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1 Introduction
In the past decades, neutral stochastic functional differential equations (NSFDEs) have
been widely discussed by many researchers because of potential applications in control
theory, mechanics, engineering, economics, etc. A lot of interesting properties of the
solutions for the system such as existence, uniqueness and stability have been obtained
(see, e.g., [–] and the references therein). There exist impulsive effects in many ar-
eas, such as physics, economics, mechanics and engineering, which are changed abruptly
at certain moments of time. Therefore, NSFDEs with impulses have been examined. For
more details, we refer the reader to [–] and the references therein. Moreover, the at-
tracting and invariant sets are also interesting topics for the stochastic system (see, e.g.,
[, ]). In particular, the authors in [] discussed the p-attracting and p-invariant sets
for NSFDEs with impulses. Long et al. [] investigated global attracting sets of NSFDEs
with impulses by establishing impulsive integral inequalities. Since then Li and Xu []
obtained the attracting and quasi-invariant sets of the mild solution of NSFDEs. Wang
and Li [] made further efforts on attracting and quasi-invariant sets of the mild solu-
tion of impulsive NSFDEs with infinite delays by establishing impulsive integral inequali-
ties.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1411-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1411-z&domain=pdf
mailto:pjduan1981@hotmail.com
mailto:brightry@hotmail.com


Duan and Ren Advances in Difference Equations  (2017) 2017:361 Page 2 of 15

Due to the wide application of fractional Brownian motion (fBm) in hydrology, eco-
nomics, telecommunications and medicine, much interesting work has been carried out
on stochastic differential equations driven by fBm (see, e.g., [–] and the references
therein). More precisely, Boufoussi and Hajji [] obtained existence and uniqueness of
the mild solution for NSFDEs driven by fBm in a Hilbert space and discussed the expo-
nential stability in the mean square sense. Tien [] established existence, uniqueness and
asymptotic behavior of impulsive NSFDEs driven by fBm with finite and infinite delays.
Recently, Arthi et al. [] considered a class of neutral stochastic integro-differential equa-
tions with impulses driven by fBm. With Lipschitz conditions and semigroup properties,
they proved the existence and uniqueness of the mild solution. Furthermore, they dis-
cussed the exponential stability under some sufficient conditions. Based on the new im-
pulsive integral inequalities, Li [] obtained the global attracting and quasi-invariant sets
of impulsive NSFDEs driven by fBm with Hurst parameter H > 

 .
In this paper, we consider the neutral stochastic integro-differential equations with im-

pulses driven by fBm in [] as the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t) – g(t, xt ,
∫ t

 a(t, s, xs) ds)]

= [Ax(t) + f (t, xt ,
∫ t

 a(t, s, xs) ds)] dt

+ F̃(t) dBH
Q (t), t ≥ , t �= tk , k = , , . . . ,

�x(tk) = Ik(x(t–
k )), k = , , . . . ,

x(t) = ϕ ∈PCb
F

, –r ≤ t ≤ ,

(.)

where A is the infinitesimal generator of an analytic semigroup {T(t)}t≥ in Hilbert space
H, BH

Q is a fBm with Hurst parameter H , g, f : R+ ×PC×H →H, a, a : R+ ×R
+ ×PC →

H, F̃ : R+ → L
(K,H). The impulsive moment tk (k = , , . . .) satisfies  < t < t < · · · <

tk < · · · and limk→+∞ tk = +∞, Ik : H → H, �x(t) = x(t+) – x(t–), where x(t+) and x(t–) de-
note the right and left limit of x at t, respectively. PC = PC([–r, ],H) = {φ : [–r, ] → H,
φ(t) is continuous everywhere except a finite number of points t̃ at which φ(t̃–), φ(t̃+)
exist and φ(t̃–) = φ(t)}. For φ ∈ PC , ‖φ‖PC = sups∈[–r,] ‖φ(s)‖ < +∞. For any contin-
uous function x and t ∈ [, b], xt(θ ) = x(t + θ ), –r ≤ θ ≤ . PCb

Ft
([–r, ],H) denotes

the family of all Ft-measurable, PC([–r, ],H)-value random variables φ with the norm
‖φ‖p = sups∈[–r,] E‖φ(s)‖p

H
< +∞ for p > .

To the best of our knowledge, there is no result on the attracting and quasi-invariant
sets of the mild solution for system (.). To close the gap, we aim to derive the attracting
and quasi-invariant sets for (.) by establishing two impulsive integral inequalities which
improve the results in [] and [], respectively. Moreover, exponential stability of the mild
solution is established with sufficient conditions.

The paper is organized as follows. In Section , some basic notions, preliminaries and as-
sumptions are provided. Section  is devoted to studying the attracting and quasi-invariant
sets for neutral stochastic integro-differential equations with impulses driven by fBm. By
a product, the globally mean square exponential stability of the mild solution is derived.

2 Notations and preliminaries
In this section, we begin with some notations and preliminary results with respect to fBm.
Let (�,F , {Ft}t∈J ,P) be a complete probability space satisfying the usual conditions. E(·)
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denotes the mathematical expectation with respect to P. A one-dimensional fBm with
Hurst parameter H ∈ (, ) is a centered Gaussian process βH = βH (t) with the covariance
function

R(t, s) = E
[
βH (t)βH (s)

]
=



(|t|H + |s|H – |t – s|H)

.

In this paper, we consider H > 
 and βH (t) has the following representation:

βH (t) =
∫ t


K(t, s) dβ(s),

where β(s) is a standard Brownian motion and the kernel K(t, s) is given by

K(t, s) = cH s

 –H

∫ t

s
(u – s)H– 

 uH– 
 du, t ≥ s,

where cH is a nonnegative constant with respect to H .
For the deterministic function ϕ ∈ L([, b]), the fractional Wiener integral of ϕ with

respect to βH is defined by

∫ b


ϕ(s) dβH (s) =

∫ b


K∗

Hϕ(s) dβ(s),

where K∗
Hϕ(s) =

∫ t
s ϕ(t) ∂K (t,s)

∂t ds.
Let (K,‖ ·‖K) and (H,‖ ·‖H) be two real separable Hilbert spaces with their vector norms

and inner products, respectively. L(H,K) is the set of all linear bounded operators from H

to K equipped with the norm ‖ · ‖. For the sake of convenience, we use the same notation
‖ ·‖ to denote the norms in K, H, L(H,K). en (n = , , . . .) denotes a complete orthonormal
basis in H and Q ∈ L(H,H) is an operator defined by Qen = λnen with finite trace tr Q =
∑+∞

n= λn < +∞, where λn (n = , , . . .) is a nonnegative real number. We define the infinite-
dimensional fBm on H with covariance Q as

BH
Q (t) =

∞∑

n=

βH
n (t)Q


 en =

∞∑

n=

√
λnenβ

H
n (t),

where βH
n (t) is real, independent fBm. The process is an H-valued Q-fBm, starts from ,

has zero mean and covariance

E
〈
BH

Q (t), x
〉〈

BH
Q (t), y

〉
= R(t, s)

〈
Q(x), y

〉
, for all x, y ∈K, and t, s ≥ .

In the following parts, we introduce the Wiener integral with respect to the Q-fBm. Let
L

 = L
(H,K) denote the space of all Q-Hilbert-Schmidt operators ψ : H → K equipped

with the norm

‖ψ‖L


=
∞∑

n=

‖√λnψen‖ < ∞

and the inner product 〈ϕ,ψ〉L


=
∑∞

n=〈ϕen,ψen〉 for ϕ,ψ ∈L
.
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Now, we give the definition of the fractional Wiener integral of the function ψ : [, b] →
L

 with respect to Q-fBm as follows:

∫ t


ψ(s) dBH

Q (s) =
∞∑

n=

∫ t


ψ(s)Q


 en dβH

n (s) =
∞∑

n=

∫ t



(
K∗

H
(
ψQ


 en

))
(s) dβn(s),

where βn is the standard Brownian motion with respect to βH
n .

In what follows, we need the property of the stochastic integral from [] to prove our
main results.

Lemma . If ψ : [, b] →L
 satisfies

∫ b
 ‖ψ(s)‖

L


ds < ∞, then the integral
∫ t

 ψ(s) dBH
Q (s)

is well defined as an H-valued random variable and we have

E

∥
∥
∥
∥

∫ t


ψ(s) dBH

Q (s)
∥
∥
∥
∥



≤ cH tH–
∫ t



∥
∥ψ(s)

∥
∥
L


ds.

We assume that T(t), t ≥  is a uniformly bounded and analytic semigroup. A : D(A) →
K is the infinitesimal generator of T(t) on K. We also assume that there exist a constant
M ≥  and μ ∈ R such that ‖T(t)‖ ≤ Meμt , for every t ≥ ,  ∈ σ (A), where σ (A) is the
resolvent set of A. Then it is possible to define the fractional power (–A)α for  < α ≤  as
a closed linear operator on its domain D(–A)α . Moreover, the subspace D(–A)α is dense
in K and the equality ‖ρ‖α = ‖(–A)αρ‖ defines a norm in D(–A)α . Let Kα symbolize the
space D(–A)α endowed with the norm ‖ · ‖α .

Lemma . (see []) Assume that the above conditions hold. Then:
() if  < α ≤ , then Kα is a Banach space,
() if  < β ≤ α, then the injection Kα ↪→Kβ is continuous,
() there exists Mα > , for any  < α ≤ , such that

∥
∥
(
–Aα

)
T(t)

∥
∥ ≤ Mα

tα
e–μt , t > ,μ > .

Throughout this paper, we assume that there exists at least one solution for (.), which
is denoted by x(t) or xt(,ϕ).

Definition . The zero solution (or trivial solution) of (.) is said to be p-exponentially
(p ≥ ) stable if there exist positive constants λ and M > , for any initial value ϕ ∈
PCb

F
([–r, ],H), such that

E
∥
∥x(t)

∥
∥p ≤ M‖ϕ‖p

Lp e–λt , t ≥ .

Definition . The set S ⊂ H is called a quasi-invariant set of (.) if there exist pos-
itive constants k and l such that, for any initial value ϕ ∈ PCb

F
([–r, ],H), the solution

kxt(,ϕ) + l ∈ S , t ≥ .

Definition . The set S ⊂H is called a global attracting set of (.) if, for any initial value
ϕ ∈PCb

F
([–r, ],H), the solution xt(,ϕ) satisfies

dist
(
xt(,ϕ),S

) → , as t → ∞,
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where

dist(ϕ,S) = inf
ψ∈S

ρ
(
ϕ(s),ψ(s)

)
, for ϕ ∈PCb

F

(
[–r, ],H

)

and ρ(·, ·) is any distance in PCb
F

([–r, ],H).

Definition . An H-valued random process x(t), t ∈ [–r,∞] is called a mild solution of
(.) if:

(i) x(t) ∈PC([–r,∞], L(�,H)),
(ii) for t ∈ [–r, ], x(t) = φ(t),

(iii) for t ≥ , x(t) satisfies the following integral equation:

x(t) = T(t)
[
φ() – g(,φ, )

]
+ g

(

t, xt ,
∫ t


a(t, s, xs) ds

)

+
∫ t


AT(t – s)g

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds

+
∫ t


T(t – s)f

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds

+
∑

<ti<t

T(t – ti)Ii
(
x
(
t–
i
))

+
∫ t


T(t – s)F̃(s) dBH

Q (s) a.s. (.)

Lemma . (see []) For any x ∈R
n
+ and p > , we have

|x|p = n( p
 –)∨

n∑

i=

xp
i ,

( n∑

i=

xi

)p

= n( p
 –)∨

n∑

i=

xp
i .

In order to obtain our main results, we always make the following assumptions:
(H) There exist positive constants M and μ such that the strongly continuous

semigroup ‖T(t)‖ ≤ Me–μt .
(H) There exist positive constants Lf and Mf , for any ψi,ϕi ∈PC , i = , , such that

∥
∥f (t,ψ,ϕ) – f (t,ψ,ϕ)

∥
∥ ≤ Lf

[‖ψ – ψ‖ + ‖ϕ – ϕ‖
]

and ‖f (t, , )‖ ≤ Mf .
(H) There exist constants 

 < β <  and positive constants Lg , Mg , for any ψi,ϕi ∈PC ,
i = , , such that

∥
∥(–A)β

[
g(t,ψ,ϕ) – g(t,ψ,ϕ)

]∥
∥ ≤ Lg

[‖ψ – ψ‖ + ‖ϕ – ϕ‖
]

and ‖(–A)βg(t, , )‖ ≤ Mg .
(H) There exist positive constants L and L, for any ψ ∈PC , where

∥
∥
∥
∥

∫ t


a(t, s,ψ) ds

∥
∥
∥
∥ ≤ L‖ψ‖,

∥
∥
∥
∥

∫ t


a(t, s,ψ) ds

∥
∥
∥
∥ ≤ L‖ψ‖.
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(H) The functions Ij (j = , , . . .) satisfy the following condition: there exist dj > 
(j = , , . . .), for any ψ ,ϕ ∈PC , such that

∥
∥Ij(ψ) – Ij(ϕ)

∥
∥ ≤ dj‖ψ – ϕ‖

and ‖Ij()‖ = .
(H) The function F̃ : [, +∞) →L

Q(H,K) satisfies

∫ +∞


eμs∥∥F̃(s)

∥
∥p
L

Q
ds < +∞.

(H) There exist positive constants δ, �λ and δ∗ satisfying the following inequalities:

δ ≥ max
{‖φ‖p, δ∗},

�λ = p–∥∥(–A)–β
∥
∥p[Lg( + L)

]peλr

+
{

p–Mp
–βμ

p–pβ– p
q
[
�( + qβ – q)

] p
q
[
Lg( + L)

]p

+ p–Mp[Lf ( + L)
]p

μ–p} eλr

μ – λ
+

∞∑

j=

bj < ,

δ∗ =
{

p–Mp[‖φ‖p + p–∥∥(–A)–β
∥
∥p(Lp

g ‖φ‖p + Mp
g
)]

+ Cp

[

McHH(H – ) sup
t≥

{
tH–e–εt}

∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
ds

]p/}

× ( – �λ)–,

where λ ∈ (,μ), p ≥ , q > , 
p + 

q =  and ε >  satisfies (μ – ε)p ≥ μ.

Remark . It is easy to derive the notion that system (.) has a unique mild solution
under the above assumptions (H)-(H).

3 Main results
In this section, we propose some integral inequalities which are useful in our following
calculus.

Lemma . For any positive constants μ and μ, we assume that there exist some positive
constants η, ηi (i = , ) and bj (j = , , . . .) and the function x(t) is in PC([–r,∞),R+) such
that

x(t) ≤ η‖xt‖ + η

∫ t


e–μ(t–s)‖xs‖ds +

∑

<tj<t

bje–μ(t–tj)
∥
∥x

(
t–
j
)∥
∥ + η, t ≥ . (.)

If

σ := η +
η

μ
+

∞∑

j=

bj < , (.)



Duan and Ren Advances in Difference Equations  (2017) 2017:361 Page 7 of 15

then

x(t) ≤ ( – σ )–η, t ∈ [–r,∞), (.)

provided

x(t) ≤ ( – σ )–η, t ∈ [–r, ]. (.)

Proof If (.) is not true, we can affirm that there exists a t ≥  such that

x(t) ≥ ( – σ )–η, x(t) < ( – σ )–η, t ∈ [–r, t). (.)

From (.) and (.), we have

x(t) ≤ η( – σ )–η + η

∫ t


e–μ(t–s)( – σ )–η ds

+
∑

<tj<t

bje–μ(t–tj)( – σ )–η + η

≤
[

η +
η

μ
+

∞∑

j=

bj

]

( – σ )–η + η

= ( – σ )–η.

Hence, it contradicts the first inequality of (.), so the proof is complete. �

Remark . If μ = μ = μ, then Lemma . becomes Lemma . in [].

Lemma . For any positive constants μ, μ and μ, we assume that there exist some pos-
itive constants η, ηi (i = , , ) and bj (j = , , . . .) and the function x(t) is in PC([–r,∞),R+)
such that

x(t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

ηe–μt + η‖xt‖ + η
∫ t

 e–μ(t–s)‖xs‖ds

+
∑

<tj<t bje–μ(t–tj)‖x(t–
j )‖ + η, t ≥ ,

φ(t), t ∈ [–r, ].

(.)

If

σ := η +
η

μ
+

∞∑

j=

bj < , (.)

then we have

x(t) ≤ δe–λt + ( – σ )–η, t ∈ [–r,∞), (.)

where λ ∈ (,λ∗), λ∗ = min{μ,μ} and the following inequalities are satisfied:

δ ≥ max

{

‖φ‖,
η

 – σλ

}

, σλ = ηeλr +
ηeλr

μ – λ
+

∞∑

j=

bj < . (.)
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Proof By (.), we verify that there exist constants λ ∈ (,λ∗) and δ such that (.) can be
defined well. Firstly, we claim that, for any δ̃ ≥ δ,

x(t) ≤ δ̃e–λt + ( – σ )–η = y(t), for t ∈ [–r, b]. (.)

It is clear that (.) holds for any t ∈ [–r, ]. By the contradiction method, if (.) is not
true for t ∈ [, b], we can find a t̃ ∈ [, b] such that

x(t̃) ≥ y(t̃), x(t) < y(t), for t ∈ [–r, t̃). (.)

Next, we will give some contradictions by these conditions.
By (.), (.) and (.), we have

x(t̃) ≤ ηe–μ t̃ + η‖xt̃‖ + η

∫ t̃


e–μ(t̃–s)

[

δ̃e–λ(s+τ ) +
η

 – σ

]

ds

+
∑

<tj<t̃

bje–μ(t̃–tj)
∥
∥x

(
t–
j
)∥
∥ + η

≤ ηe–μ t̃ +

[

ηeλr +
ηeλr

μ – λ
+

∞∑

j=

bj

]

δ̃e–λt̃

+

[

η +
η

μ
+

∞∑

j=

bj

]
η

 – σ
+ η.

Following from (.) and (.), we have

x(t̃) ≤ ηe–λt̃ + σλδ̃e–λt̃ + σ
η

 – σ
+ η

≤ δ̃e–λt̃ +
η

 – σ
,

which contradicts the first inequality of (.), so the proof is complete. �

Remark . If μ = μ = μ = μ, we see that Lemma . in [] is a special case of
Lemma ..

Corollary . If the assumptions of Lemma . hold and η = , then all solutions of in-
equality (.) are converged to zero in the p-exponential sense.

Theorem . Assume that the conditions (H)-(H) are satisfied. Then

S =
{
ϕ ∈PCb

F

(
[–r, ],H

) | ‖ϕ‖p
Lp ≤ ( – �)–J

}

is a global attracting set of the mild solution of (.) and

S =
{
ϕ ∈PCb

F

(
[–r, ],H

) | ‖ϕ‖p
Lp ≤ �

}
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is a quasi-invariant set of the mild solution of (.) if the following relations hold:

� = p–∥∥(–A)–β
∥
∥p[Lg( + L)

]p

+ p–Mp
–βμ

p–pβ– p
q –(

�( + qβ – q)
) p

q
[
Lg( + L)

]p

+ p–Mp[Lf ( + L)
]p

μ–p + p–Mp

( ∞∑

j=

dj

)p

< , (.)

where

J = p–Mp[
E

∥
∥φ()

∥
∥p + p–∥∥(–A)–β

∥
∥p(Lp

gE‖φ‖p + Mp
g
)]

+ p–Cp

[

McHH(H – ) sup
t≥

{
tH–e–εt}

∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
ds

]p/

+ p–Mp
–βMp

g μ
p–pβ– p

q –(
�( + qβ – q)

) p
q

+ p–∥∥(–A)–β
∥
∥pMp

g + p–MpMp
f μ

–p,

� = p–Mp[‖φ‖p + p–∥∥(–A)–β
∥
∥p(Lp

g ‖φ‖p + Mp
g
)]

+ p–Cp

[

McH H(H – ) sup
t≥

{
tH–e–εt}

∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
ds

]p/

+ p–∥∥(–A)–β
∥
∥pMp

g + p–MpMp
f μ

–p

+ p–Mp
–βMp

g μ
p–pβ– p

q –[
�( + qβ – q)

] p
q ,

(.)

and 
p + 

q = , p ≥ , q > .

Proof By (.), we have

E
∥
∥x(t)

∥
∥p = E

∥
∥
∥
∥T(t)

[
φ() – g(,φ, )

]
+ g

(

t, xt ,
∫ t


a(t, s, xs) ds

)

+
∫ t


AT(t – s)g

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds

+
∫ t


T(t – s)f

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds

+
∑

<ti<t

T(t – ti)Ii
(
x
(
t–
i
))

+
∫ t


T(t – s)F̃(s) dBH

Q (s)
∥
∥
∥
∥

p

. (.)

From Lemma ., we have

E
∥
∥x(t)

∥
∥p ≤ p–

E
∥
∥T(t)

[
φ() – g(,φ, )

]∥
∥p + p–

E

∥
∥
∥
∥g

(

t, xt ,
∫ t


a(t, s, xs) ds

)∥
∥
∥
∥

p

+ p–
E

∥
∥
∥
∥

∫ t


AT(t – s)g

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds
∥
∥
∥
∥

p

+ p–
E

∥
∥
∥
∥

∫ t


T(t – s)f

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds
∥
∥
∥
∥

p
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+ p–
E

∥
∥
∥
∥

∑

<ti<t

T(t – ti)Ii
(
x
(
t–
i
))

∥
∥
∥
∥

p

+ p–
E

∥
∥
∥
∥

∫ t


T(t – s)F̃(s) dBH

Q (s)
∥
∥
∥
∥

p

:= p–
∑

i=

Gi(t). (.)

From (H) and (H), we have

G(t) = E
∥
∥T(t)

[
φ() – g(,φ, )

]∥
∥p

≤ p–Mpe–pμt{
E

∥
∥φ()

∥
∥p + E

∥
∥(–A)–β (–A)βg(,φ, )

∥
∥p}

≤ p–Mpe–μt{
E

∥
∥φ()

∥
∥p +

∥
∥(–A)–β

∥
∥p
E

∥
∥(–A)βg(,φ, )

∥
∥p}

≤ p–Mpe–μt{
E

∥
∥φ()

∥
∥p +

∥
∥(–A)–β

∥
∥p
E

(
Lg‖φ‖ + Mg

)p}

≤ p–Mpe–μt{
E

∥
∥φ()

∥
∥p + p–∥∥(–A)–β

∥
∥p(Lp

gE‖φ‖p + Mp
g
)}

= Ee–μt , (.)

where E := p–Mp{E‖φ()‖p + p–‖(–A)–β‖p(Lp
gE‖φ‖p + Mp

g )}.
From (H) and (H), we derive

G(t) = E

∥
∥
∥
∥g

(

t, xt ,
∫ t


a(t, s, xs) ds

)∥
∥
∥
∥

p

= E

∥
∥
∥
∥(–A)–β (–A)βg

(

t, xt ,
∫ t


a(t, s, xs) ds

)∥
∥
∥
∥

p

≤ ∥
∥(–A)–β

∥
∥p
E

[
Lg

(‖xs‖ + L‖xs‖
)

+ Mg
]p

≤ p–∥∥(–A)–β
∥
∥p[Lg( + L)

]p
E‖xs‖p + p–∥∥(–A)–β

∥
∥pMp

g . (.)

By (H), (H) and the Hölder inequality, we have

G(t) = E

∥
∥
∥
∥

∫ t


AT(t – s)g

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds
∥
∥
∥
∥

p

= E

∥
∥
∥
∥

∫ t


(–A)–βT(t – s)(–A)βg

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds
∥
∥
∥
∥

p

≤ E

[∫ t



∥
∥
∥
∥(–A)–βT(t – s)(–A)βg

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)∥
∥
∥
∥ds

]p

≤ E

[∫ t



M–β

(t – s)–β
e–μ(t–s)[Lg( + L)‖xs‖ + Mg

]
ds

]p

≤ Mp
–β

[∫ t



[
(t – s)β–e–μ(t–s)]q ds

] p
q
E

∫ t


e–μ(t–s)[Lg( + L)‖xs‖ + Mg

]p ds

≤ p–Mp
–β

[
μq–qβ–�( + qβ – q)

] p
q

∫ t



[
e–μ(t–s)[Lg( + L)

]p
E‖xs‖p + Mp

g
]

ds

≤ p–Mp
–βμ

p–pβ– p
q
[
�( + qβ – q)

] p
q
[
Lg( + L)

]p
∫ t


e–μ(t–s)

E‖xs‖p ds

+ p–Mp
–βMp

g μ
p–pβ– p

q –[
�( + qβ – q)

] p
q , (.)

where 
p + 

q = , p ≥ , q > .
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By (H), (H) and (H), we obtain

G(t) = E

∥
∥
∥
∥

∫ t


T(t – s)f

(

s, xs,
∫ s


a(s, τ , xτ ) dτ

)

ds
∥
∥
∥
∥

p

≤ Mp
E

{∫ t


e–μ(t–s)[Lf ( + L)‖xs‖ + Mf

]
ds

}p

≤ p–Mp[Lf ( + L)
]p
E

[∫ t


e–μ(t–s)‖xs‖ds

]p

+ p–Mp
[∫ t


e–μ(t–s)Mf ds

]p

≤ p–Mp[Lf ( + L)
]p

[∫ t


e–μ(t–s) ds

]p– ∫ t


e–μ(t–s)

E‖xs‖p ds + p–MpMp
f μ

–p

≤ p–Mp[Lf ( + L)
]p

μ–p
∫ t


e–μ(t–s)

E‖xs‖p ds + p–MpMp
f μ

–p. (.)

By (H), (H) and the Hölder inequality, we deduce

G(t) = E

∥
∥
∥
∥

∑

<ti<t

T(t – ti)Ii
(
x
(
t–
i
))

∥
∥
∥
∥

p

≤ Mp
E

{ ∑

<tj<t

e–μ(t–tj)dj
∥
∥x

(
t–
j
)∥
∥

}p

≤ Mp

{ m∑

j=

dj

}p–
∑

tj<t
dje–pμ(t–tj)E

∥
∥x

(
t–
j
)∥
∥p

≤ Mp

{ m∑

j=

dj

}p–
∑

tj<t
dje–μ(t–tj)E

∥
∥x

(
t–
j
)∥
∥p. (.)

By (H), (H), Lemma . and the Kahane-Khintchine inequality, there exists a constant
Cp such that

G(t) = E

∥
∥
∥
∥

∫ t


T(t – s)F̃(s) dBH

Q (s)
∥
∥
∥
∥

p

≤ Cp

[

E

∥
∥
∥
∥

∫ t


T(t – s)F̃(s) dBH

Q (s)
∥
∥
∥
∥

]p/

.

Choosing a suitable ε >  small enough such that (μ – ε)p ≥ μ, we derive

E

∥
∥
∥
∥

∫ t


T(t – s)F̃(s) dBH

Q (s)
∥
∥
∥
∥



≤ McHH(H – )tH–
∫ t


e–μ(t–s)∥∥F̃(s)

∥
∥
L

Q
ds

≤ McHH(H – )tH–
∫ t


e–μ(t–s)∥∥F̃(s)

∥
∥
L

Q
ds

≤ e–(μ–ε)tMcHH(H – )tH–e–εt
∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
ds.

Then, by (H), we assume

E = Cp

[

McHH(H – ) sup
t≥

{
tH–e–εt}

∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
ds

]p/

, for all t ≥ .

Therefore

G(t) ≤ Ee–μt . (.)
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From (.)-(.), we have

E
∥
∥x(t)

∥
∥p ≤ p–Ee–μt + p–∥∥(–A)–β

∥
∥p[Lg( + L)

]p
E‖xs‖p + p–∥∥(–A)–β

∥
∥pMp

g

+ p–Mp
–βμ

p–pβ– p
q
[
�( + qβ – q)

] p
q
[
Lg( + L)

]p
∫ t


e–μ(t–s)

E‖xs‖p ds

+ p–Mp
–βMp

g μ
p–pβ– p

q –[
�( + qβ – q)

] p
q

+ p–Mp[Lf ( + L)
]p

μ–p
∫ t


e–μ(t–s)

E‖xs‖p ds + p–MpMp
f μ

–p

+ p–Mp

( ∞∑

j=

dj

)p–
∑

tj<t
dje–μ(t–tj)E

∥
∥x

(
t–
j
)∥
∥p + p–Ee–μt

= p–[E + E]e–μt + p–∥∥(–A)–β
∥
∥p[Lg( + L)

]p
E‖xs‖p

+ p–Mp
–βμ

p–pβ– p
q
[
�( + qβ – q)

] p
q
[
Lg( + L)

]p
∫ t


e–μ(t–s)

E‖xs‖p ds

+ p–Mp[Lf ( + L)
]p

μ–p
∫ t


e–μ(t–s)

E‖xs‖p ds

+ p–Mp

( ∞∑

j=

dj

)p–
∑

tj<t
dje–μ(t–tj)E

∥
∥x

(
t–
j
)∥
∥p + p–∥∥(–A)–β

∥
∥pMp

g

+ p–Mp
–βMp

g μ
p–pβ– p

q –[
�( + qβ – q)

] p
q + p–MpMp

f μ
–p. (.)

By Lemma . and (H), there exist positive constants δ and J such that

E
∥
∥x(t)

∥
∥p ≤ δe–λt + ( – �)–J , t ∈ [–r,∞), (.)

where λ ∈ (,μ).
Therefore, S is an attracting set of the mild solution of (.).
When ϕ ∈ S, we deduce, from (.),

E
∥
∥x(t)

∥
∥p ≤ p–Mp[

E
∥
∥φ()

∥
∥p + p–∥∥(–A)–β

∥
∥p(Lp

g ‖φ‖p + Mp
g
)]

+ p–Cp

[

McHH(H – ) sup
t≥

{
tH–e–εt}

∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
ds

]p/

+ p–∥∥(–A)–β
∥
∥pLp

g ( + L)p
E‖xs‖p

+ p–Mp
–βμ

p–pβ– p
q
[
�( + qβ – q)

] p
q
[
Lg( + L)

]p
∫ t


e–μ(t–s)

E‖xs‖p ds

+ p–Mp[Lf ( + L)
]p

μ–p
∫ t


e–μ(t–s)

E‖xs‖p ds

+ p–Mp

[ ∞∑

j=

dj

]p–
∑

tj<t
dje–μ(t–tj)E

∥
∥x

(
t–
j
)∥
∥p + p–∥∥(–A)–β

∥
∥pMp

g

+ p–Mp
–βMp

g μ
p–pβ– p

q –(
�( + qβ – q)

) p
q + p–MpMp

f μ
–p. (.)
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By Lemma . and (.), we have

E
∥
∥x(t)

∥
∥p ≤ ( – �)–� . (.)

Therefore, S is a quasi-invariant set of the mild solution of (.). �

Corollary . Assume that the assumptions (H)-(H) hold and Mf = Mg =  are satisfied.
Then the trivial solution of (.) is globally mean square exponentially stable if the following
inequality holds:


∥
∥(–A)–β

∥
∥p[Lg( + L)

] + M
–β

[
Lg( + L)

]
μ–β–�(β – )

+ M[Lf ( + L)
]

μ– + M

( ∞∑

j=

dj

)

< . (.)

Proof From (H)-(H) and (.), we have

E
∥
∥x(t)

∥
∥ ≤ M[

E
∥
∥ϕ()

∥
∥ +

∥
∥(–A)–β

∥
∥L

gE‖ϕ‖]e–μt

+ 
∥
∥(–A)–β

∥
∥[Lg( + L)

]
E‖xs‖

+ M[Lf ( + L)
]

μ–
∫ t


e–μ(t–s)

E‖xs‖ ds

+ M

( ∞∑

j=

dj

)
∑

tj<t
dje–μ(t–tj)E

∥
∥x

(
t–
j
)∥
∥

+ M
–β

[
Lg( + L)

]
μ–β�(β – )

∫ t


e–μ(t–s)

E‖xs‖ ds

+ CpMcH tH–
∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
dse–μt .

Let λ ∈ (,μ). Then we derive

E
∥
∥x(t)

∥
∥ ≤ M{

E
∥
∥ϕ()

∥
∥ +

∥
∥(–A)–β

∥
∥L

gE‖ϕ‖}e–λt

+ 
∥
∥(–A)–β

∥
∥[Lg( + L)

]
E‖xs‖

+
{

M
–β

[
Lg( + L)

]
μ–β�(β – )

+ M[Lf ( + L)
]

μ–}
∫ t


e–λ(t–s)

E‖xs‖ ds

+ M

( ∞∑

j=

dj

)
∑

tj<t
dje–λ(t–tj)E

∥
∥x

(
t–
j
)∥
∥

+ CpMcH sup
t≥

{
tH–e–(μ–λ)t}

∫ +∞


eμs∥∥F̃(s)

∥
∥
L

Q
dse–λt . (.)

From (.) and Corollary . we conclude that the trivial solution of (.) is globally mean
square exponentially stable. �
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4 Conclusions
In this paper, we introduced two new impulsive integral inequalities with respect to neu-
tral stochastic integro-differential equations with impulses driven by fBm. We studied the
attracting and quasi-invariant sets of the system by use of the impulsive integral inequali-
ties. Furthermore, exponential stability of the mild solution is established under sufficient
conditions.
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