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Abstract
We propose a new stochastic competition chemostat system with saturated growth
rate and impulsive toxicant input. The main purpose of this paper is to study the
stochastic dynamics of a high-dimensional impulsive stochastic chemostat model
and find the threshold between persistence and extinction for the impulsive
stochastic chemostat system. First, we investigate the stability of the periodic solution
of a deterministic impulsive chemostat model and obtain the threshold between
persistence and extinction for the system. Second, by using qualitative analysis
method of impulsive stochastic differential equations, we obtain conditions for the
extinction and persistence in mean of two microorganisms in the stochastic
chemostat model. The results show that a stochastic disturbance or the impulsive
effect can cause the microorganisms to go to extinction. Finally, we provide some
examples together with numerical simulations to illustrate the analytical results and
explain the biological implications.
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1 Introduction
The chemostat is a kind of experimental device that can be used to cultivate microorgan-
isms and plays an important role in many fields, such as microbiology, ecology, chemical
engineering, and so on. Some analysis of a chemostat model and related results can be
found in [–]. In addition, when microorganism individuals increase greatly, owing to
the density-dependent population growth, the effect of saturation growth rate leads to a
constant number of microorganism individuals. Comparing with bilinear growth rate, the
saturated growth rate may be more suitable for many cases (see, e.g.,[–]).

Chemostat models have been applied to open natural environment [, , , , –].
Environmental pollution by industrial sewage or agricultural pesticides is one of the most
serious social and ecological problems. The toxicant in the environment is a threat to the
survival of the exposed microorganisms. Therefore, it is of great importance to investigate
the effects of toxicant and obtain a theoretical threshold between the extinction and per-
sistence of the microorganisms in a polluted environment [–]. In recent years, many

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1363-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1363-3&domain=pdf
http://orcid.org/0000-0002-6553-9686
mailto:mxz721106@sdust.edu.cn


Lv et al. Advances in Difference Equations  (2017) 2017:296 Page 2 of 19

works have been carried out to study the effects of toxicant on biological populations [–
]. In the s, some deterministic toxicant-population models were initially proposed
by Hallam [, ]. From then on, many important and valuable deterministic models with
toxicant effect were investigated by some scholars [–]. However, in the real world, a
waste water with toxicant is always input impulsively, and the population system is in-
evitably affected by an impulsive toxicant input. Some authors have studied the effects of
impulsive toxicant input on the persistence and extinction of microorganisms in a polluted
environment [–].

Chemostat models are inevitably affected by the white noise stochastic disturbance;
therefore the dynamics of a stochastic chemostat model may be different from that of a de-
terministic model. Some scholars have studied the dynamics behaviors of various kinds of
stochastic systems and obtained many good results [–]. Recently, taking both impul-
sive toxicant input and white noises into account, persistence and extinction of a single-
species population system in a polluted environment with random perturbations and im-
pulsive toxicant input were explored [, ].

Recently, many scholars focus on the research of impulsive stochastic differential sys-
tems. Hence, the asymptotic stability of some impulsive stochastic differential systems
were investigated, and many good results were obtained [–]. To capture essential
features of the processes, the following several aspects should be considered in the formu-
lation of chemostat models: (a) two-species competition for a limiting nutrient supplied
at a constant rate; (b) impulsive toxicant input; (c) white noise stochastic disturbance; and
(d) saturated growth rate. To our knowledge, there are only a few works that consider
the qualitative analysis of high-dimensional impulsive stochastic chemostat competition
models with saturated growth rate. Therefore, based on the four aspects, we propose a
new competition model with white noise disturbance and impulsive toxicant input. For
this new system, we explore the threshold between the extinction and persistence of two
microorganisms and study the influences of impulsive toxicant input and stochastic dis-
turbance on system dynamics. A deterministic chemostat competition model with satu-
rated growth rate and pulsed toxicant input can be described by the following impulsive
differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = Q(S – S(t)) – μS(t)x(t)
δ(a+x(t)) – μS(t)x(t)

δ(a+x(t)) ,

ẋ(t) = μS(t)x(t)
a+x(t) – Qx(t) – rc(t)x(t),

ẋ(t) = μS(t)x(t)
a+x(t) – Qx(t) – rc(t)x(t),

ċ(t) = –hc(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nτ , n ∈ Z+,

S(nτ+) = S(nτ ), xi(nτ+) = xi(nτ ) (i = , ),

c(nτ+) = c(nτ ) + u, n ∈ Z+,

()

where S(t) denotes the concentration of the unconsumed nutrient at time t, xi(t) repre-
sents the concentration of the microorganism at time t (i = , ), c(t) is the concentration
of the toxicant in the chemostat at time t, S and Q are the input concentration of the
nutrient and the flow rate of the chemostat, respectively, μi is the maximal growth rate
(or predation rate), ai is the half-saturation constant (i = , ), ri is the depletion rate coef-
ficient of the microorganism population due to organismal pollutant concentration, δi is
the yield of the microorganism xi(t) per unit mass of substrate (i = , ), h denotes the loss
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rate of toxicant in culture medium of the chemostat, u is the amount of toxicant pulsed
each τ , where τ is the period of pulsing, and all the coefficients are positive constants. The
function μiS(t)xi(t)

ai+xi(t) represents saturated growth rate showing density effect of the microor-
ganism population, which is different from μiS(t)xi(t)

ai+S(t) (see [, , ]).
Note that all parameters in system () can be affected by environmental noise, which

always fluctuates around some average values. However, in this paper, we only consider
the case that there is randomness involved in the maximal growth rate (or predation rate)
μi, which is one of the crucial parameters, to the culture of microorganism. In this case, μi

changes to a random variable μi + σiḂi, so that μiS(t)xi(t)
ai+xi(t) → μiS(t)xi(t)

ai+xi(t) + σiS(t)xi(t)
ai+xi(t) Ḃi(t), where

Bi(t) is a standard Brownian motion with intensity σ 
i >  (i = , ). Then a stochastic ver-

sion can take the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (Q(S – S(t)) – μS(t)x(t)
δ(a+x(t)) – μS(t)x(t)

δ(a+x(t)) ) dt

– σS(t)x(t)
δ(a+x(t)) dB(t) – σS(t)x(t)

δ(a+x(t)) dB(t),

dx(t) = ( μS(t)x(t)
a+x(t) – Qx(t) – rc(t)x(t)) dt

+ σS(t)x(t)
a+x(t) dB(t),

dx(t) = ( μS(t)x(t)
a+x(t) – Qx(t) – rc(t)x(t)) dt

+ σS(t)x(t)
a+x(t) dB(t),

dc(t) = –hc(t) dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nτ , n ∈ Z+,

S(nτ+) = S(nτ ), xi(nτ+) = xi(nτ ) (i = , ),

c(nτ+) = c(nτ ) + u, n ∈ Z+,

()

where σi is the environmental white noise disturbance coefficient (i = , ).
For convenience of description, we introduce the following definitions: (�,F , {F}t≥,P)

is a complete probability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e.
it is increasing and right continuous, whereas F contains all P-null sets); B(t) is a scalar
Brownian motion defined on this probability space; S(t) and xi(t) are continuous at t = nτ ,
c(t) is left continuous at t = nτ and c(nτ+) = limt→nτ+ c(t); and 〈f (t)〉 = 

t
∫ t

 f (θ ) dθ .
Next, we investigate the impulsive stochastic chemostat competition model with satu-

rated growth response rates in a polluted environment. The main objective of this paper
is to explore the extinction and persistence of a microorganism population and obtain the
thresholds of the two chemostat models.

2 Deterministic system and auxiliary lemmas
For convenience of discussion, we introduce the following definition and some lemmas.

Definition . ([, ])
(i) The microorganisms xi(t) are said to be extinctive if limt→+∞ xi(t) =  (i = , ) a.s.

(ii) The microorganisms xi(t) are said to be persistent if there exist positive constants
λi such that lim inft→+∞ xi(t) ≥ λi (i = , ).

(iii) The microorganisms xi(t) are said to be persistent in the mean if there exist positive
constants λi such that lim inft→+∞〈xi(t)〉 ≥ λi (i = , ) a.s.
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The subsystem of systems () and () is given by

⎧
⎨

⎩

dc(t) = –hc(t) dt, t �= nτ , n ∈ Z+,

c(nτ+) = c(nτ ) + u, n ∈ Z+.
()

Lemma . [, ] System () has a unique positive τ -periodic solution c∗(t) and, for any
solution c(t) of (), c(t) → c∗(t) as t → +∞. Moreover, c(t) > c∗(t) for all t ≥  if c() > c∗(),
where

⎧
⎨

⎩

c∗(t) = ue–h(t–nτ )

–e–hτ ,

c∗() = u
–e–hτ ,

()

for t ∈ (nτ , (n + )τ ] and n ∈ Z+.

Lemma . For any positive solution (S(t), x(t), x(t), c(t)) of deterministic system () with
initial value (S(), x(), x(), c(+)) ∈ R

+, we have

lim sup
t→+∞

S(t) ≤ S, lim sup
t→+∞

x(t) ≤ δS,

lim sup
t→+∞

x(t) ≤ δS, lim
t→+∞

〈
c(t)
〉

=
u

hτ
� c.

Proof From the first three equations of system () or (), we have

d(S(t) + 
δ

x(t) + 
δ

x(t))
dt

≤ QS – Q
(

S(t) +

δ

x(t) +

δ

x(t)
)

.

Thus we get

lim
t→+∞

(

S(t) +

δ

x(t) +

δ

x(t)
)

≤ S.

Then

lim sup
t→+∞

S(t) ≤ S, lim sup
t→+∞

xi(t) ≤ δiS, i = , .

By Lemma . we have

lim
t→+∞


t

∫ t


c(s) ds = lim

t→+∞

t

∫ t


c∗(s) ds =


τ

∫ τ


c∗(t) dt =

u
hτ

.

The proof of Lemma . is completed. �

Similarly, we can obtain the same results for stochastic system (), which is used in the
following sections.

Define

R =
μS

a(Q + ru
hτ

)
, R =

μS

a(Q + ru
hτ

)
. ()
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Lemma . If R <  and R < , then system () has a unique stable ‘microorganism-
extinction’ periodic solution (S, , , c∗(t)), which implies that the two microorganisms go
extinct, whereas, if R >  and R > , then the two microorganisms of system () are per-
sistent.

Lemma . is proved in the Appendix.

Remark . By Lemma ., two thresholds R and R decide the persistence and ex-
tinction of the microorganisms that are related with the impulsive disturbance force, that
is, the larger toxicant pulsed input u or the smaller period of pulsing τ can lead to the
extinction of the microorganisms in the deterministic system () without white noise dis-
turbance.

3 Dynamics of stochastic system
3.1 Extinction
In this section, we investigate the conditions for the extinction of the two microorganisms
of system () under the stochastic white noise disturbance.

Lemma . Let (S(t), x(t), x(t), c(t)) be a solution of system () with initial value (S(),
x(), x(), c()) ∈ R

+. Then

lim
t→+∞

∫ t


σiS(θ )
ai+xi(θ ) dBi(θ )

t
= ,

lim
t→+∞

∫ t
 σiS(θ ) dBi(θ )

t
= , i = , , a.s.

Proof Let Z(t) =
∫ t


σiS(θ )

ai+xi(θ ) dBi(θ ) and ξ > . From Lemma . and Burkholder-Davis-
Gundy inequality (see []) we have

E
[

sup
≤θ≤t

∣
∣Z(θ )

∣
∣ξ
]

≤ Cξ E
[∫ t



σ 
i S(θ )

(ai + xi(θ )) dθ

] ξ


≤ Cξ t
ξ
 E
[

sup
≤θ≤t

σ
ξ
i Sξ (θ )

(ai + xi(θ ))ξ

]

≤ Mξ Cξ t
ξ
 ,

where Mξ = ( Sσi
ai

)ξ . Let ε be an arbitrary positive constant. Then we can observe that

P

{
ω : sup

kδ≤t≤(k+)δ

∣
∣Z(t)

∣
∣ξ > (kδ)+ε+ ξ


}

≤ E(|Z((k + )δ)|ξ )

(kδ)+ε+ ξ


≤ Mξ Cξ [(k + )δ]
ξ


(kδ)+ε+ ξ


≤ 
ξ
 Mξ Cξ

(kδ)+ε
.



Lv et al. Advances in Difference Equations  (2017) 2017:296 Page 6 of 19

By the Borel-Cantelli lemma and Doob’s martingale inequality (see []), for almost all
ω ∈ �, we have that

sup
kδ≤t≤(k+)δ

∣
∣Z(t)

∣
∣ξ ≤ (kδ)+ε+ ξ

 ()

for all but finitely many k. Thus, there exists a positive k(ω) such that, for almost all ω ∈ �,
() holds when k ≥ k(ω). Hence, if k ≥ k(ω) and kδ ≤ t ≤ (k + )δ, then, for almost all
ω ∈ �,

ln |Z(t)|ξ
ln t

≤ ( + ε + ξ

 ) ln(kδ)
ln(kδ)

=  + ε +
ξ


.

Thus we have

lim sup
t→+∞

ln |Z(t)|
ln t

≤  + ε + ξ


ξ

.

Letting ε → , we obtain

lim sup
t→+∞

ln |Z(t)|
ln t

≤ 


+

ξ

.

Then, for an arbitrary small positive constant ε (ε < 
 – 

ξ
), there exist a constant T(ω)

and a set �ε such that P(�ε) ≥  – ε and, for t ≥ T(ω), ω ∈ �ε ,

ln
∣
∣Z(t)

∣
∣≤
(




+

ξ

+ ε

)

ln t.

Therefore,

lim sup
t→+∞

Z(t)
t

≤ lim sup
t→+∞

t

 + 

ξ
+ε

t
= .

Note that

lim inf
t→+∞

|Z(t)|
t

≥ .

Then we have

lim
t→+∞

|Z(t)|
t

=  a.s.

that is,

lim
t→+∞

Z(t)
t

= lim
t→+∞

∫ t


σiS(θ )
ai+xi(θ ) dBi(θ )

t
=  a.s.

Similarly, we can obtain

lim
t→+∞

∫ t
 σiS(θ ) dBi(θ )

t
= , i = , , a.s.

This completes the proof of Lemma .. �



Lv et al. Advances in Difference Equations  (2017) 2017:296 Page 7 of 19

Define

R∗
 =

μS

a(Q + ru
hτ

)
–

σ 
 S


a

 (Q + ru
hτ

)
= R –

σ 
 S


a

 (Q + ru
hτ

)
,

R∗
 =

μS

a(Q + ru
hτ

)
–

σ 
 S


a

(Q + ru
hτ

)
= R –

σ 
 S


a

(Q + ru
hτ

)
,

where R, R are the thresholds of the deterministic system () given in ().

Theorem . Let (S(t), x(t), x(t), c(t)) be the solution of system () with initial value
(S(), x(), x(), c()) ∈ R

+. If (i) σi > μi√

(Q+ riu
hτ

)
for i = ,  or (ii) R∗

i <  and σi ≤
√

aiμi
S

for i = , , then the two microorganisms of system () go to extinction almost surely, that is,
limt→+∞ xi(t) =  (i = , ) a.s.; moreover, limt→+∞ S(t) = S a.s. and limt→+∞ c(t) = c∗(t) for
t ∈ (nτ , (n + )τ ] and n ∈ Z+.

Proof Applying Itô’s formula to system () leads to

d ln xi(t) =
(

μiS(t)
ai + xi(t)

– Q – ric(t) –
σ 

i S(t)
(ai + xi(t))

)

dt

+
σiS(t)

ai + xi(t)
dBi(t), i = , . ()

Case (i). Integrating both sides of () from  to t results in

ln xi(t) = –
σ 

i


∫ t



(
μi

σ 
i

–
S(t)

ai + xi(t)

)

dt – Qt – ri

∫ t


c(θ ) dθ +

μ
i

σ 
i

t + Mi(t) + ln xi()

≤ –Qt – ri

∫ t


c(θ ) dθ +

μ
i

σ 
i

t + Mi(t) + ln xi(), ()

where Mi(t) =
∫ t


σiS(θ )

ai+xi(θ ) dBi(θ ), i = , . Dividing both sides of () by t, we observe that

ln xi(t)
t

≤ –
(

Q + ri
〈
c(t)
〉
–

μ
i

σ 
i

)

+
Mi(t)

t
+

ln xi()
t

. ()

The process Mi(t) (i = , ) is a local continuous martingale with Mi() = , and from
Lemma . we have

lim
t→+∞

Mi(t)
t

= , i = , , a.s.

Since σi > μi√

(Q+ riu
hτ

)
for i = , , we have –(Q + ri〈c(t)〉 – μ

i
σ

i
) < .

Taking the limit superior of both sides of (), we can observe that

lim sup
t→+∞

ln xi(t)
t

≤ –
(

Q + ri
〈
c(t)
〉
–

μ
i

σ 
i

)

<  a.s.,

which implies limt→+∞ xi(t) = , i = , , a.s.
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Case (ii). Integrating both sides of () from  to t and dividing by t lead to

ln xi(t)
t

=

t

∫ t



(
μiS(θ )

ai + xi(θ )
– Q – ric(θ ) –

σ 
i S(θ )

(ai + xi(θ ))

)

dθ +
Mi(t)

t
+

ln xi()
t

≤
(

μiS

ai
–
(
Q + ri

〈
c(t)
〉)

–
σ 

i S


a
i

)

+
Mi(t)

t
+

ln xi()
t

=
(
Q + ri

〈
c(t)
〉)
(

μiS

ai(Q + ri〈c(t)〉) –
σ 

i S


a
i (Q + ri〈c(t)〉) – 

)

+
Mi(t)

t
+

ln xi()
t

. ()

Taking the limit superior of both sides of () yields

lim sup
t→+∞

ln xi(t)
t

≤ (Q + ric)
(
R∗

i – 
)

<  a.s.,

which means limt→+∞ xi(t) =  a.s.
Without loss of generality, we may assume that  < xi(t) < εi (i = , ) for an arbitrarily

small positive quantity εi and all t ≥ . By the first equation of system () we have

dS(t)
dt

≥ Q
(
S – S(t)

)
–
(

uε

δa
+

uε

δa
+

σε

δa

∣
∣Ḃ(t)

∣
∣ +

σε

δa

∣
∣Ḃ(t)

∣
∣

)

S(t). ()

As ε →  and ε → , taking the limit inferior of both sides of () gives

lim inf
t→+∞ S(t) ≥ S a.s. ()

By the proof of Lemma . we have

lim
t→+∞ S(t) ≤ S + ε + ε a.s.

Then, letting ε →  and ε → , we have

lim sup
t→+∞

S(t) ≤ S a.s. ()

From () and () we have

lim
t→+∞ S(t) = S a.s.

From () and Lemma . we can observe that

lim
t→+∞ c(t) = c∗(t)

for t ∈ (nτ , (n + )τ ] and n ∈ Z+. �

Remark . Theorem . shows that the two microorganisms will die out if the white
noise disturbance is large or R∗

i <  and the white noise disturbance is not too large. Note
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that the expression of R∗
i is a difference compared with two thresholds of system (), Ri.

This implies that the conditions for xi(t) to go to extinction in the deterministic system ()
are stronger than in the corresponding stochastic model ().

3.2 Persistence in mean
Theorem . Let (S(t), x(t), x(t), c(t)) be a solution of system () with initial value
(S(), x(), x(), c()) ∈ R

+.
(i) If R∗

 > , R∗
 < , and σ ≤

√
aμ

S
, then the microorganism x dies out, and the

microorganism x is persistent in mean; moreover, x satisfies

lim inf
t→+∞

〈
x(t)

〉≥ aδQ(Q + rc)
(μ + δQ)(Q + rc∗())

(
R∗

 – 
)

a.s.

(ii) If R∗
 > , R∗

 < , and σ ≤
√

aμ
S

, then the microorganism x dies out, and the
microorganism x is persistent in mean; moreover, x satisfies

lim inf
t→+∞

〈
x(t)

〉≥ aδQ(Q + rc)
(μ + δQ)(Q + rc∗())

(
R∗

 – 
)

a.s.

(iii) If R∗
 >  and R∗

 > , then the two microorganisms x and x are persistent in mean;
moreover, x and x satisfy

lim inf
t→+∞

〈
x(t) + x(t)

〉≥ 
�max

∑

i=

ai(Q + ric)
(
R∗

i – 
)

a.s.,

where

�max = max

{
(
Q + rc∗()

)
(

μ + μ

δQ
+ 
)

,
(
Q + rc∗()

)
(

μ + μ

δQ
+ 
)}

.

Proof Case (i). By Theorem ., since R∗
 <  and σ ≤

√
aμ

S
, we have limt→+∞ x(t) = 

a.s. Since R∗
 > , we have that, for ε small enough such that  < x(t) < ε for all t large

enough,

μ(S – ( Q+rc∗()
δQ ε))

a(Q + rc)
–

σ 
 S


a

 (Q + rc)
>  a.s.

Integrating both sides of system () from  to t and dividing by t yield

(t) � S(t) – S()
t

+

δ

x(t) – x()
t

+

δ

x(t) – x()
t

≥ QS – Q
〈
S(t)
〉
–
(

Q + rc∗()
δ

)
〈
x(t)

〉
–
(

Q + rc∗()
δ

)
〈
x(t)

〉

≥ QS – Q
〈
S(t)
〉
–
(

Q + rc∗()
δ

)
〈
x(t)

〉
–
(

Q + rc∗()
δ

)

ε.

Then we get

〈
S(t)
〉≥
(

S –
(

Q + rc∗()
δQ

)

ε

)

–
(

Q + rc∗()
δQ

)
〈
x(t)

〉
–

(t)
Q

. ()
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Applying Itô’s formula to system () leads to

d
(
a ln x(t) + x(t)

)

=
(

μS(t) – a
(
Q + rc(t)

)
–
(
Q + rc(t)

)
x(t) –

aσ

 S(t)

(a + x(t))

)

dt + σS(t) dB(t)

≥
(

μS(t) – a
(
Q + rc(t)

)
–
(
Q + rc∗()

)
x(t) –

σ 
 S


a

)

dt + σS(t) dB(t). ()

Integrating on both sides of () from  to t and dividing by t yield

a(ln x(t) – ln x())
t

+
x(t) – x()

t

≥ μ
〈
S(t)
〉
– a

(
Q + r

〈
c(t)
〉)

–
(
Q + rc∗()

)〈
x(t)

〉
–

σ 
 S


a

+
M(t)

t

≥ μ

(

S –
(

Q + rc∗()
δQ

)

ε

)

– a
(
Q + r

〈
c(t)
〉)

–
σ 

 S


a

–
(

μ(Q + rc∗())
δQ

+
(
Q + rc∗()

)
)
〈
x(t)

〉
–

μ(t)
Q

+
M(t)

t

= a
(
Q + r

〈
c(t)
〉)
(

μ(S – Q+rc∗()
δQ ε)

a(Q + r〈c(t)〉) –
σ 

 S


a(Q + r〈c(t)〉) – 
)

–
(

μ(Q + rc∗())
δQ

+
(
Q + rc∗()

)
)
〈
x(t)

〉
–

μ(t)
Q

+
M(t)

t
, ()

where M(t) =
∫ t

 σS(θ ) dB(θ ). Inequality () can be rewritten as

〈
x(t)

〉 ≥ 
�

[

a
(
Q + r

〈
c(t)
〉)
(

μ(S – Q+rc∗()
δQ ε)

a(Q + r〈c(t)〉) –
σ 

 S


a
 (Q + r〈c(t)〉) – 

)

–
μ(t)

Q
+

M(t)
t

–
(

a(ln x(t) – ln x())
t

+
x(t) – x()

t

)]

≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩


�

[a(Q + r〈c(t)〉)( μ(S– Q+rc∗()
δQ ε)

a(Q+r〈c(t)〉) – σ
 S


a

 (Q+r〈c(t)〉) – )

– μ(t)
Q + M(t)

t + a ln x()
t – x(t)–x()

t ],  < x(t) < ;


�

[a(Q + r〈c(t)〉)( μ(S– Q+rc∗()
δQ ε)

a(Q+r〈c(t)〉) – σ
 S


a

 (Q+r〈c(t)〉) – )

– μ(t)
Q + M(t)

t – a(ln x(t)–ln x())
t – x(t)–x()

t ],  ≤ x(t),

()

where � = (Q+rc∗())(μ+δQ)
δQ .

By Lemma . we have limt→+∞ M(t)
t =  a.s. According to Lemma ., we can find that

x(t) ≤ δS. Thus we have limt→+∞ x(t)
t =  and limt→+∞ ln x(t)

t =  a.s. as x(t) ≥  and
limt→+∞ (t) =  a.s. Taking the limit inferior of both sides of () results in

lim inf
t→+∞

〈
x(t)

〉 ≥ a(Q + rc)
�

[
μS

a(Q + rc)
–

σ 
 S


a

 (Q + rc)
– 
]

=
aδQ(Q + rc)

(μ + δQ)(Q + rc∗())
(
R∗

 – 
)

> .

Similarly, we can prove Case (ii), and we omit it here.
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Case (iii). Note that

〈
S(t)
〉
= S –

Q + r〈c(t)〉
δQ

〈
x(t)

〉
–

Q + r〈c(t)〉
δQ

〈
x(t)

〉
–

(t)
Q

. ()

Define

V (t) = ln
[
xa

 (t)xa
 (t)

]
+
[
x(t) + x(t)

]
.

Note that V (t) is bounded. Then we have

D+V (t) =

[

(μ + μ)S(t) –
∑

i=

(
Q + ric(t)

)(
ai + xi(t)

)
–

∑

i=

aiσ

i S(t)

(ai + xi(t))

]

dt

+
∑

i=

σiS(t) dBi(t)

≥
[

(μ + μ)S(t) –
∑

i=

ai
(
Q + ric(t)

)
–

∑

i=

xi(t)
(
Q + ric∗()

)
–

∑

i=

σ 
i S


ai

]

dt

+
∑

i=

σiS(t) dBi(t). ()

Integrating both sides of () from  to t and dividing by t yield

V (t)
t

–
V ()

t

≥ (μ + μ)
〈
S(t)
〉
–

∑

i=

ai
(
Q + ri

〈
c(t)
〉)

–
∑

i=

〈
xi(t)

〉(
Q + ric∗()

)

–
∑

i=

σ 
i S

(t)
ai

+
∑

i=

Mi

t

= (μ + μ)S –
∑

i=

(
Q + ri

〈
c(t)
〉)

ai –
∑

i=

σ 
i S

ai

–
∑

i=

[
(μ + μ)(Q + ri〈c(t)〉)

δiQ
+
(
Q + ric∗()

)
]
〈
xi(t)

〉

–
μ + μ

Q
(t) +

∑

i=

Mi

t

≥ (μ + μ)S –
∑

i=

(
Q + ri

〈
c(t)
〉)

ai –
∑

i=

σ 
i S

ai
– �max

[〈
x(t)

〉
+
〈
x(t)

〉]

–
μ + μ

Q
(t) +

∑

i=

Mi

t
, ()
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where Mi(t) =
∫ t

 σiS(θ ) dBi(θ ). Inequality () can be rewritten as

〈
x(t)

〉
+
〈
x(t)

〉 ≥ 
�max

[

(μ + μ)S –
∑

i=

(
Q + ri

〈
c(t)
〉)

ai –
∑

i=

σ 
i S

ai

–
μ + μ

Q
(t) –

V (t)
t

+
V ()

t
+

∑

i=

Mi

t

]

. ()

Since  < S ≤ S, we have

lim sup
t→+∞

〈Mi(t), Mi(t)〉t

t
≤ σ S

 < ∞ a.s.

By Lemma . we observe that limt→+∞ Mi(t)
t =  a.s. for i = , . According to Lemma .,

we have limt→+∞ (t) =  and limt→+∞ V (t)
t = .

Taking the limit inferior of both sides of () yields

lim inf
t→+∞

〈
x(t) + x(t)

〉≥ 
�max

∑

i=

ai(Q + ric)
(
R∗

i – 
)

>  a.s.

This completes the proof of Theorem .. �

Remark . Theorem . shows that the two microorganisms will be persistent if the
white noise disturbances are small enough such that R∗

i > ; conversely, if the white noise
disturbances are large enough, then the two microorganisms will go to extinction. This
implies that the stochastic disturbance may cause the populations to die out.

4 Conclusion and simulations
In this paper, we investigate the dynamics of an impulsive stochastic competition chemo-
stat model with saturated growth rate in a polluted environment. We obtain sufficient
conditions for extinction and persistence of both deterministic and stochastic systems.
From the expressions of the thresholds of the stochastic system () we can observe that
R∗

i < Ri, i = , , which means that the conditions for those two microorganisms to die
out in the deterministic model () are stronger than those in the corresponding stochastic
system (). This implies that a persistent deterministic system may become extinct in the
case of white noise stochastic disturbance.

On one hand, [–] investigated the asymptotic stability of some impulsive stochastic
differential systems and obtained many good results. On the other hand, [, ] investi-
gated qualitative properties for persistence and extinction of one-dimensional impulsive
stochastic single-species population models. Based on the works [, ], we consider the
qualitative analysis of the high-dimensional impulsive stochastic multi-species popula-
tion model, which leads to a more complex and difficult stochastic analysis. Moreover, we
use impulsive stochastic inequality technique to discuss the question according to three
different cases. The main aim of the paper is to study the stochastic dynamics of the high-
dimensional impulsive stochastic chemostat model and find the threshold between per-
sistence and extinction of the microorganisms. In a sense, we improve and develop the
theoretical method in [, ].
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Figure 1 Computer simulation of the paths S(t), x1(t), x2(t), c(t) for the deterministic chemostat model
(1) and the stochastic chemostat model (2) with parameters S0 = 4, Q = 0.5, r1 = 0.5, r2 = 0.9, δ1 = 2,
δ2 = 2.2, a1 = 15, a2 = 7.5, μ1 = 2.7, μ2 = 1.4, h = 0.5, u = 0.3, τ = 10 and the initial values S(0) = 2.5,
x1(0) = 1, x2(0) = 1, c(0) = 0.3. (a) Time series for S(t), X1(t), X2(t), c(t) with parameters σ1 = 0, σ2 = 0. (b) Time
series for S(t), X1(t), X2(t), c(t) with parameters σ1 = 2.4, σ2 = 1.2. (c) Time series for S(t), X1(t), X2(t), c(t) with
parameters σ1 = 0.2, σ2 = 1.2. (d) Time series for S(t), X1(t), X2(t), c(t) with parameters σ1 = 2.4, σ2 = 0.1.
(e) Time series for S(t), X1(t), X2(t), c(t) with parameters σ1 = 0.2, σ2 = 0.1.

Next, we employ the Euler method to simulate the dynamics of the deterministic and
stochastic systems to support our theoretical results. We choose some parameters in sys-
tems () and () as follows: S = , Q = ., r = ., r = ., δ = , δ = ., a = ,
a = ., μ = ., μ = ., h = ., u = ., τ = , and the initial values are S() = .,
x() = , x() = , c() = ..

In Figure , we can see that

(a) σ = , σ = , R = . > , R = . > ;

(b) σ = ., σ = ., R∗
 = . < , R∗

 = . < .
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This shows that the persistent two microorganisms of a deterministic system (see Fig-
ure (a)) can become extinct under the white noise stochastic disturbance (see Figure (b)),
and thus the simulation is consistent with the theoretical results of Lemma . and The-
orem .. When R∗

i = Ri – σ
i S


a

i (Q+ric) <  < Ri, a persistent deterministic system goes to
extinction due to the white noise disturbance.

Next, we choose σ and σ with different values. When σ is small and σ is large (σ = .,
σ = .), here R∗

 = . >  and R∗
 = . < . Thus, the microorganism x goes to

extinction, and the microorganism x is persistent (see Figure (c)). Conversely, when σ is
large and σ is small (σ = ., σ = .), here R∗

 = . < , R∗
 = . > . Figure (d)

shows that the microorganism x goes to extinction and the microorganism x is persis-
tent. Moreover, for small noise intensities, σ = . and σ = ., both microorganisms are
persistent (see Figure (e)). This supports our theoretical results in Theorem ., and we
observe that the white noise has unfavorable effects on the persistence of microorganisms.

Figure (a) shows that a greater impulsive toxicant input can lead to the extinction of
the two microorganisms, whereas the microorganism populations can be persistent in
the smaller impulsive toxicant input environment (see Figure (b) and Figure (c)). This
supports our theoretical results in Theorems . and ., and we observe that the impulsive
toxicant input has unfavorable effects on the persistence of microorganisms.

From the theoretical analysis and simulations we can find that if the intensity of the
white noise or impulsive input is small, then the microorganisms can still be persistent
just as in the deterministic system, whereas for the large intensity of the white noise or
impulsive input, microorganisms may become extinct. Therefore, noises and impulsive

Figure 2 Computer simulation of the paths S(t), x1(t), x2(t), c(t) of the stochastic chemostat model (2)
for impulsive effects. (a) Time series for S(t), X1(t), X2(t), c(t) with parameters σ1 = 0.1, σ2 = 0.1, u = 2.
(b) Time series for S(t), X1(t), X2(t), c(t) with parameters σ1 = 0.1, σ2 = 0.1, u = 0. (c) Time series for S(t), X1(t),
X2(t), c(t) with parameters σ1 = 0.1, σ2 = 0.1, u = 0.2.
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effects go against the survival of microorganisms. The first three equations of system ()
can also be considered as a nonautonomous and nonimpulsive periodic system with pe-
riodic coefficient c(t) (with period τ ). Moreover, the extinction and persistence of two
microorganisms are discussed in three cases. The theoretical method can also be used to
explore the thresholds of some high-dimensional impulsive stochastic differential systems
and some nonautonomous periodic systems.

Some problems in this direction deserve further investigation. It is interesting to study
other kinds of high-dimensional impulsive stochastic Lotka-Volterra systems, such as
predator-prey system and cooperation system, or introduce a Markov process or Lévy
jumps into the impulsive stochastic environment. This our future research work should
continue to be concerned about.

Appendix
The proof of Lemma ..

Proof By Lemma . there is a unique ‘microorganism-extinction’ periodic solution
(S, , , c∗(t)) in system (). The local stability of the periodic solution (S, , , c∗(t)) may
be determined by considering the behavior of small amplitude perturbations of the solu-
tion. Let S(t) = S + φ(t), x(t) = v(t), x(t) = v(t), c(t) = c∗(t) + w(t). Then we have

⎛

⎜
⎜
⎜
⎝

φ(t)
v(t)
v(t)
w(t)

⎞

⎟
⎟
⎟
⎠

= �(t)

⎛

⎜
⎜
⎜
⎝

φ()
v()
v()
w()

⎞

⎟
⎟
⎟
⎠

,  ≤ t ≤ τ ,

where �(t) satisfies

d�(t)
dt

=

⎛

⎜
⎜
⎜
⎝

–Q ∗ ∗ 
 μS

a
– Q – rc∗(t)  

  μS
a

– Q – rc∗(t) 
   –h

⎞

⎟
⎟
⎟
⎠

�(t),

�() = E× is the identity matrix, and the fundamental solution matrix is

�(t) =

⎛

⎜
⎜
⎝

exp(–Qτ ) ∗ ∗ 
 exp(

∫ τ


μS

a
– Q – rc∗(t) dt)  

  exp(
∫ τ


μS

a
– Q – rc∗(t) dt) 

   exp(–hτ )

⎞

⎟
⎟
⎠ .

There is no need to calculate the exact form of (∗) because it is not required in the analysis
that follows. The linearization of the impulsive equations of () becomes

⎛

⎜
⎜
⎜
⎝

φ(nτ+)
v(nτ+)
v(nτ+)
w(nτ+)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

   
   
   
   

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

φ(nτ )
v(nτ )
v(nτ )
w(nτ )

⎞

⎟
⎟
⎟
⎠

= E×

⎛

⎜
⎜
⎜
⎝

φ(nτ )
v(nτ )
v(nτ )
w(nτ )

⎞

⎟
⎟
⎟
⎠

.



Lv et al. Advances in Difference Equations  (2017) 2017:296 Page 16 of 19

The stability of the periodic solution (S, , , c∗(t)) is determined by the eigenvalues of
M = E×�(t), that is,

M =

⎛

⎜
⎜
⎝

exp(–Qτ ) ∗ ∗ 
 exp(

∫ τ


μS

a
– Q – rc∗(t) dt)  

  exp(
∫ τ


μS

a
– Q – rc∗(t) dt) 

   exp(–hτ )

⎞

⎟
⎟
⎠ ,

and there is no need to calculate the exact form of (∗). The eigenvalues of the upper trian-
gular matrix M are

λ = e–Qτ < , λ = e
∫ τ


μS

a
–Q–rc∗(t) dt ,

λ = e
∫ τ


μS

a
–Q–rc∗(t) dt , λ = e–hτ < .

According to Floquet theory of impulsive equations, (S, , , c∗(t)) is stable if λ <  and
λ < , that is, R <  and R < .

Now we prove that system () is persistent if R >  and R > .
For the equation S(t) + 

δ
x(t) + 

δ
x(t), integrating it from  to t and dividing by t, for t

large enough, we have

ε(t) � S(t) – S()
t

+

δ

x(t) – x()
t

+

δ

x(t) – x()
t

≥ QS – Q
〈
S(t)
〉
–

Q + rc∗()
δ

〈
x(t)

〉
–

Q + rc∗()
δ

〈
x(t)

〉
.

Then we have

〈
S(t)
〉≥ S –

Q + rc∗()
δQ

〈
x(t)

〉
–

Q + rc∗()
δQ

〈
x(t)

〉
–

ε(t)
Q

. ()

Define V (t) = a ln x(t) + a ln x(t) + x(t) + x(t), which is a bounded function. Then we
get

D+V (t) = μS(t) – a
(
Q + rc(t)

)
– Qx(t) – rc(t)x(t) + μS(t)

– a
(
Q + rc(t)

)
– Qx(t) – rc(t)x(t)

≥ (μ + μ)S(t) –
∑

i=

ai
(
Q + ric(t)

)
–

∑

i=

(
Q + ric∗()

)
xi(t). ()

Integrating both sides of () from  to t and dividing by t yield

V (t)
t

–
V ()

t
≥ (μ + μ)

〈
S(t)
〉
–

∑

i=

ai
(
Q + ri

〈
c(t)
〉)

–
∑

i=

(
Q + ric∗()

)〈
xi(t)

〉

≥ (μ + μ)S –
∑

i=

ai
(
Q + ri

〈
c(t)
〉)

–
∑

i=

[
(
Q + ric∗()

)
(

μ + μ

δiQ
+ 
)]
〈
xi(t)

〉
–

(μ + μ)ε(t)
Q
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=
∑

i=

ai
(
Q + ri

〈
c(t)
〉)
[

μiS

ai(Q + ri〈c(t)〉) – 
]

–
∑

i=

[
(
Q + ric∗()

)
(

μ + μ

δiQ
+ 
)]
〈
xi(t)

〉
–

(μ + μ)ε(t)
Q

. ()

Notice that  < S ≤ S and  < xi(t) ≤ δiS. Then limt→+∞ V (t)
t =  and limt→+∞ ε(t) = .

Taking the limit inferior of both sides of () leads to

lim inf
t→+∞

〈
x(t) + x(t)

〉≥ 
�max

∑

i=

ai(Qi + ric)(Ri – ) > ,

where

�max = max

{
(
Q + rc∗()

)
(

μ + μ

δQ
+ 
)

,
(
Q + rc∗()

)
(

μ + μ

δQ
+ 
)}

.

This completes the proof. �
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