φh – φ‖1,�p ‖uh

p – up‖0,�p

1/4 0.0165941000 0.1898900 0.09290030 0.46289000 14.34060 0.0215030000
1/8 0.0046533600 0.0948421 0.02580190 0.11471700 7.207800 0.0056623600
1/16 0.0012938400 0.0472456 0.00675441 0.02864350 3.606840 0.0014376000
1/32 0.0003417120 0.0235623 0.00199893 0.00718127 1.804010 0.0003616240
1/64 8.73879e–005 0.0117691 0.00063884 0.00179964 0.902083 9.07503e–005

Table 4 Approximate error of the stabilized finite element scheme for test 2 with K = 0.001I

h ‖uh
f – uf ‖0,�f

‖uh
f – uf ‖1,�f

‖ph – p‖0,�f
‖φh – φ‖0,�p ‖φh – φ‖1,�p ‖uh

p – up‖0,�p

1/4 0.016845100 0.1902420 0.12546000 4.5981200 143.695 0.022608400
1/8 0.005788180 0.0964517 0.05396490 1.1318200 72.1796 0.006306740
1/16 0.002560890 0.0488275 0.01943480 0.2813460 36.0814 0.001683910
1/32 0.001052120 0.0242530 0.00616251 0.0705812 18.0412 0.000422170
1/64 0.000358495 0.0119415 0.00191977 0.0177721 9.02091 0.000101925

Figure 6 The order of convergence for stabilized finite element scheme using changing mesh for test 2: the
error order of L2-norm for K = 0.1I (top-left), K = 0.01I (top-middle), K = 0.001I (top-right); the error order of
H1-norm forK = 0.1I (down-left), K = 0.01I (down-middle), K = 0.001I (down-right)

including optimal error estimates, was derived for the proposed algorithm. To show the
exclusive feature of the finite element scheme and numerical methods, we performed two
numerical tests and illustrated the results of the experiments. The numerical test revealed
the accuracy and efficiency of the proposed mixed finite element method.
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