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Abstract
In this paper we consider the existence of positive solutions of nth-order
Sturm–Liouville boundary value problems with fully nonlinear terms, in which the
nonlinear term f involves all of the derivatives u′, . . . ,u(n–1) of the unknown function u.
Such cases are seldom investigated in the literature. We present some inequality
conditions guaranteeing the existence of positive solutions. Our inequality conditions
allow that f (t, x0, x1, . . . , xn–1) is superlinear or sublinear growth on x0, x1, . . . , xn–1. Our
discussion is based on the fixed point index theory in cones.
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1 Introduction
In this paper, we consider the existence of positive solutions of the nth-order Sturm–
Liouville boundary value problem (BVP)

⎧
⎪⎪⎨

⎪⎪⎩

u(n)(t) + f (t, u(t), u′(t), . . . , u(n–1)(t)) = 0, t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)(0) – βu(n–1)(0) = 0, γ u(n–2)(1) + δu(n–1)(1) = 0,

(1.1)

where n ≥ 3, f : [0, 1] ×R+
n–1 ×R →R+ is continuous, R+ = [0,∞), and α, β , γ and δ are

constants and satisfy

β ≥ 0, δ ≥ 0, α + β > 0, γ + δ > 0, ρ := αγ + αδ + βγ > 0, (1.2)

which allow α and γ to be negative. This problem models various dynamic systems with
n degrees of freedom in which n states are observed n times; see Meyer [1]. For some of
the simple cases that the nonlinearity f does not contain a derivative term, the existence
of positive solutions has been researched by many authors; see [2–11]. Zhou, Chu and
Baleanu [12] studied a fractional differential equation boundary value problem and ob-
tained existence results of positive solutions. For the cases of n = 3 or n = 4 and the non-
linearity f containing a derivative term u′′, the existence of positive solutions has also been
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discussed by some authors; see [13–15]. Hajipour, Jajarmi and Baleanu [16] presented an
accurate discretization method to solve some highly nonlinear boundary value problems.
However, for the more general BVP (1.1) there are relatively few studies.

Wong [17] has considered the special case of BVP (1.1) that the nonlinearity f does not
involve the derivative term u(n–1)(t), namely the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

u(n)(t) + f (t, u(t), u′(t), . . . , u(n–2)(t)) = 0, t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)(0) – βu(n–1)(0) = 0, γ u(n–2)(1) + δu(n–1)(1) = 0,

(1.3)

and he has obtained the existence of a solution by assuming that BVP (1.3) has lower
and upper solutions v and w such that v(n–2)(t) ≤ w(n–2)(t) on [0, 1], and the nonlinearity f
satisfies

f
(
t, v(t), v′(t), . . . , v(n–3)(t), xn–2

) ≤ f (t, x0, x1, . . . , xn–3, xn–2)

≤ f
(
t, w(t), w′(t), . . . , w(n–3)(t), xn–2

)
,

for any (t, x0, x1, . . . , xn–2) ∈ D, where

D := [0, 1] × [
v(t), w(t)

] × [
v′(t), w′(t)

] × · · · × [
v(n–2)(t), w(n–2)(t)

]
.

Wong’s discussion is based on Schauder’s fixed point theorem and a truncating technique
for the nonlinearity f . We note that, for BVP (1.3), there is a corresponding maximum
principle.

Lemma 1.1 Let u ∈ Cn[0, 1] satisfy

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)(t) ≥ 0, t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)(0) – βu(n–1)(0) ≥ 0, γ u(n–2)(1) + δu(n–1)(1) ≥ 0.

(1.4)

Then u(k)(t) ≥ 0 for every t ∈ [0, 1], k = 0, 1, . . . , n – 2.

Therefore, Wong’s method is feasible to BVP (1.3). Since the maximum principle does
not involve the derivative term u(n–1), that is, Condition (1.4) does not entail that u(n–1)(t) ≥
0 on [0, 1], this method is not applicable to BVP (1.1). A few years later, Grossinho and Min-
hós [18] developed Wong’s result and established the existence of a solution to the more
general BVP (1.1) in the presence of lower and upper solutions. In the discussion, to obtain
the estimate of the derivative u(n–1), they require that the nonlinearity f (t, x0, x1, . . . , xn–1)
satisfies the Nagumo-type growth condition on xn–1 in D ×R:

(NC) There is a continuous function h : [0,∞) → (0,∞) satisfying
∫ ∞

0
r dr
h(r) = ∞, such

that

|f (t, x0, x1, . . . , xn–1) ≤ h
(|xn–1|

)
, (t, x0, x1, . . . , xn–1) ∈ D ×R.



Li and Wen Advances in Difference Equations  (2018) 2018:184 Page 3 of 20

Recently, Agarwal and Wong [19] discussed the existence of positive solutions of the
special nth-order boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

u(n)(t) + f (t, u(t), u′(t), . . . , u(q)(t)) = 0, t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)(0) – βu(n–1)(0) = 0, γ u(n–2)(1) + δu(n–1)(1) = 0,

(1.5)

where 1 ≤ q ≤ n – 2. They converted BVP (1.5) to an equivalent (m – q)th-order Sturm–
Liouville boundary value problem of integral-differential equations, and using Krasnosel-
skii’s fixed point theorem in cones they obtained existence results of one or more positive
solutions. However, this method is not applicable to the more general BVP (1.1) owing to
the presence of a derivative u(n–1) in the nonlinearity f . Lately, the present author Li [20]
considered the fully second-order boundary value

⎧
⎨

⎩

–u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = u(1) = 0,
(1.6)

which is a special form of BVP (1.1). Using the theory of fixed point index in cones Li
obtained existence results of positive solutions under the nonlinearity f (t, x, y) showing
superlinear or sublinear growth in x and y. But the discussion in [20] relies on the spatial
boundary condition u(0) = u(1) = 0 and cannot be directly extended to the more general
BVP (1.1).

Motivated by the research mentioned, in this paper we develop a different technique
to discuss the fully nth-order boundary value problem (1.1). Our purpose is to obtain
the existence of positive solution to BVP (1.1). By a positive solution u of BVP (1.1) we
mean u ∈ Cn[0, 1] satisfying (1.1) and u(t) > 0 for t ∈ (0, 1). By using the theory of the fixed
point index in cones we establish existence results of positive solutions for BVP (1.1). In
our results, we present some inequality conditions on the nonlinearity f (t, x0, x1, . . . , xn–1)
when |(x0, x1, . . . , xn–1)| is small or large enough to guarantee the existence of positive so-
lutions. These inequality conditions allow that f (t, x0, x1, . . . , xn–1) may be of superlinear
or sublinear growth in (x0, x1, . . . , xn–1) as |(x0, x1, . . . , xn–1)| → 0 or ∞, and they are com-
paratively easy to check in applications. For the case that f (t, x0, x1, . . . , xn–1) has superlin-
ear growth in (x0, x1, . . . , xn–1) as |(x0, x1, . . . , xn–1)| → ∞, similar to [18] we require that
f (t, x0, x1, . . . , xn–1) satisfies a Nagumo-type growth condition in xn–1; see Assumption (F3)
of Sect. 3. The Nagumo-type condition restricts f to have at most quadric growth on xn–1.
Our work naturally generalizes and extends the known results for some special Sturm–
Liouville boundary value problems [2–11] and complements the work of Refs. [17–20].

The paper is organized as follows. In Sect. 2 some preliminaries to discussing BVP (1.1)
are presented. We discuss the corresponding linear boundary value problem and present
some properties of a positive solution of the linear boundary value problem, then we
choose a cone K in work space Cn–1[0, 1] and convert BVP (1.1) into a fixed point prob-
lem of a completely continuous cone mapping A : K → K . Our main results are stated and
proved in Sect. 3. Finally, in Sect. 4 we present some applications to illustrate the applica-
bility of our main results.
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2 Preliminaries
We use C(I) to denote the Banach space of all continuous function u(t) on I := [0, 1] with
norm ‖u‖C = maxt∈I |u(t)|. Generally, for m ∈ N, Cm(I) denotes the Banach space of all
mth-order continuous differentiable function on I with the norm ‖u‖Cm = max{‖u‖C ,
‖u′‖C , . . . ,‖u(m)‖C}. Let C+(I) be the cone of all nonnegative functions in C(I).

To discuss BVP (1.1), we first consider the corresponding linear boundary value problem
(LBVP)

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)(t) = h(t), t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)(0) – βu(n–1)(0) = 0, γ u(n–2)(1) + δu(n–1)(1) = 0,

(2.1)

where h ∈ C(I). Setting v = u(n–2), the LBVP (2.1) is rewritten as the second-order bound-
ary value problem

⎧
⎨

⎩

–v′′(t) = h(t), t ∈ [0, 1],

αv(0) – βv′(0) = 0, γ v(1) + δv′(1) = 0,
(2.2)

and the (n – 2)th-order initial value problem (IVP)

⎧
⎨

⎩

u(n–2)(t) = v(t), t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3.
(2.3)

Let G(t, s) be the Green function corresponding to the linear boundary value problem
(2.2). It is well known that [17, 19]

G(t, s) =
1
ρ

⎧
⎨

⎩

(β + αs)(δ + γ (1 – t)), 0 ≤ s ≤ t ≤ 1,

(β + αt)(δ + γ (1 – s)), 0 ≤ t ≤ s ≤ 1.
(2.4)

Lemma 2.1 The Green function G(t, s) has the following properties:
(a) G(t, s) ≥ 0 and G(t, s) = G(s, t) for t, s ∈ I .
(b) G(t, s) ≤ LG(s, s) for t, s ∈ I , where L = max{1, β

α+β
, δ

γ +δ
} ≥ 1.

(c) G(t, s) ≥ σG(t, t)G(s, s) for t, s ∈ I , where σ = ρ

max{β ,α+β}·max{δ,γ +δ} > 0.

Proof For the properties (a) and (b), see [13, Lemma 2.3], and we only need to show (c).
For any t, s ∈ (0, 1), since G(t, s), G(s, s) > 0, by (2.4) we have

G(t, s)
G(t, t)G(s, s)

=

⎧
⎨

⎩

ρ

(β+αt)(δ+γ (1–s)) , 0 ≤ s ≤ t ≤ 1,
ρ

(β+αs)(δ+γ (1–t)) , 0 ≤ t ≤ s ≤ 1,

≥ ρ

maxt∈I(β + αt) · maxt∈I(δ + γ (1 – t))

=
ρ

max{β ,α + β} · max{δ,γ + δ} := σ > 0.

Hence, (c) holds. �
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Lemma 2.2 For every h ∈ C(I), LBVP (2.1) has a unique solution u := Sh ∈ Cn(I). Moreover,
the solution operator S : C(I) → Cn–1(I) is a completely continuous linear operator.

Proof For any h ∈ C(I), by the Green function of the solution, BVP (2.2) has a unique
solution

v(t) =
∫ 1

0
G(t, s)h(s) ds := S2h(t), t ∈ I, (2.5)

and the solution operator S2 : C(I) → C2(I) is continuous. Obviously, IVP (2.3) has a
unique solution,

u(t) =
∫ t

0

∫ s1

0
· · ·

∫ sn–3

0
v(sn–2) dsn–2 · · ·ds2 ds1 := Jn–2v(t), t ∈ I, (2.6)

and the solution operator Jn–2 : C(I) → Cn–2(I) is continuous. Consequently, u =
Jn–1(S2h) = (Jn–2 ◦ S2)h is a unique solution of LBVP (2.1), and the solution operator
S = Jn–2 ◦ S2 : C(I) → Cn(I) is continuous. By the compactness of the embedding of
Cn(I) ↪→ Cn–1(I), S : C(I) → Cn–1(I) is a completely continuous linear operator. �

Define a function on I by

θ (t) :=
σ

L
G(t, t) =

σ

L
(α + βt)

(
γ + δ(1 – t)

)
, t ∈ I, (2.7)

where L and σ are positive constants in Lemma 2.1, then θ (t) > 0 for t ∈ (0, 1). Define a
positive constant by


0 := max
t∈I

∫ 1

0
G(t, s) ds =

βδ + αδ + αγ /2
ρ

. (2.8)

Lemma 2.3 Let h ∈ C+(I). Then the unique solution u = Sh of LBVP (2.1) has the following
properties:

(a) u(n–2)(t) ≥ ‖u(n–2)‖Cθ (t) for every t ∈ I .
(b) u(t), u′(t), . . . , u(n–3)(t) ≥ 0 for every t ∈ I .
(c) There exists ξ ∈ (0, 1) such that u(n–1)(ξ ) = 0, u(n–1)(t) ≥ 0 for t ∈ [0, ξ ] and

u(n–1)(t) ≤ 0 for t ∈ [ξ , 1]. Moreover, ‖u(n–1)‖C = max{u(n–1)(0), –u(n–1)(1)}.
(d) ‖u‖C ≤ ‖u′‖C ≤ · · · ≤ ‖u(n–2)‖C .
(e) ‖u(n–2)‖C ≤ 
0‖u(n)‖C , ‖u(n–1)‖C ≤ ‖u(n)‖C .

Proof (a) Let h ∈ C+(I) and u = Sh be the unique solution of LBVP (2.1). Set v(t) = u(n–2)(t),
then v is a unique solution of BVP (2.2) given by (2.5). By (2.5) and Lemma 2.1(a) and (b),
we have

0 ≤ v(t) =
∫ 1

0
G(t, s)h(s) ds ≤ L

∫ 1

0
G(s, s)h(s) ds, t ∈ I.

This implies that

‖v‖C ≤ L
∫ 1

0
G(s, s)h(s) ds.
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Therefore, by Lemma 2.1(c), we have

v(t) =
∫ 1

0
G(t, s)h(s) ds ≥ σ

∫ 1

0
G(t, t)G(s, s)h(s) ds

= θ (t) · L
∫ 1

0
G(s, s)h(s) d ≥ θ (t)‖v‖C .

Namely, the conclusion of Lemma 2.3(a) holds.
(b) Since u(n–2)(t) ≥ 0 for t ∈ I , integrating this inequality and using the boundary con-

ditions u(0) = u′(0) = · · · = u(n–3)(0) = 0, we have

u(n–3)(t) =
∫ t

0
u(n–2)(s) ds ≥ 0, t ∈ I,

u(n–4)(t) =
∫ t

0
u(n–3)(s) ds ≥ 0, t ∈ I,

· · ·

u(t) =
∫ t

0
u′(s) ds ≥ 0, t ∈ I.

Hence, the conclusion of Lemma 2.3(b) holds.
(c) Let v(t) = u(n–2)(t). Since v′′(t) = –h(t) ≤ 0 for every t ∈ I , it follows that v′(t) is a

monotone nonincreasing function on I . Since v is a unique solution of BVP (2.2), by (2.4)
and (2.5) we can obtain

v′(0) =
β

ρ

∫ 1

0

(
γ + δ(1 – s)

)
h(s) ds ≥ 0,

v′(1) = –
δ

ρ

∫ 1

0
(α + βs)h(s) ds ≤ 0.

From these facts we conclude that there exists ξ ∈ (0, 1) such that v′(ξ ) = 0, v′(t) ≥ 0 for
t ∈ [0, ξ ] and v′(t) ≤ 0 for t ∈ [ξ , 1]. Moreover,

∥
∥v′∥∥

C = max
t∈I

∣
∣v′(t)

∣
∣ = max

{
v′(0), –v′(1)

}
.

Thus, the conclusion of (c) holds.
(d) By the boundary conditions of LBVP (2.1), we have

u(k–1)(t) =
∫ t

0
u(k)(s) ds, t ∈ I, k = 1, 2, . . . , n – 2.

Hence,

∣
∣u(k–1)(t)

∣
∣ =

∫ t

0

∣
∣u(k)(s)

∣
∣ds ≤ t

∥
∥u(k)∥∥

C , t ∈ I, k = 1, 2, . . . , n – 2.

So we have

∥
∥u(k–1)∥∥

C ≤ ∥
∥u(k)∥∥

C , k = 1, 2, . . . , n – 2,

namely the conclusion of Lemma 2.3(d) holds.
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(e) For every t ∈ I , by (2.5) we have

0 ≤ u(n–2)(t) = v(t) =
∫ 1

0
G(t, s)h(s) ds ≤

∫ 1

0
G(t, s) ds · ‖h‖C

≤ max
t∈I

∫ 1

0
G(t, s) ds · ‖h‖C = 
0

∥
∥u(n)∥∥

C ,

so we have ‖u(n–2)‖ ≤ 
0‖u(n)‖C . Furthermore, by (c) there exists ξ ∈ (0, 1) such that
u(n–1)(ξ ) = 0. Hence

∣
∣u(n–1)(t)

∣
∣ =

∣
∣
∣
∣

∫ t

ξ

u(n)(s) ds
∣
∣
∣
∣ ≤ |t – ξ |∥∥u(n)∥∥

C ,

this implies that ‖u(n–1)‖ ≤ ‖u(n)‖C .
Hence, the conclusion of Lemma 2.3(e) holds. �

Next we consider the linear eigenvalue problem (EVP) corresponding to LBVP (2.1)

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)(t) = λu(t), t ∈ [0, 1],

u(k)(0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)(0) – βu(n–1)(0) = 0, γ u(n–2)(1) + δu(n–1)(1) = 0.

(2.9)

Similar to the second-order Sturm–Liouville boundary value problem [21], we have the
following.

Lemma 2.4 EVP (2.9) has a minimum positive real eigenvalue λ1 > 0. Moreover, λ1 has
a positive unit eigenfunction, namely there exists φ1 ∈ Cn(I) ∩ C+(I) with ‖φ1‖C = 1 that
satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

–φ
(n)
1 (t) = λ1φ1(t), t ∈ [0, 1],

φ
(k)
1 (0) = 0, 0 ≤ k ≤ n – 3,

αφ
(n–2)
1 (0) – βφ

(n–1)
1 (0) = 0, γφ

(n–2)
1 (1) + δφ

(n–1)
1 (1) = 0.

(2.10)

Proof According to [21, Lemma 1.1], we show that the solution operator S of LBVP (2.1)
has the strong positivity estimate

Sh ≥ ‖Sh‖CJn–2θ , h ∈ C+(I). (2.11)

Let h ∈ C+(I) and u = Sh, then u(n–2) = S2h. By Lemma 2.3(a) and (d),

S2h(t) = u(n–2) ≥ ∥
∥u(n–2)∥∥

Cθ (t) ≥ ‖u‖Cθ (t) = ‖Sh‖Cθ (t), t ∈ I,

that is, S2h ≥ ‖Sh‖Cθ . By the positivity of the operator Jn–2 : C(I) → C(I), we have

Sh = Jn–2(S2h) ≥ ‖Sh‖CJn–2θ ,

namely, (2.11) holds. Therefore, by [21, Lemma 1.1] the conclusion of Lemma 2.4 holds. �
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By [21, Lemma 2.3], the minimum positive real eigenvalue λ1 of EVP (2.9) is also the
minimum positive real eigenvalue of the conjugate eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

(–1)n–1w(n)(t) = λw(t), t ∈ [0, 1],

αw(0) – βw′(0) = 0, γ w(1) + δw′(1) = 0,

w(k)(1) = 0, 2 ≤ k ≤ n – 1,

(2.12)

and the conclusion of Lemma 2.4 also holds for EVP (2.12), that is, we have the following.

Lemma 2.5 The minimum positive real eigenvalue λ1 of EVP (2.9) is also a minimum pos-
itive real eigenvalue of EVP (2.12). Moreover, λ1 has a positive unit eigenfunction, namely
there exists ψ1 ∈ Cn(I) ∩ C+(I) with ‖ψ1‖C = 1 that satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

(–1)n–1ψ1
(n)(t) = λψ1(t), t ∈ [0, 1],

αψ1(0) – βψ1
′(0) = 0, γψ1(1) + δψ1

′(1) = 0,

ψ1
(k)(1) = 0, 2 ≤ k ≤ n – 1.

(2.13)

Now we consider BVP (1.1). Let f : I ×R+
n–1 ×R →R+ be continuous. Define a closed

convex cone K in Banach space Cn–1(I) by

K =
{

u ∈ Cn–1(I)|u(k)(t) ≥ 0 for t ∈ I, k = 0, 1, . . . , n – 2
}

. (2.14)

By Lemma 2.3(a) and (b), S(C+(I)) ⊂ K . For every u ∈ K , set

F(u)(t) := f
(
t, u(t), u′(t), . . . , u(n–1)(t)

)
, t ∈ I. (2.15)

Then F : K → C+(I) is continuous. Define a mapping A : K → K by

A = S ◦ F . (2.16)

By Lemma 2.2, A : K → K is a completely continuous mapping. By the definitions of S and
the strong positivity estimate (2.11), the positive solution of BVP (1.1) is equivalent to the
nonzero fixed point of A. We will find the nonzero fixed point of A by using the fixed point
index theory in cones.

Let E be a Banach space and K ⊂ E be a closed convex cone in E. Assume � is a bounded
open subset of E with boundary ∂� and A : K ∩ � → K is a completely continuous map-
ping. If Au �= u for any u ∈ K ∩ ∂�, then the fixed point index i(A, K ∩ �, K) in Cone K is
well defined. The following lemmas [22] are needed in our discussion.

Lemma 2.6 Let � be a bounded open subset of E with θ ∈ �, and A : K ∩ � → K a
completely continuous mapping. If μAu �= u for every u ∈ K ∩ ∂� and 0 < μ ≤ 1, then
i(A, K ∩ �, K) = 1.

Lemma 2.7 Let � be a bounded open subset of E and A : K ∩ � → K a completely contin-
uous mapping. If there exists e ∈ K \ {θ} such that u – Au �= τe for every u ∈ K ∩ ∂� and
τ ≥ 0, then i(A, K ∩ �, K) = 0.
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Lemma 2.8 Let � be a bounded open subset of E, and A, A1 : K ∩� → K be two completely
continuous mappings. If (1 – s)Au + sA1u �= u for every u ∈ K ∩ ∂� and 0 ≤ s ≤ 1, then
i(A, K ∩ �, K) = i(A1, K ∩ �, K).

3 Main results
In this section, we show the existence of positive solutions of BVP (1.1). Let f : [0, 1] ×
R+

n–1 ×R → R+ be continuous and the constants α, β , γ and δ satisfy (1.2). We present
some inequality conditions on the nonlinearity f (t, x0, x1, . . . , xn–1) when |(x0, x1, . . . , xn–1)|
is small or large enough to guarantee the existence of positive solutions. Here |(x0, x1, . . . ,
xn–1)| = (

∑n–1
k=0 |xk|2)1/2 is the Euclidean norm of (x0, x1, . . . , xn–1) ∈R

n. Let G = I ×R
n–1 ×R

denote the definitional domain of f . Our main results are as follows.

Theorem 3.1 Assume that f : [0, 1] × R+
n–1 × R → R+ is continuous and satisfies the

following conditions:
(F1) there exist nonnegative constants a0, a1, . . . , an–1 satisfying


0(a0 + a1 + · · · + an–2) + an–1 < 1 and δ > 0 such that

f (t, x0, x1, . . . , xn–1) ≤ a0x0 + a1x1 + · · · + an–2xn–2 + an–1|xn–1|

for (t, x0, x1, . . . , xn–1) ∈ G with |(x0, x1, . . . , xn–1)| < δ;
(F2) there exist constants b0 > λ1, b1, b2 · · · , bn–1 ≥ 0 and H > 0 such that

f (t, x0, x1, . . . , xn–1) ≥ b0x0 + b1x1 + · · · + bn–2xn–2 + bn–1|xn–1|

for (t, x0, x1, . . . , xn–1) ∈ G with |(x0, x1, . . . , xn–1)| > H ;
(F3) for any M > 0, there is a continuous function hM : R+ → (0,∞) satisfying

∫ ∞

0

r dr
hM(r) + 1

= ∞, (3.1)

such that

f (t, x0, x1, . . . , xn–1) ≤ hM
(|xn–1|

)
(3.2)

for all (t, x0, x1, . . . , xn–1) ∈ I × [0, M]n–1 ×R.
Then BVP (1.1) has at least one positive solution.

Theorem 3.2 Assume that f : [0, 1] × R+
n–1 × R → R+ is continuous and satisfies the

following conditions:
(F4) there exist constants b0 > λ1, b1, b2 · · · , bn–1 ≥ 0 and δ > 0 such that

f (t, x0, x1, . . . , xn–1) ≥ b0x0 + b1x1 + · · · + bn–2xn–2 + bn–1|xn–1|

for (t, x0, x1, . . . , xn–1) ∈ G with |(x0, x1, . . . , xn–1)| < δ;



Li and Wen Advances in Difference Equations  (2018) 2018:184 Page 10 of 20

(F5) there exist nonnegative constants a0, a1, . . . , an–1 satisfying

0(a0 + a1 + · · · + an–2) + an–1 < 1 and H > 0 such that

f (t, x0, x1, . . . , xn–1) ≤ a0x0 + a1x1 + · · · + an–2xn–2 + an–1|xn–1|

for (t, x0, x1, . . . , xn–1) ∈ G with |(x0, x1, . . . , xn–1)| > H .
Then BVP (1.1) has at least one positive solution.

In Theorems 3.1 and 3.2, the conditions (F1), (F2), (F3) and (F4) are inequality
conditions, in which the nonlinearity f compares with a linear growth function of
(x0, x1, . . . , xn–1) of the form of

�(t, x0, x1, . . . , xn–1) = c0x0 + c1x1 + · · · cn–2xn–2 + cn–1|xn–1|

as |(x0, x1, . . . , xn–1)| is small or large enough. These conditions are concise and applicable.
See Sect. 4.

In Theorem 3.1, the conditions (F1) and (F2) allow that f (t, x0, x1, . . . , xn–1) has superlin-
ear growth in (x0, x1, . . . , xn–1) as |(x0, x1, . . . , xn–1)| → 0 and ∞, respectively. In this case,
we need the condition (F3) to restrict the growth of the nonlinearity f (t, x0, x1, . . . , xn–1)
on xn–1. (F3) is a Nagumo-type growth condition. In Theorem 3.2, the conditions
(F4) and (F5) allow that f (t, x0, x1, . . . , xn–1) has sublinear growth in (x0, x1, . . . , xn–1) as
|(x0, x1, . . . , xn–1)| → 0 and ∞, respectively. In this case, the Nagumo-type condition (F3)
is needless. In fact, we can easily show that (F5) implies (F3).

Proof of Theorem 3.1 Choose the Banach space E = Cn–1(I). For convenience, we denote
the norm ‖u‖Cn–1 of E by ‖u‖E . Let K ⊂ E be the closed convex cone defined by (2.14) and
A : K → K be the completely continuous mapping defined by (2.16). By Lemma 2.3, the
positive solution of BVP (1.1) is equivalent to the nontrivial fixed point of A. Let 0 < R1 <
R2 < +∞ and set

�1 =
{

u ∈ E|‖u‖E < R1
}

, �2 =
{

u ∈ E|‖u‖E < R2
}

. (3.3)

We prove that the A has a fixed point in K ∩ (�2 \ �1) when R1 is small enough and R2

large enough. The proof is separated into the following steps:
Step (1). Choosing R1 ∈ (0, δ/

√
n), where δ is the positive constant in Condition (F1), we

prove that

i(A, K ∩ �1, K) = 1. (3.4)

To this end, we verify that A satisfies the condition of Lemma 2.6 in K ∩ ∂�1, namely

μAu �= u, ∀u ∈ K ∩ ∂�1, 0 < μ ≤ 1. (3.5)

If (3.8) does not hold, there exist u0 ∈ K ∩ ∂�1 and 0 < μ0 ≤ 1 such that μ0Au0 = u0.
Since u0 = S(μ0F(u0)), by the definition of S, u0 is the unique solution of LBVP (2.1) for
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h = μ0F(u0) ∈ C+(I). Hence, u0 ∈ Cn(I) satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)
0 (t) = μ0f (t, u0(t), u′

0(t), . . . , u(n–1)
0 (t)), t ∈ [0, 1],

u(k)
0 (0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)
0 (0) – βu(n–1)

0 (0) = 0, γ u(n–2)
0 (1) + δu(n–1)

0 (1) = 0.

(3.6)

Since u0 ∈ K ∩ ∂�1, by the definitions of K and �1, we have

(
t, u0(t), u′

0(t), . . . , u(n–1)
0 (t)

) ∈ G, t ∈ I,
∣
∣
(
u0(t), u′

0(t), . . . , u(n–1)
0 (t)

)∣
∣ ≤ √

n‖u0‖Cn–1 < δ, t ∈ I.

Hence by Condition (F1) and Lemma 2.3(d) and (e), we have

f
(
t, u0(t), u′

0(t), · · · , u(n–1)
0 (t)

) ≤ a0u0(t) + · · · + an–2u(n–2)
0 (t) + an–1

∣
∣u(n–1)

0 (t)
∣
∣

≤ a0‖u0‖C + · · · + an–2
∥
∥u(n–2)

0
∥
∥ + an–1

∥
∥u(n–1)

0
∥
∥

C

≤ (a0 + · · · + an–2)
∥
∥u(n–2)

0
∥
∥

C + an–1
∥
∥u(n–1)

0
∥
∥

C

≤ (

0(a0 + a1 + · · · + an–2) + an–1

)∥
∥u(n)

0
∥
∥

C , t ∈ I.

By this inequality and Eq. (3.6) we obtain

∣
∣u0

(n)(t)
∣
∣ ≤ (


0(a0 + a1 + · · · + an–2) + an–1
)∥
∥u(n)

0
∥
∥

C , t ∈ I.

So we have

∥
∥u0

(n)∥∥
C ≤ (


0(a0 + a1 + · · · + an–2) + an–1
)∥
∥u(n)

0
∥
∥

C . (3.7)

We say that ‖u0
(n)‖C > 0. If it is false, u0 is the solution of LBVP (2.1) for h ≡ 0, and by the

uniqueness of solution of LBVP (2.1) u0 = 0. This contradicts u0 ∈ ∂�1. Hence from (3.7)
it follows that


0(a0 + a1 + · · · + an–2) + an–1 ≥ 1,

which contradicts the assumption in Condition (F1). Hence (3.5) holds, and by Lemma 2.5,
(3.4) is proved.

Step (2). Let H be the positive constant in Condition (F2). Set

C0 = max
{∣
∣f (t, x0, x1, . . . , xn–1) –

(
b0x0 + · · · + bn–2xn–2 + bn–1|xn–1|

)∣
∣ :

(t, x0, x1, . . . , xn–1) ∈ G,
∣
∣(x0, x1, . . . , xn–1)

∣
∣ ≤ H

}
+ 1,

then, by Condition (F2), we have

f (t, x0, x1, . . . , xn–1) ≥ b0x0 + · · · + bn–2xn–2 + bn–1|xn–1| – C0,

for every (t, x0, x1, . . . , xn–1) ∈ G. (3.8)
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Set F1(u) = F(u) + C0 for every u ∈ K , and define A1 : K → K by

A1 = S ◦ F1. (3.9)

Then A1 : K → K is a completely continuous mapping. Letting R2 > δ/
√

n, we prove that

i(A1, K ∩ �2, K) = 0. (3.10)

Let φ1 be the positive eigenvalue function of EVP (2.9) in Lemma 2.4. Since φ1 = S(λ1φ1),
by Lemma 2.4 φ1 ∈ K \ {θ}. We show that A1 satisfies the condition of Lemma 2.7 in K ∩
∂�2 for e = φ1, namely

u – A1u �= τφ1, ∀u ∈ K ∩ ∂�2, τ ≥ 0. (3.11)

If (3.11) is false, there exist u1 ∈ K ∩ ∂�2 and τ0 ≥ 0 such that u1 – A1u1 = τ0φ1. Since
u1 = A1u1 + τ0φ1 = S(F(u1) + C0 + τ0λ1φ1), by the definition of S, u1 is the unique solution
of LBVP (2.1) for h = F(u1) + C0 + τ0λ1φ1 ∈ C+(I). Hence u1 ∈ Cn(I) satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)
1 (t) = f (t, u1(t), u′

1(t), . . . , u(n–1)
1 (t)) + C0 + τ0λ1φ1(t), t ∈ I,

u(k)
1 (0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)
1 (0) – βu(n–1)

1 (0) = 0, γ u(n–2)
1 (1) + δu(n–1)

1 (1) = 0.

(3.12)

Since u1 ∈ K ∩ ∂�2, by the definition of K , (t, u1(t), u′
1(t), . . . , u(n–1)

1 (t)) ∈ G for t ∈ I . Hence
from (3.8) we see that

f
(
t, u1(t), u′

1(t), . . . , u(n–1)
1 (t)

) ≥ b0u1(t) + · · · + bn–2u(n–2)
1 (t) + bn–1

∣
∣u(n–1)

1 (t)
∣
∣ – C0

≥ b0u1(t) – C0, t ∈ I.

By this inequality and Eq. (3.12), we have

–u(n)
1 (t) = f

(
t, u1(t), u′

1(t), . . . , u(n–1)
1 (t)

)
+ C0 + τ0λ1φ1(t)

≥ b0u1(t) + τ0λ1φ1(t)

≥ b0u1(t), t ∈ I.

Let ψ1(t) be the positive eigenvalue function of EVP (2.12) in Lemma 2.5. Multiplying the
above inequality by ψ1(t) and integrating on I , then using integration by parts for the left
side, we obtain

λ1

∫ 1

0
u1(t)ψ1(t) dt ≥ b0

∫ 1

0
u1(t)ψ1(t) dt. (3.13)

Since u1 = Sh, by (2.12),

u1(t) = Sh(t) ≥ ‖Sh‖Jn–2θ (t) = ‖u1‖CJn–2θ (t) > 0, ∀t ∈ (0, 1),
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so that
∫ 1

0 u1(t)ψ1(t) dt > 0. Hence, from (3.13) we see that λ1 ≥ b0, which contradicts the
assumption in (F2). This means that (3.11) is true. By Lemma 2.7, (3.10) holds.

Step (3). We use Lemma 2.8 to prove that

i(A, K ∩ �2, K) = i(A1, K ∩ �2, K) (3.14)

when R is large enough. For this purpose, we show that A and A1 satisfy the condition of
Lemma 2.8 in K ∩ ∂�2 when R is large enough, namely

(1 – s)Au + sA1u �= u, ∀u ∈ K ∩ ∂�2, 0 ≤ s ≤ 1. (3.15)

If (3.15) is false, there exist u2 ∈ K ∩ ∂�2 and s0 ∈ [0, 1] such that (1 – s0)Au2 + s0A1u2 = u2.
Since u2 = S((1 – s0)F(u2) + s0F1(u2)), by the definition of S, u2 is the unique solution of
LBVP (2.1) for h = (1 – s0)F(u2) + s0F1(u2) ∈ C+(I). Hence u2 ∈ Cn(I) satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)
2 (t) = f (t, u2(t), u′

2(t), . . . , u(n–1)
2 (t)) + s0C0, t ∈ I,

u(k)
2 (0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)
2 (0) – βu(n–1)

2 (0) = 0, γ u(n–2)
2 (1) + δu(n–1)

2 (1) = 0.

(3.16)

Since u2 ∈ K ∩ ∂�2, by the definition of K , (t, u2(t), u′
2(t), . . . , u(n–1)

2 (t)) ∈ G for t ∈ I . Hence
by (3.8), we have

f
(
t, u2(t), u′

2(t), . . . , u(n–1)
2 (t)

) ≥ b0u2(t) + · · · + bn–2u(n–2)
2 (t) + bn–1

∣
∣u(n–1)

2 (t)
∣
∣ – C0

≥ b0u2(t) – C0, t ∈ I.

Hence by Eq. (3.16),

–u(n)
2 (t) = f

(
t, u2(t), u′

2(t), . . . , u(n–1)
2 (t)

)
+ s0C0

≥ b0u2(t) – (1 – s0)C0,

≥ b0u2(t) – C0, t ∈ I.

Multiplying this inequality by ψ1(t) and integrating on I , then using integration by parts
for the left side, we obtain

λ1

∫ 1

0
u2(t)ψ1(t) dt ≥ b0

∫ 1

0
u2(t)ψ1(t) dt – C0

∫ 1

0
ψ1(t) dt

≥ b0

∫ 1

0
u2(t)ψ1(t) dt – C0.

From this inequality it follows that

∫ 1

0
u2(t)ψ1(t) dt ≤ C0

b0 – λ1
. (3.17)

On the other hand, by Lemma 2.3(a),

u(n–2)
2 (t) ≥ ∥

∥u(n–2)
2

∥
∥

Cθ (t), t ∈ I.
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Since u2 = Jn–2u(n–2)
2 and Jn–2 : C(I) → C(I) is a positive operator, acting on the above in-

equality by Jn–2, we have

u2(t) ≥ ∥
∥u(n–2)

2
∥
∥

CJn–2θ (t), t ∈ I.

Multiplying this inequality by ψ1(t) and integrating on I , we obtain

∫ 1

0
u2(t)ψ1(t) dt ≥ M0

∥
∥u(n–2)

2
∥
∥

C , (3.18)

where

M0 :=
∫ 1

0
Jn–2θ (t)ψ1(t) dt

is a positive constant by the positivity of Jn–2θ on (0, 1). Combining (3.18) with (3.17), we
obtain

∥
∥u(n–2)

2
∥
∥

C ≤ C0

M0(b0 – λ1)
:= M. (3.19)

For this M > 0, by Condition (F3), there is a continuous function hM : R+ → (0,∞) sat-
isfying (3.1) such that (3.2) holds. By Lemma 2.3(d), we have

0 ≤ u(k)
2 (t) ≤ ∥

∥u(k)
2

∥
∥ ≤ ∥

∥u(n–2)
2

∥
∥

C ≤ M, t ∈ I, k = 0, 1, . . . , n – 2.

Hence from (3.2) it follows that

f
(
t, u2(t), u′

2(t), . . . , u(n–1)
2 (t)

) ≤ hM
(∣
∣u(n–1)

2 (t)
∣
∣
)
, t ∈ I.

By this inequality and Eq. (3.16), we obtain

–u(n)
2 (t) ≤ hM

(∣
∣u(n–1)

2 (t)
∣
∣
)

+ C0, t ∈ I. (3.20)

By (3.1) we can easily obtain

∫ ∞

0

r dr
hM(r) + C0

= ∞.

Hence there exists a positive constant M1 ≥ M such that

∫ M1

0

r dr
hM(r) + C0

> M. (3.21)

By Lemma 2.3(c), there exists ξ ∈ (0, 1) such that u(n–1)
2 (ξ ) = 0, u(n–1)

2 (t) ≥ 0 for t ∈ [0, ξ ]
and u(n–1)

2 (t) ≤ 0 for t ∈ [ξ , 1], and ‖u(n–1)
2 ‖C = max{u(n–1)

2 (0), –u(n–1)
2 (1)}. Hence ‖u(n–1)

2 ‖C =
u(n–1)

2 (0) or ‖u(n–1)
2 ‖C = –u(n–1)

2 (1). We only consider the case of ‖u(n–1)
2 ‖C = u(n–1)

2 (0), and
the other case can be treated with a quasi-way.
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Since u(n–1)
2 (t) ≥ 0 for t ∈ [0, ξ ], multiplying both sides of the inequality (3.20) by u(n–1)

2 (t),
we can obtain

–
u(n–1)

2 (t)u(n)
2 (t)

hM(u(n–1)
2 (t)) + C0

≤ u(n–1)
2 (t), t ∈ [0, ξ ].

Integrating both sides of this inequality on [0, ξ ] and making the variable transformation
r = u(n–1)

2 (t) for the left side, we have

∫ u(n–1)
2 (0)

0

r dr
hM(r) + C0

= u(n–2)
2 (ξ ) – u(n–2)

2 (0) ≤ ∥
∥u(n–2)

2
∥
∥

C ≤ M.

Since u(n–1)
2 (0) = ‖u(n–1)

2 ‖C , it follows that

∫ ‖u(n–1)
2 ‖C

0

r dr
hM(r) + C0

≤ M.

Combining this inequality with (3.21), we conclude that

∥
∥u(n–1)

2
∥
∥

C ≤ M1. (3.22)

By Lemma 2.3(d) and (3.19), we have

∥
∥u(k)

2
∥
∥

C ≤ ∥
∥u(n–2)

2
∥
∥

C ≤ M ≤ M1, k = 0, 1, . . . , n – 2.

By these inequalities and (3.22), we obtain

‖u2‖E = max
{‖u2‖C ,

∥
∥u′

2
∥
∥

C , . . . ,
∥
∥u(n–1)

2
∥
∥

C

} ≤ M1. (3.23)

Now let R2 > max{M1, δ/
√

n}. Since u2 ∈ K ∩ ∂�2, by the definition of �2, ‖u2‖E = R2 >
M1, which contradicts (3.23). This means that (3.15) is true. Hence by Lemma 2.8, (3.14)
holds.

Step (4). Finally, from (3.10) and (3.14) it follows that

i(A, K ∩ �2, K) = 0. (3.24)

By the additivity of the fixed point index, (3.4) and (3.24), we have

i
(
A, K ∩ (�2 \ �1), K

)
= i(A, K ∩ �2, K) – i(A, K ∩ �1, K) = –1.

Hence A has a fixed point in K ∩ (�2 \ �1), which is a positive solution of BVP (1.1). The
proof of Theorem 3.1 is completed. �

Proof of Theorem 3.2 Let E = Cn–1(I), K ⊂ E be the closed convex cone defined by (2.14)
and A : K → K the completely continuous mapping defined by (2.16). Let �1,�2 ⊂ E be
defined by (3.3). We prove that A has a fixed point in K ∩ (�2 \�1) when R1 is small enough
and R2 large enough.
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Firstly, choosing R1 ∈ (0, δ/
√

n), where δ is the positive constant in Condition (F4), we
prove that

i(A, K ∩ �1, K) = 0. (3.25)

Let φ1 be the positive eigenvalue function of EVP (2.9) in Lemma 2.4. Then φ1 ∈ K \ {θ}.
We show that A satisfies the condition of Lemma 2.7 in K ∩ ∂�1 for e = φ1, namely

u – Au �= τφ1, ∀u ∈ K ∩ ∂�1, τ ≥ 0. (3.26)

If (3.26) is false, there exist u4 ∈ K ∩ ∂�1 and τ1 ≥ 0 such that u4 – Au4 = τ1φ1. Since
u4 = Au4 + τ1φ1 = S(F(u4) + τ1λ1φ1), by the definition of S, u4 is the unique solution of
LBVP (2.1) for h = F(u4) + τ1λ1φ1 ∈ C+(I). Hence u4 ∈ Cn(I) satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)
4 (t) = f (t, u4(t), u′

4(t), . . . , u(n–1)
4 (t)) + τ1λ1φ1(t), t ∈ I,

u(k)
4 (0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)
4 (0) – βu(n–1)

4 (0) = 0, γ u(n–2)
4 (1) + δu(n–1)

4 (1) = 0.

(3.27)

Since u4 ∈ K ∩ ∂�1, by the definitions of K and �1, we have

(
t, u4(t), u′

4(t), . . . , u(n–1)
4 (t)

) ∈ G, t ∈ I,
∣
∣
(
u4(t), u′

4(t), . . . , u(n–1)
4 (t)

)∣
∣ ≤ √

n‖u4‖Cn–1 < δ, t ∈ I.

Hence by Condition (F4), we have

f
(
t, u4(t), u′

4(t), . . . , u(n–1)
4 (t)

) ≥ b0u4(t) + · · · + bn–2u(n–2)
4 (t) + bn–1

∣
∣u(n–1)

4 (t)
∣
∣

≥ b0u4(t), t ∈ I.

By this inequality and Eq. (3.27), we obtain

–u(n)
4 (t) ≥ b0u4(t), t ∈ I.

Let ψ1(t) be the positive eigenvalue function of EVP (2.12) in Lemma 2.5. Multiplying the
above inequality by ψ1(t) and integrating on I , then using integration by parts for the left
side, we have

λ1

∫ 1

0
u4(t)ψ1(t) dt ≥ b0

∫ 1

0
u4(t)ψ1(t) dt. (3.28)

Since u4 = Sh, by (2.12) u4(t) ≥ ‖u4‖CJn–2θ (t) > 0 for every t ∈ (0, 1), so we have
∫ 1

0 u4(t)ψ1(t) dt > 0. Hence, from (3.28) it follows that λ1 ≥ b0, which contradicts the as-
sumption in (F4). This means that (3.26) is true. Hence by Lemma 2.7, (3.25) holds.

Secondly, we prove that

i(A, K ∩ �2, K) = 1, (3.29)
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when R2 is large enough. For this purpose, we show that A satisfies the condition of
Lemma 2.6 in K ∩ ∂�2, namely

μAu �= u, ∀u ∈ K ∩ ∂�2, 0 < μ ≤ 1. (3.30)

If (3.30) is not true, there exist u5 ∈ K ∩ ∂�2 and 0 < μ1 ≤ 1 such that μ1Au5 = u5. Since
u5 = S(μ1F(u5)), by the definition of S, u5 ∈ Cn(I) satisfies the equation

⎧
⎪⎪⎨

⎪⎪⎩

–u(n)
5 (t) = μ1f (t, u5(t), u′

5(t), . . . , u(n–1)
5 (t)), t ∈ [0, 1],

u(k)
5 (0) = 0, 0 ≤ k ≤ n – 3,

αu(n–2)
5 (0) – βu(n–1)

5 (0) = 0, γ u(n–2)
5 (1) + δu(n–1)

5 (1) = 0.

(3.31)

Let H be the positive constant in Condition (F5). Set

C1 = max
{∣
∣f (t, x0, x1, . . . , xn–1) –

(
a0x0 + · · · + an–2xn–2 + an–1|xn–1|

)∣
∣ :

(t, x0, x1, . . . , xn–1) ∈ G,
∣
∣(x0, x1, . . . , xn–1)

∣
∣ ≤ H

}
+ 1.

By Condition (F5), we have

f (t, x0, x1, . . . , xn–1) ≤ a0x0 + · · · + an–2xn–2 + an–1|xn–1| + C1,

for every (t, x0, x1, . . . , xn–1) ∈ G. (3.32)

Since u5 ∈ K ∩ ∂�2, by the definition of K , (t, u5(t), u′
5(t), . . . , u(n–1)

5 (t)) ∈ G for t ∈ I . Hence
by (3.32) and Lemma 2.3(d) and (e), we have

f
(
t, u5(t), u′

5(t), · · · , u(n–1)
5 (t)

) ≤ a0u5(t) + · · · + an–2u(n–2)
5 (t) + an–1

∣
∣u(n–1)

5 (t)
∣
∣ + C1

≤ a0‖u5‖C + · · · + an–2
∥
∥u(n–2)

5
∥
∥ + an–1

∥
∥u(n–1)

5
∥
∥

C + C1

≤ (a0 + · · · + an–2)
∥
∥u(n–2)

5
∥
∥

C + an–1
∥
∥u(n–1)

5
∥
∥

C + C1

≤ (

0(a0 + a1 + · · · + an–2) + an–1

)∥
∥u(n)

5
∥
∥

C + C1, t ∈ I.

By this inequality and Eq. (3.31) we obtain

∣
∣u5

(n)(t)
∣
∣ ≤ (


0(a0 + a1 + · · · + an–2) + an–1
)∥
∥u(n)

5
∥
∥

C + C1, t ∈ I.

So we have

∥
∥u5

(n)∥∥
C ≤ (


0(a0 + a1 + · · · + an–2) + an–1
)∥
∥u(n)

5
∥
∥

C + C1.

From this it follows that

∥
∥u5

(n)∥∥
C ≤ C1

1 – (
0(a0 + a1 + · · · + an–2) + an–1)
:= R0. (3.33)

Hence, by Lemma 2.3(d) and (e), we have

‖u5‖E = ‖u5‖Cn–1 = max
{‖u5‖C ,

∥
∥u′

5
∥
∥

C , . . . ,
∥
∥u(n–1)

5
∥
∥

C

}
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= max
{∥
∥u(n–2)

5
∥
∥

C ,
∥
∥u(n–1)

5
∥
∥

C

}

≤ max
{

0

∥
∥u(n)

5
∥
∥

C ,
∥
∥u(n)

5
∥
∥

C

}

≤ (
0 + 1)R0 := R. (3.34)

We choose R > max{R, δ/
√

n}. Since u5 ∈ K ∩ ∂�2, by the definition of �2, ‖u5‖C3 = R >
R, which contradicts (3.34). This means that (3.30) is true. Hence by Lemma 2.6, (3.29)
holds.

Now by the additivity of the fixed point index, (3.25) and (3.29), we have

i
(
A, K ∩ (�2 \ �1), K

)
= i(A, K ∩ �2, K) – i(A, K ∩ �1, K) = 1.

Hence A has a fixed point in K ∩ (�2 \ �1), which is a positive solution of BVP (1.1). The
proof of Theorem 3.2 is completed. �

4 Applications
In this section, we present some applications of Theorems 3.1 and 3.2. For convenience,
we introduce the following notation:

f0 = lim inf
(x0,x1,...,xn–1)∈G,
|(x0,x1,...,xn–1)|→0

min
t∈I

f (t, x0, x1, . . . , xn–1)
|(x0, x1, . . . , xn–1)| ,

f 0 = lim sup
(x0,x1,...,xn–1)∈G,
|(x0,x1,...,xn–1)|→0

max
t∈I

f (t, x0, x1, . . . , xn–1)
|(x0, x1, . . . , xn–1)| ,

f∞ = lim inf
(x0,x1,...,xn–1)∈G,

|(x0,x1,...,xn–1)|→∞
min
t∈I

f (t, x0, x1, . . . , xn–1)
|(x0, x1, . . . , xn–1)| ,

f ∞ = lim sup
(x0,x1,...,xn–1)∈G,

|(x0,x1,...,xn–1)|→∞
max

t∈I

f (t, x0, x1, . . . , xn–1)
|(x0, x1, . . . , xn–1)| .

(4.1)

Theorem 4.1 Assume that f : [0, 1]×R+
n–1 ×R →R+ is continuous and satisfies Assump-

tion (F3) and the following condition:
(F6) f 0 < 1

(n–1)
0+1 , f∞ > λ1,
then BVP (1.1) has at least one positive solution.

Proof By the definitions of f 0 and f∞, we easily verify the following facts:

f 0 <
1

(n – 1)
0 + 1
�⇒ (F1) holds,

f∞ > λ1 �⇒ (F2) holds.

Hence, by Theorem 3.1, BVP (1.1) has at least one positive solution. �

Theorem 4.2 Assume that f : [0, 1] ×R+
3 ×R– → R+ is continuous and satisfies the fol-

lowing condition:
(F7) f0 > λ1, f ∞ < 1

(n–1)
0+1 .
Then BVP (1.1) has at least one positive solution.
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Proof By the definitions of f0 and f ∞, we can easily obtain

f0 > λ1 �⇒ (F4) holds,

f ∞ <
1

(n – 1)
0 + 1
�⇒ (F5) holds.

Hence, by Theorem 3.2, BVP (1.1) has at least one positive solution. �

Conditions (F6) and (F7) describe the growth state of f on (x0, x1, . . . , xn–1) as |(x0, x1, . . . ,
xn–1)| → 0 and |(x0, x1, . . . , xn–1)| → ∞, and they contain the usual superlinear and sublin-
ear growth conditions of f at 0 and ∞. Theorems 4.1 and 4.2 naturally extend some results
in [2–11].

Example 4.1 Consider the third-order Sturm–Liouville boundary value problem

⎧
⎨

⎩

u′′′(t) + u4(t) + u′3(t) + u′′2(t) = 0, t ∈ [0, 1],

u(0) = 0, 2u′(0) – u′′(0) = 0, –u′(1) + 3u′′(1) = 0,
(4.2)

corresponding to BVP (1.1), n = 3, the nonlinearity

f (t, x0, x1, x2) = x0
4 + x1

3 + x2
2, (4.3)

and the coefficients of the boundary condition

α = 2, β = 1, γ = –1, δ = 3.

Clearly, α, β , γ and δ satisfy (1.2). By the definitions (4.1) and (4.3), we easily see that
f (t, x0, x1, x2) satisfies the Nagumo-type condition (F3) on x2, and

f 0 = 0, f∞ = ∞.

Hence, f also satisfies Condition (F6). By Theorem 4.1, BVP (4.2) has at least one positive
solution.

Example 4.2 Consider the fourth-order Sturm–Liouville boundary value problem

⎧
⎨

⎩

u(4)(t) + 3
√

u2(t) + u′2(t) + u′′2(t) + u′′′2(t), t ∈ [0, 1],

u(0) = u′(0) = u′′(0) = 0, 2u′′(1) + 3u′′′(1) = 0,
(4.4)

corresponding to BVP (1.1), n = 4, the nonlinearity

f (t, x0, x1, x2, x3) = 3
√

x02 + x12 + x22 + x32 =
∣
∣(x0, x1, x2, x3)

∣
∣2/3, (4.5)

and the coefficients of the boundary condition

α = 1, β = 0, γ = 2, δ = 3.
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Obviously, α, β , γ and δ satisfy (1.2) and by (4.5) f satisfies

f0 = ∞, f ∞ = 0.

Hence f satisfies Condition (F7). By Theorem 4.2, BVP (4.4) has at least one positive so-
lution.
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