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Abstract
Let p be a prime with p ≡ 1 mod 8, ψ be an eighth character modp, and τ (ψ )
denote the classical Gauss sum modp. The main purpose of this paper is using the
analytic method and the properties of the classical Gauss sum to study the
computational problem of one kind rational polynomial of τ (ψ ). In the end, we prove
an interesting second-order linear recursive formula for it.
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1 Introduction
For any positive integer q ≥ 2 and Dirichlet character χ mod q, the classical Gauss sum
τ (χ ) is defined as

τ (χ ) =
q∑

a=1

χ (a)e
(

a
q

)
,

where e(y) = e2π iy.
This sum is very important in the study of the analytic number theory, so many authors

had studied its elementary properties, and obtained a series of important results. In fact,
if χ is a primitive character modq, then one has the identity |τ (χ )| = √q. For the gen-
eral character χ mod q, we have the estimate |τ (χ )| ≤ √q. From some special characters
χ mod q, the Gauss sum τ (χ ) has some interesting properties. For example, if p is a prime
with p ≡ 1 mod 3, and ψ is any third-order character mod p, then we have the identity [1,
2]

τ 3(ψ) + τ 3(ψ) = dp,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.
Zhuoyu Chen and Wenpeng Zhang [3] obtained a similar formula for the quartic Gauss

sum (see Lemma 2 below). Of course, there are also many similar results, and we are not
going to list them here. The reader can refer to Refs. [4–7] and [8] for details.

In this paper, we are considering such a sequence Fk(p) as follows: Let p be a prime with
p ≡ 1 mod 8, ψ be any eighth-order character modp. For any integer k ≥ 0, we define the
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sequence Fk(p) as

Fk(p) =
τ k(ψ)
τ k(ψ3)

+
τ k(ψ3)
τ k(ψ)

. (1)

The sequence Fk(p) defined in (1) is clearly a second-order linear recurrence sequence.
However, to find the exact value of this sequence, noting that F0(p) = 2, we must know its
first term F1(p). Generally, F1(p) is very difficult to calculate. But if ψ is an eighth-order
character modp, then we can deduce some interesting results. In this paper, we will focus
on illustrating this point. That is, we shall prove the following two results.

Theorem 1 Let p be a prime with p ≡ 1 mod 8, then, for any integer k ≥ 2, we have the
second-order linear recursive formula

Fk(p) = C · Fk–1(p) – Fk–2(p),

where F0(p) = 2, C = F1(p) = ±
√

2 + 2α√p , and the constant α = α(p) is an integer, which is
closely related to prime p.

In fact, we have a very important square-sum formula,

p =

( p–1
2∑

a=1

(
a + a

p

))2

+

( p–1
2∑

a=1

(
ra + a

p

))2

≡ α2 + β2,

where ( ∗
p ) denotes the Legendre symbol mod p, r is any integer with ( r

p ) = –1 (see Theorem
4-11 in [9]).

Theorem 2 Let p be a prime with p ≡ 1 mod 8, then, for any real number k ≥ 2, we have
the second-order linear recursive formula

F2k(p) =
2α√p

· F2k–2(p) – F2k–4(p),

where F0(p) = 2 and F2(p) = 2α√p .

Since |α| ≤ √p, the two roots of the equation x2 – 2α√p x + 1 = 0 are

x1 =
α + i

√
p – α2

√p
and x2 =

α – i
√

p – α2
√p

,

where i is the imaginary unit. That is, i2 = –1.
Therefore, from the properties of the second-order linear recursive sequence we have

the computational formula

F2k(p) =
(

α + i
√

p – α2
√p

)k

+
(

α + i
√

p – α2
√p

)k

.

Some notes: How to determine the positive or negative signs of C = F1(p) in Theorem 1
is an interesting open problem.
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It is clear that φ(5) = φ(8) = φ(12) = 4. Therefore, whether there is a similar second-order
linear recurrence formula for the fifth-order (or twelfth-order) character modp remains
to be further studied.

2 Several lemmas
In this section, we need to prove several simple lemmas, which is necessary in the proofs
of our theorems. Hereinafter, we shall use many properties of the classical Gauss sum and
Dirichlet characters modp (an odd prime); all of them can be found in Ref. [10], so they
will not be repeated here.

Lemma 1 Let p be a prime with p ≡ 1 mod 8, ψ be an eighth-order character mod p. Then
we have the identity

τ 2(ψ2) = p · τ 2(ψ3)
τ 2(ψ)

.

Proof Since p ≡ 1 mod 8, there exist 4 eighth-order characters modp, let ψ be one of
them; χ2 denotes the Legendre symbol modp. For any integer m with (m, p) = 1, note that
we have the identities ψχ2 = ψ3 and

p–1∑

a=0

e
(

ma2

p

)
=

p–1∑

a=0

(
1 + χ2(a)

)
e
(

ma
p

)
= χ2(m)τ (χ2) = χ2(m)

√
p,

from the properties of the classical Gauss sum we have

p–1∑

a=0

ψ
(
a2 – 1

)
=

1
τ (ψ)

p–1∑

a=0

p–1∑

b=1

ψ(b)e
(

b(a2 – 1)
p

)

=
1

τ (ψ)

p–1∑

b=1

ψ(b)e
(

–b
p

) p–1∑

a=0

e
(

ba2

p

)

=
√p
τ (ψ)

p–1∑

b=1

ψ(b)χ2(b)e
(

–b
p

)

=
ψ(–1)√p

τ (ψ)

p–1∑

b=1

ψ3(b)e
(

b
p

)

=
ψ(–1)√p · τ (ψ3)

τ (ψ)
. (2)

On the other hand, from the properties of the classical Gauss sum we also have

p–1∑

a=0

ψ
(
a2 – 1

)
=

p–1∑

a=0

ψ
(
(a + 1)2 – 1

)
=

p–1∑

a=1

ψ
(
a(a + 2)

)

=
1

τ (ψ)

p–1∑

b=1

ψ(b)
p–1∑

a=1

ψ(a)e
(

b(a + 2)
p

)
=

τ (ψ)
τ (ψ)

p–1∑

b=1

ψ
2(b)e

(
2b
p

)

= ψ2(2) · τ (ψ2)τ (ψ)
τ (ψ)

. (3)
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Note that ψ4 = χ2 and χ2(2) = 1, from (2) and (3) we have the identity

τ 2(ψ2) = p · τ 2(ψ3)
τ 2(ψ)

.

This proves Lemma 1. �

Lemma 2 Let p be an odd prime with p ≡ 1 mod 4, λ be any fourth-order character mod p.
Then we have the identity

τ 2(λ) + τ 2(λ) =
√

p ·
p–1∑

a=1

(
a + a

p

)
= 2

√
p · α.

Proof See Lemma 2.2 in [3]. �

Lemma 3 Let p be a prime with p ≡ 1 mod 8, ψ be an eighth-order character mod p. Then
we have the identity

τ 2(ψ)
τ 2(ψ3)

+
τ 2(ψ3)
τ 2(ψ)

=
2α√p

,

where α is defined as in Theorem 1.

Proof It it clear that if ψ is an eighth-order character modp, then ψ3 is also an eighth-
order character mod p. So substituting ψ by ψ3 in Lemma 1, and noting that ψ9 = ψ , ψ6 =
ψ2, from Lemma 1 we have

τ 2(ψ2) = p · τ 2(ψ)
τ 2(ψ3)

. (4)

Note that ψ2 is a fourth-order character modp, from (4), Lemma 1 and Lemma 2 we may
immediately deduce the identity

p
(

τ 2(ψ)
τ 2(ψ3)

+
τ 2(ψ3)
τ 2(ψ)

)
= τ 2(ψ2) + τ 2(ψ2) = 2

√
p · α,

which implies the identity

τ 2(ψ)
τ 2(ψ3)

+
τ 2(ψ3)
τ 2(ψ)

=
2α√p

.

This proves Lemma 3. �

3 Proofs of the theorems
Now we will complete the proofs of our main results. First we prove Theorem 1. Let p be
a prime with p ≡ 1 mod 8, ψ be an eighth-order character modp. For any integer k ≥ 0,
we define

Fk(p) =
τ k(ψ)
τ k(ψ3)

+
τ k(ψ3)
τ k(ψ)

.
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It is clear that from Lemma 3 we have F0(p) = 2 and

2α√p
+ 2 =

τ 2(ψ)
τ 2(ψ3)

+
τ 2(ψ3)
τ 2(ψ)

+ 2 =
(

τ (ψ)
τ (ψ3)

+
τ (ψ3)
τ (ψ)

)2

. (5)

From (5) we can deduce that

F1(p) = ±
√

2
(

1 +
α√p

)
= C. (6)

If k ≥ 1, then from the definition of Fk(p) we have

Fk(p) · F1(p) =
(

τ k(ψ)
τ k(ψ3)

+
τ k(ψ3)
τ k(ψ)

)(
τ (ψ)
τ (ψ3)

+
τ (ψ3)
τ (ψ)

)
= Fk+1(p) + Fk–1(p)

or the second-order linear recursive formula

Fk+1(p) = C · Fk(p) – Fk–1(p),

where F0(p) = 2 and F1(p) = ±
√

2(1 + α√p ).
This proves Theorem 1.
Similarly, we can deduce Theorem 2. In fact, for any integer k ≥ 1, from Lemma 3 we

have

2α√p
· F2k(p) =

(
τ 2(ψ)
τ 2(ψ3)

+
τ 2(ψ3)
τ 2(ψ)

)(
τ 2k(ψ)
τ 2k(ψ3)

+
τ 2k(ψ3)
τ 2k(ψ)

)
= F2k+2(p) + F2k–2(p)

or the second-order linear recursive formula

F2k(p) =
2α√p

· F2k–2(p) + F2k–4(p),

where the first two terms are F0(p) = 2 and F2(p) = 2α√p .
This completes the proof of Theorem 2.
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