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Abstract
We extend the fractional Caputo–Fabrizio derivative of order 0 ≤ σ < 1 on CR[0, 1]
and investigate two higher-order series-type fractional differential equations
involving the extended derivation. Also, we provide an example to illustrate one of
the main results.
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1 Introduction
Recently, Caputo and Fabrizio suggested a new fractional derivative [15, 16]), and Losada
and Nieto [21] investigated some of its properties. Later, some authors tried to utilized it
for solving various equations (see [2–14, 17], and [26]), whereas some researchers studied
some singular fractional integro-differential equations [22–25]. As you know, the frac-
tional Caputo–Fabrizio derivative is defined on the space H1 (which is not necessarily a
Banach space), and because of this reason, a researcher has to investigate approximate
solutions for some problems [11, 13]. It seems that Caputo and Fabrizio tried to give a
formula for an extension of their definition (see formula (3) in [15]), but they did not use
it in their investigation. In 2016, Alqahtani tried to extend the Caputo–Fabrizio derivative
by using formula (2.2) in [5]. Again, he did not use it for investigating the problems re-
ported in [5]. In this manuscript, we extend the fractional Caputo–Fabrizio derivative on
CR[0, 1]. Using it, we discuss some higher-order series-type fractional integro-differential
equations.

The properties of the fractional Caputo–Fabrizio derivative were investigated very re-
cently in [7]. Specifically, the Caputo–Fabrizio fractional derivative is discussed in he
distributional setting [7]. For more detail about physical interpretation of the Caputo–
Fabrizio derivative, the reader can see the new results presented recently in [19]. Specif-
ically, the physical origin of Caputo–Fabrizio derivative is demonstrated in [18]. Besides,
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very recently the determination of the fractional order (relation to physical characteristics
of the process) was investigated in [20].

Having all the mentioned things in mind, in this paper, we extend the fractional Caputo–
Fabrizio derivative on CR[0, 1]. Using it, we investigate some higher-order series-type frac-
tional integro-differential equations.

Let b > 0, κ ∈ H1(0, b), and σ ∈ [0, 1]. Thus, for the function κ , its Caputo–Fabrizio frac-
tional derivative is written as CFDσ κ(t) = B(σ )

1–σ

∫ t
0 exp( –σ

1–σ
(t – s))κ ′(p) dp, where t ≥ 0, and

B(σ ) denotes a normalization constant obeying B(0) = B(1) = 1 [1, 15]. The associated frac-
tional integral of order σ for the function κ is defined by CFIσ κ(t) = 1–σ

B(σ )κ(t) + σ
B(σ )

∫ t
0 κ(s) ds

for 0 < σ < 1 [1, 21].
If n ≥ 1 and σ ∈ [0, 1], then the fractional derivative CFDσ+n of order n + σ is de-

fined by CFDσ+nκ := CFDσ (Dnκ(t)) [21]. Also, we have limσ→0
CFDσ κ(t) = κ(t) – κ(0),

limσ→1
CFDσ κ(t) = κ ′(t), and CFDσ (λκ(t) +γ υ(t)) = λCFDσ κ(t) +γ CFDσ υ(t) for all κ ,υ ∈ H1

and λ,γ ∈R [15]. We now present the following important results.

Lemma 1.1 ([21]) Let 0 < σ < 1. Then the unique solution of CFDσ κ(p) = υ(p) such that
κ(0) = c is written as κ(p) = c+aσ (υ(p)–υ(0))+bσ

∫ p
0 υ(s) ds, where aσ = 1–σ

B(σ ) and bσ = σ
B(σ ) .

Note that υ(0) = 0.

Lemma 1.2 ([27]) Let t ∈ R and 0 ≤ |t| < ∞. Then t
∏∞

i=1(1 – t2

i2π2 ) = sin t,
∏∞

i=1(1 –
4t2

(2i–1)2π2 ) = cos t and et =
∑∞

i=0
ti

i! for 0 < |t| < ∞.

2 Results and discussion
We further show our main results. Let κ ∈ CR[0, b], b > 0, and σ ∈ (0, 1). We define the
expended fractional Caputo–Fabrizio derivative of order σ by

CF
N Dσ κ(p) =

B(σ )
1 – σ

(
κ(p) – κ(0)

)
exp

(
–σ

1 – σ
p
)

+
σB(σ )

(1 – σ )2

∫ p

0

(
κ(p) – κ(s)

)
exp

(
–σ

1 – σ
(p – s)

)

ds.

If κ(0) = 0, then we have CF
N Dσ κ(p) = B(σ )

1–σ
κ(p) – σB(σ )

(1–σ )2

∫ p
0 exp(– σ

1–σ
(p – s))κ(s) ds. We recall

that

Jnκ(p) =
∫ p=pn

0

∫ s=pn–1

0

∫ pn–2

0
· · ·

∫ p1

0︸ ︷︷ ︸
n times

κ(p0) dp0 dp1 · · ·d(pn–2) ds

=
1

(n – 1)!

∫ p

0
κ(s)(p – s)n–1 ds.

Now, let us po define CF
N Dσ [n]

κ(p) := CF
N Dσ (CF

N Dσ (CF
N Dσ · · · (CF

N Dσ

︸ ︷︷ ︸
n times

κ(p)) · · · )) for n ≥ 1, a, p ∈

R, and p > 0. Also, we define J0κ(p) =
∫ p[0]

0 κ(s) ds = κ(p),

∫ p[n]

0
κ(s) ds =

∫ p=pn

0

∫ s=pn–1

0

∫ pn–2

0
· · ·

∫ p1

0︸ ︷︷ ︸
n times

κ(p0) dp0 dp1 · · ·d(pn–2) ds = Jnκ(p),
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and

(
aσ + bσ Jκ(p)

)[n] =
(

aσ + bσ

∫ p

0
κ(s) ds

)[n]

=

(
n
0

)

an
σ b0

σ

∫ p[0]

0
κ(s) ds +

(
n
1

)

an–1
σ b1

σ

∫ p[1]

0
κ(s) ds

+ · · · +

(
n

n – 1

)

a1
σ bn–1

σ

∫ p[n–1]

0
κ(s) ds +

(
n
n

)

a0
σ bn

σ

∫ p[n]

0
κ(s) ds

=
n∑

i=0

(
n
i

)

an–i
σ bi

σ

∫ p[i]

0
κ(s) ds

=
n∑

i=0

(
n
i

)

an–i
σ bi

σ J iκ(p).

The following result shows that our definition is a generalization of the Caputo–Fabrizio
derivative.

Lemma 2.1 Let κ ∈ H1(0, b), b > 0, and σ ∈ (0, 1). Then CF
N Dσ κ(t) = CFDσ κ(t). If κ ∈

CR[0, b], then there exists a sequence (κn)∞n=1 of H1(0, b) such that CF
N Dσ κ(t) =

limn→∞ CF
N Dσ κn(t) and limσ→0

CF
N Dσ κ(t) = κ(t) – κ(0).

Proof Let κ ∈ H1(0, b). Note that

CFDσ κ(t)

=
B(σ )
1 – σ

∫ t

0
exp

(

–
σ

1 – σ
(t – p)

)

κ ′(p) dp

=
B(σ )
1 – σ

exp

(

–
σ

1 – σ
(t – p)

)

κ(p)|t0 –
B(σ )
1 – σ

∫ t

0

σ

1 – σ
exp

(

–
σ

1 – σ
(t – p)

)

κ(p) dp

=
B(σ )
1 – σ

κ(t) –
B(σ )
1 – σ

exp

(

–
σ

1 – σ
t
)

κ(0) –
σB(σ )

(1 – σ )2

∫ t

0
exp

(

–
σ

1 – σ
(t – p)

)

κ(p) dp

=
B(σ )
1 – σ

κ(t) –
B(σ )
1 – σ

exp

(

–
σ

1 – σ
t
)

κ(0) –
σB(σ )

(1 – σ )2

∫ t

0
exp

(

–
σ

1 – σ
(t – p)

)

κ(p) dp

+
σB(σ )

(1 – σ )2

∫ t

0
exp

(

–
σ

1 – σ
(t – p)

)

κ(t) dp

–
σB(σ )

(1 – σ )2

∫ t

0
exp

(

–
σ

1 – σ
(t – p)

)

κ(t) dp

=
B(σ )
1 – σ

(
κ(t) – κ(0)

)
exp

(
–σ

1 – σ
t
)

+
σB(σ )

(1 – σ )2

∫ t

0

(
κ(t) – κ(p)

)
exp

(
–σ

1 – σ
(t – p)

)

dp.

Now, let κ ∈ CR[0, b]. Choose a sequence of polynomials {κn = Pn}∞n=1 that converges uni-
formly to κ . Hence CF

N Dσ κ(t) = limn→∞ CF
N Dσ κn(t). Since Pn ∈ H1, we conclude

that limσ→0
CF
N Dσ κ(t) = limσ→0 limn→∞ CFDσ Pn(t) = limn→∞ limσ→0

CFDσ Pn(t) =
limn→∞[Pn(t) – Pn(0)] = κ(t) – κ(0). �
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Note that if κ ∈ H1(0, b), then limσ→1
CF
N Dσ κ(t) = κ ′(t). But this may be not true for κ ∈

CR[0, b].

Lemma 2.2 A solution of the problem CF
N Dσ κ(t) = υ(t) such that κ(0) = 0 is of the form

κ(t) = aσ υ(t) + bσ

∫ t
0 υ(s) ds for 0 < σ < 1.

Proof Note that CF
N Dσ κ(t) = B(σ )

1–σ
κ(t) – σB(σ )

(1–σ )2

∫ t
0 exp(– σ

1–σ
(t – s))κ(s) ds = υ(t). Hence

σB(σ )
(1–σ )2

∫ t
0 exp( σ

1–σ
s)κ(s) ds = exp( σ

1–σ
t)[ B(σ )

1–σ
κ(t) – υ(t)]. By differentiating both sides we get

υ(t) = 1–σ
σ

[ B(σ )
1–σ

κ(t) – υ(t)]′. Now by integrating we obtain κ(t) = aσ υ(t) + bσ

∫ t
0 υ(s) ds. �

It is crucial to check that in the last result the equation CF
N Dσ κ(t) = 0 with κ(0) = 0 pos-

sesses a unique solution. Using this note and Lemma 2.2, we deduce the next result.

Lemma 2.3 Let 0 < σ < 1. Then the unique solution of CF
N Dσ κ(t) = υ(t) with κ(0) = 0 is

written as κ(t) = aσ υ(t) + bσ

∫ t
0 υ(p) dp.

Lemma 2.4 Let 0 < σ < 1 and κ(0) = 0. Then the unique solution for the problem
CF
N Dσ [n]

κ(t) = υ(t) is given by κ(t) = (aσ + bσ Jυ(t))[n].

Proof Applying Lemma 2.3 to CF
N Dσ κ(t) = υ(t), we conclude that κ(t) = aσ υ(t) +

bσ

∫ t
0 υ(p) dp. Using Lemma 2.3 for equation CF

N Dσ [2]
κ(t) = υ(t), we get CF

N Dσ κ(t) = aσ υ(t) +
bσ

∫ t
0 υ(s) ds, and so

κ(t) = aσ

(

aσ υ(t) + bσ

∫ t

0
υ(s) ds

)

+ bσ

∫ t

0

(

aσ υ(t) + bσ

∫ s

0
υ(r) dr

)

ds

= a2
σ υ(t) + 2aσ bσ

∫ t

0
υ(s) ds + b2

σ

∫ t

0

∫ s

0
υ(r) dr ds =

(

aσ + bσ

∫ t

0
υ(s) ds

)[2]

.

Now, suppose that κ(t) = (aσ + bσ Jυ(t))[n] is the solution of CF
N Dσ [n]

κ(t) = υ(t). We prove
that κ(t) = (aσ + bσ Jυ(t))[n+1] is the solution of CF

N Dσ [n+1]
κ(t) = υ(t). If CF

N Dσ [n] (CF
N Dσ κ(t)) =

υ(t), then CF
N Dσ κ(t)) = (aσ + bσ Jυ(t))[n], and so

κ(t) = aσ

(
aσ + bσ Jυ(t)

)[n] + bσ

∫ t

0

(
aσ + bσ Jυ(s)

)[n] ds

= aσ

[(
n
0

)

an
σ b0

σ

∫ t[0]

0
υ(s) ds +

(
n
1

)

an–1
σ b1

σ

∫ t[1]

0
υ(s) ds

+ · · · +

(
n

n – 1

)

a1
σ bn–1

σ

∫ t[n–1]

0
υ(s) ds +

(
n
n

)

a0
σ bn

σ

∫ t[n]

0
υ(s) ds

]

+ bσ

[(
n
0

)

an
σ b0

σ

∫ t[1]

0
υ(s) ds +

(
n
1

)

an–1
σ b1

σ

∫ t[2]

0
υ(s) ds

+ · · · +

(
n

n – 1

)

a1
σ bn–1

σ

∫ t[n]

0
υ(s) ds +

(
n
n

)

a0
σ bn

σ

∫ t[n+1]

0
υ(s) ds

]

=

(
n
0

)

an+1
σ b0

σ

∫ t[0]

0
υ(s) ds +

[(
n
1

)

+

(
n
0

)]

an
σ b1

σ

∫ t[1]

0
υ(s) ds
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+ · · · +

[(
n
n

)

+

(
n

n – 1

)]

a1
σ bn

σ

∫ t[n]

0
υ(s) ds +

(
n
n

)

a0
σ bn+1

σ

∫ t[n+1]

0
υ(s) ds

=

(
n + 1

0

)

an+1
σ b0

σ

∫ t[0]

0
υ(s) ds +

(
n + 1

1

)

an
σ b1

σ

∫ t[1]

0
υ(s) ds

+ · · · +

(
n + 1

n

)

+ a1
σ bn

σ

∫ t[n]

0
υ(s) ds +

(
n + 1
n + 1

)

a0
σ bn+1

σ

∫ t[n+1]

0
υ(s) ds

=
(
aσ + bσ Jυ(t)

)[n+1]. �

By using the details of the proof of the last result, we can easily deduce the following
results (see [13]).

Lemma 2.5 Let κ ,υ ∈ CR[0, 1]. If there exists a real number K such that |κ(t) – υ(t)| ≤ K
for all t ∈ [0, 1], then |CF

N Dσ κ(t) – CF
N Dσ υ(t)| ≤ (2–σ )B(σ )

(1–σ )2 K for all t ∈ [0, 1]. If κ(0) = υ(0), then
|CF
N Dσ κ(t) – CF

N Dσ υ(t)| ≤ B(σ )
(1–σ )2 K .

This result implies that |CF
N Dσ κ(t)| ≤ (2–σ )B(σ )

(1–σ )2 K for all t ∈ [0, 1] whenever κ ∈ CR[0, 1]
with |κ(t)| ≤ K for some K ≥ 0 and all t ∈ [0, 1].

Lemma 2.6 Suppose that κ ,υ ∈ CR[0, 1] and there exists a real number K such that |κ(t) –
υ(t)| ≤ K for all t ∈ [0, 1]. Then |CF

N Dσ [n]
κ(t) – CF

N Dσ [n]
υ(t)| ≤ ( (2–σ )B(σ )

(1–σ )2 )nK for all t ∈ [0, 1].

If κ(0) = υ(0), then |CF
N Dσ [n]

κ(t) – CF
N Dσ [n]

υ(t)| ≤ ( B(σ )
(1–σ )2 )nK for all t ∈ [0, 1].

In [21], the nonlinear fractional differential problem CFDσ κ(t) = f (t,κ(t)) with 0 ≤ σ < 1
was studied. In the proof of the related result (Theorem 1), the self-map F :∈ CR[0, 1] →
CR[0, 1] defined by (Fκ)(t) = aσ f (t,κ(t)) + bσ

∫ t
0 f (s,κ(s)) ds is well defined, and there is no

problem. Note that this method of proofs cannot be useful for the problem

CFDσ κ(t) = f
(
t,κ(t), CFDσ κ(t)

)

because the map F cannot be defined on the space H1. Here σ ,β ∈ (0, 1). For finding a new
method for solving such problems, we defined a new notion by replacing CFDσ κ(t) with
CF
N Dσ κ(t). Note that our extended derivative can only be used for order σ ∈ (0, 1). First, we
investigate the fractional differential problem

CF
N Dσ κ(t) = f

(
t,κ(t), g(t) CF

N Dβκ(t)
)

(1)

with κ(0) = 0, where σ ,β ∈ (0, 1).

Theorem 2.7 Let σ ,β ∈ (0, 1), and let f : [0, 1] × R
2 → R be a continuous function such

that |f (t, x, y) – f (t, x′, y′)| ≤ η(t)(|x – x′| + |y – y′|) for all t ∈ [0, 1] and x, y, x′, y′ ∈ R. Then
problem (1) has a unique solution in H1(0, 1) whenever 
 = 1

B(σ ) [η∗[1 + MB(β)
(1–β)2 ] < 1.

Proof Consider the map F :∈ CR[0, 1] → CR[0, 1] defined by

(Fκ)(t) = aσ f
(
t,κ(t), g(t) CF

N Dβκ(t)
)

+ bσ

∫ t

0
f
(
s,κ(s), g(s) CF

N Dβκ(s)
)

ds.
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By Lemma 2.5 we get

∣
∣f

(
t,κ(t), g(t) CF

N Dβκ(t)
)

– f
(
t,υ(t), g(t) CF

N Dβυ(t)
)∣
∣

≤ η∗
(

‖κ – υ‖ +
MB(β)
(1 – β)2 ‖κ – υ‖

)

= η∗
[

1 +
MB(β)
(1 – β)2

]

‖κ – υ‖

for all κ ,υ ∈ CR[0, 1] and t ∈ [0, 1]. Hence

∣
∣(Fκ)(t) – (Fυ)(t)

∣
∣ ≤ aσ η∗

[

1 +
MB(β)
(1 – β)2

]

‖κ – υ‖ + bσ

∫ t

0
η∗

[

1 +
MB(β)
(1 – β)2

]

‖κ – υ‖ds

≤ [aσ + bσ ][η∗
[

1 +
MB(β)
(1 – β)2

]

‖κ – υ‖

=
1

B(σ )
[η∗

[

1 +
MB(β)
(1 – β)2

]

‖κ – υ‖

for all κ ,υ ∈ CR[0, 1]. Since 
 < 1, F is a contraction. By the Banach contraction principle
F has a unique fixed point, which is the unique solution for problem (1). �

Let h and g be bounded functions on [0, 1] with M1 = supt∈I |h(t)| < ∞ and M2 =
supt∈I |g(t)| < ∞. Now, we investigate the fractional higher-order series-type differential
problem

CF
N Dσ κ(t) =

∞∑

j=0

CF
N D�[j] f (t,κ(t), (φκ)(t), h(t) CF

N Dνκ(t), g(t) CF
N Dδκ(t))

2j (2)

with boundary condition κ(0) = 0, where σ ,ν,�, δ ∈ (0, 1). Note that the functions h and g
may be discontinuous. Since the left side of equation (2) is continuous, so is the right side
as problem (2) should be a well defined equation (check our example). For this reason,
we add the continuity of the function f to the assumptions of the next two results in order
equations (2) and (3) to be well defined. Consider the Banach space CR[0, 1] endowed with
the norm ‖κ‖ = supt∈I |κ(t)|.

Theorem 2.8 Let f : [0, 1] ×R
4 →R be a continuous function such that

∣
∣f (t, x, y, w, v) – f1

(
t, x′, y′, w′, v′)∣∣ ≤ ξ1

∣
∣x – x′∣∣ + ξ2

∣
∣y – y′∣∣ + ξ3

∣
∣w – w′∣∣ + ξ4

∣
∣v – v′∣∣

for some nonnegative real numbers ξ1, ξ2, ξ3, ξ4 and all x, y, w, v, x′, y′, w′, v′ ∈ R and t ∈
[0, 1]. If 
 = 1

B(σ )
∑∞

j=0
1
2j ( B(�)

(1–�)2 )j(ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1–ν)2 + ξ4

M2B(δ)
(1–δ)2 ) < 1, then problem (2) has a

unique solution.

Proof Define the map F : CR[0, 1] → CR[0, 1] by

(Fκ)(t) = aσ

∞∑

j=0

CF
N D�[j] f (t,κ(t), (φκ)(t), h(t) CF

N Dνκ(t), g(t) CF
N Dδκ(t))

2j

+ bσ

∫ t

0

∞∑

j=0

CF
N D�[j] f (s,κ(s), (φκ)(s), h(s) CF

N Dνκ(s), g(s) CF
N Dδκ(s))

2j ds,
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where aσ and bσ are introduced in Lemma 1.1. By Lemmas 2.5 and 2.6 we get

∣
∣
∣
∣
∣

[ ∞∑

j=0

1
2j

CF
N D�[j]

f
(
t,κ(t), (φκ)(t), h(t) CF

N Dνκ(t), g(t) CF
N Dδκ(t)

)

–
∞∑

j=0

1
2j

CF
N D�[j]

f
(
t,υ(t), (φυ)(t), h(t) CF

N Dνυ(t), g(t) CF
N Dδυ(t)

)
∣
∣
∣
∣
∣

≤
∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1‖κ – υ‖ + ξ2γ0‖κ – υ‖

+ ξ3
M1B(ν)
(1 – ν)2 ‖κ – υ‖ + ξ4

M2B(δ)
(1 – δ)2 ‖κ – υ‖

)

≤
∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1 – ν)2 + ξ4

M2B(δ)
(1 – δ)2

)

‖κ – υ‖

for all κ ,υ ∈ CR[0, 1] and t ∈ [0, 1]. Hence

∣
∣(Fκ)(t) – (Fυ)(t)

∣
∣

≤ aσ

∣
∣
∣
∣
∣

∞∑

j=0

1
2j

CF
N D�[j]

f
(
t,κ(t), (φκ)(t), h(t) CF

N Dνκ(t), g(t) CF
N Dδκ(t)

)

–
∞∑

j=0

1
2j

CF
N D�[j]

f
(
t,υ(t), (φυ)(t), h(t) CF

N Dνυ(t), g(t) CF
N Dδυ(t)

)
∣
∣
∣
∣
∣

+ bσ

[∫ t

0

∣
∣
∣
∣
∣

∞∑

j=0

1
2j

CF
N D�[j]

f
(
s,κ(s), (φκ)(s), h(s) CF

N Dνκ(s), g(s) CF
N Dδκ(s)

)

–
∞∑

j=0

1
2j

CF
N D�[j]

f
(
s,υ(s), (φυ)(s), h(s) CF

N Dνυ(s), g(s) CF
N Dδυ(s)

)
∣
∣
∣
∣
∣
ds

]

≤
(

aσ

∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1 – ν)2 + ξ4

M2B(δ)
(1 – δ)2

)

]

+ bσ

∫ t

0

∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1 – ν)2 + ξ4

M2B(δ)
(1 – δ)2

)

ds

)

≤ [aσ + bσ ]

[ ∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1 – ν)2 + ξ4

M2B(δ)
(1 – δ)2

)]

‖κ – υ‖

for all κ ,υ ∈ CR[0, 1] and t ∈ [0, 1]. This implies that

‖Fκ – Fυ‖ ≤ 1
B(σ )

∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1 – ν)2 + ξ4

M2B(δ)
(1 – δ)2

)

‖κ – υ‖

for all κ ,υ ∈ CR[0, 1]. Note that 
 < 1, so that F is a contraction. The Banach contraction
principle implies that F has a unique fixed point, which is the unique solution for (2). �
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Note that we used the boundary conditions κ(0) = 0 for obtaining the key inequality

∣
∣(Fκ)(t) – (Fυ)(t)

∣
∣

≤ 1
B(σ )

∞∑

j=0

1
2j

(
B(�)

(1 – �)2

)j(

ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1 – ν)2 + ξ4

M2B(δ)
(1 – δ)2

)

‖κ – υ‖.

Let k, s, h, and g be bounded functions on [0, 1] with M1 = supt∈I |k(t)| < ∞, M2 =
supt∈I |s(t)| < ∞, M3 = supt∈I |h(t)| < ∞, and M4 = supt∈I |g(t)| < ∞. Now, we investigate
the fractional higher-order series-type differential problem

CF
N Dσ [n]

κ(t) – [λk(t) CF
N Dβ[m]

κ(t) + μs(t) CF
N Dρ[p]

κ(t)]
∑∞

j=0
1
j!

CF
N Dθ [j] f (t,κ(t), (φκ)(t), h(t) CF

N Dν[q]
κ(t), g(t) CF

N Dδ[r]
κ(t))

=
∞∏

i=1

(

1 –
[
∑∞

j=0
1
j!

CF
N Dθ [j] f (t,κ(t), (φκ)(t), h(t) CF

N Dν[q]
κ(t), g(t) CF

N Dδ[r]
κ(t))]2

i2π2

)

+
∞∏

i=1

(

1 –
4[

∑∞
j=0

1
j!

CF
N Dθ [j] f (t,κ(t), (φκ)(t), h(t) CF

N Dν[q]
κ(t), g(t) CF

N Dδ[r]
κ(t))]2

(2i – 1)2π2

)

(3)

such that κ(0) = 0, where λ,μ ≥ 0, σ ,β ,ρ, θ ,ν, δ,∈ (0, 1), and n, m, p, q, and r are natural
numbers.

Theorem 2.9 Assume that f : [0, 1] ×R
4 →R is a continuous function such that

∣
∣f (t, x, y, w, z) – f

(
t, x′, y′, w′, z′)∣∣

≤ ξ1
(∣
∣x – x′∣∣ + ξ2

∣
∣y – y′∣∣ + ξ3

∣
∣w – w′∣∣ + ξ4

∣
∣z – z′∣∣)

for some nonnegative real numbers ξ1, ξ2, ξ3, ξ4 and all x, y, w, z, x′, y′, w′, z′ ∈ R and t ∈
[0, 1]. If 
 = ( 1

B(σ ) )n([λ M1B(β)
(1–β)2m + μ

M2B(ρ)
(1–ρ)2p ] + [e

B(θ )
(1–θ )2 (ξ1 + ξ2γ0 + ξ3

M3B(ν)
(1–ν)2q + ξ4

M4B(δ)
(1–δ)2r )]) < 1, then

problem (3) has a unique solution.

Proof Define (Gκ)(s) =
∑∞

j=0
1
j!

CF
N Dθ [j] f (s,κ(s), (φκ)(s), h(s) CF

N Dν[q]
κ(s), g(s) CF

N Dδ[r]
κ(s)) for all

κ ∈ CR[0, 1] and s ∈ [0, 1]. Consider the map F : CR[0, 1] → CR[0, 1] defined by

F(κ) =

(

aσ + bσ

∫ t

0

[

(Gκ)(s)
∞∏

i=1

(

1 –
[(Gκ)(s)]2

i2π2

)

+ (Gκ)(t)
∞∏

i=1

(

1 –
4[(Gκ)(t)]2

(2i – 1)2π2

)

+
(
λk(s) CF

N Dβ[m]
κ(s) + μs(s) CF

N Dρ[p]
κ(s)

)
]

ds

)[n]

.

By Lemma 1.2 we have

CF
N Dσ [n]

κ(t) = (Gκ)(t)
∞∏

i=1

(

1 –
[(Gκ)(t)]2

i2π2

)

+ (Gκ)(t)
∞∏

i=1

(

1 –
4[(Gκ)(t)]2

(2i – 1)2π2

)

+
(
λk(t) CF

N Dβ[m]
κ(t) + μs(t) CF

N Dρ[p]
κ(t)

)
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= sin(Gκ)(t) + cos(Gκ)(t) +
(
λk(t) CF

N Dβ[m]
κ(t) + μs(t) CF

N Dρ[p]
κ(t)

)

= 2
1
2 sin

(

(Gκ)(t) +
π

4

)

+
(
λk(t) CF

N Dβ[m]
κ(t) + μs(t) CF

N Dρ[p]
κ(t)

)

for all κ ∈ CR[0, 1] and s ∈ [0, 1]. Hence

∣
∣(Fκ)(t) – (Fυ)(t)

∣
∣

≤
(

aσ + bσ

∫ t

0

[

2
1
2

∣
∣
∣
∣sin

(

(Gκ)(s) +
π

4

)

– sin

(

(Gυ)(s) +
π

4

)∣
∣
∣
∣

+
∣
∣(λk(s) CF

N Dβ[m]
κ(s) + μs(s) CF

N Dρ[p]
κ(s)

)
–

(
λk(s) CF

N Dβ[m]
υ(s)

+ μs(t) CF
N Dρ[p]

υ(s)
)∣
∣
]

ds
)[n]

≤
(

aσ +
∫ t

0
2

1
2
∣
∣(Gκ)(s) – (Gυ)(s)

∣
∣
)

+
∣
∣
(
λk(s) CF

N Dβ[m]
κ(s) + μs(s) CF

N Dρ[p]
κ(s)

)
–

(
λk(s) CF

N Dβ[m]
υ(s)

+ μs(t) CF
N Dρ[p]

υ(s)
)∣∣ds)[n]

≤
(

aσ +
∫ t

0
2

1
2
∣
∣(Gκ)(s) – (Gυ)(s)

∣
∣
)

+ λ
∣
∣k(s)

∣
∣
∣
∣CF
N Dβ[m](

κ(s) – υ(s)
)∣
∣ + μ

∣
∣s(s)

∣
∣
∣
∣CF
N Dρ[p](

κ(s) – υ(s)
)∣
∣ds)[n]

for all κ ,υ ∈ CR[0, 1] and t ∈ [0, 1]. Also, by Lemma 2.6 we get

∣
∣(Gκ)(s) – (Gυ)(s)

∣
∣ ≤

∞∑

i=0

1
i!

(
B(θ )

(1 – θ )2

)i[

ξ1 + ξ2γ0 + ξ3
M3B(ν)
(1 – ν)2q + ξ4

M4B(δ)
(1 – δ)2r

]

‖κ – υ‖

for all κ ∈ CR[0, 1] and s ∈ [0, 1]. Thus we get

‖Fκ – Fυ‖

≤ (aσ + bσ )n
[

λ
M1B(β)

(1 – β)2m + μ
M2B(ρ)
(1 – ρ)2p

]

+ (aσ + bσ )n
[

e
B(θ )

(1–θ )2

(

ξ1 + ξ2γ0 + ξ3
M3B(ν)
(1 – ν)2q + ξ4

M4B(δ)
(1 – δ)2r

)]

‖κ – υ‖

=
(

1
B(σ )

)n([

λ
M1B(β)

(1 – β)2m + μ
M2B(ρ)
(1 – ρ)2p

]

+
[

e
B(θ )

(1–θ )2

(

ξ1 + ξ2γ0 + ξ3
M3B(ν)
(1 – ν)2q + ξ4

M4B(δ)
(1 – δ)2r

)])

‖κ – υ‖

for all κ ,υ ∈ CR[0, 1].
Since 
 < 1, F is a contraction. By the Banach contraction principle, F possesses a unique

fixed point, which is the unique solution for (3). �

Now, we explicitly show an example to illustrate our aim.
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Example 2.1 Consider γ : [0, 1] × [0, 1] → [0,∞) defined by γ (t, s) = e2t–s

e . Note that
γ0 ≤ e. Put σ = 1

4 , ν = 1
4 , δ = 1

4 , � = 1
8 , ξ1 = 2

41 , ξ2 = 1
48 , ξ3 = 1

e2 , and ξ4 = 1
2e2 . Let B(σ ) = 1 for

σ ∈ (0, 1), h(t) = 1 for x ∈ Q ∩ [0, 1] and h(t) = 0 for x ∈ Qc ∩ [0, 1], g(t) = 0 for x ∈ Q ∩ [0, 1]
and g(t) = 2 for x ∈ Qc ∩ [0, 1]. Then, M1 = supt∈[0,1] |h(t)| = 1 and M2 = supt∈[0,1] |g(t)| = 2.
We further discuss the fractional problem

CFD
1
4 κ(t) =

∞∑

j=0

1
2j

CF
N D�[j]

(

t +
2

41
κ(t) +

1
48

∫ t

0

e2t–s

e
κ(s) ds

+
1
e2 h(t)CFD

1
4 κ(t) +

1
2e2 g(t)CFD

1
4 κ(t)

)

)) (4)

such that κ(0) = 0. Consider f (t, x, y, w, v) = t + 2
41 x + 1

48 y + 1
e2 w + 1

2e2 v for all t ∈ I and
x, y, w, v ∈ R. Note that 
 = 1

B(α)
∑∞

j=0
1
2j ( B(�)

(1–�)2 )j(ξ1 + ξ2γ0 + ξ3
M1B(ν)
(1–ν)2 + ξ4

M2B(δ)
(1–δ)2 ) < 0.3 < 1.

By Theorem 2.8 we conclude that problem (4) has a unique solution.

3 Conclusion
The nonlinear fractional differential problem CFDσ κ(t) = f (t,κ(t)) with 0 ≤ σ < 1 has been
studied in some works. The method used in the proofs cannot be used for the prob-
lem CFDσ κ(t) = f (t,κ(t), CFDσ κ(t)) for technical reasons. For finding a new method for
solving such problems, we define a new extended fractional derivative CF

N Dσ κ(t) replac-
ing CFDσ κ(t), and we study two higher-order series-type fractional differential equations
involving the extended derivative. We emphasize that our extended derivative can be used
only for order σ ∈ (0, 1).
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