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Abstract
Sufficient conditions, involving lim sup and lim inf, for the oscillation of all solutions of
differential equations with several not necessarily monotone deviating arguments
and nonnegative coefficients are established. Corresponding differential equations of
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1 Introduction
Consider the differential equations with several variable deviating arguments of either de-
layed

x′(t) +
m∑

i=

pi(t)x
(
τi(t)

)
=  for all t ≥ t, (E)

or advanced type

x′(t) –
m∑

i=

qi(t)x
(
σi(t)

)
=  for all t ≥ t, (E′)

where pi, qi,  ≤ i ≤ m, are functions of nonnegative real numbers, and τi, σi,  ≤ i ≤ m,
are functions of positive real numbers such that

τi(t) < t, t ≥ t and lim
t→∞ τi(t) = ∞,  ≤ i ≤ m, (.)

and

σi(t) > t, t ≥ t,  ≤ i ≤ m, (.′)

respectively.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1353-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1353-5&domain=pdf
mailto:litongx2007@163.com


Chatzarakis and Li Advances in Difference Equations  (2017) 2017:292 Page 2 of 24

In addition, we consider the initial condition for (E)

x(t) = ϕ(t), t ≤ t, (.)

where ϕ : (–∞, t] →R is a bounded Borel measurable function.
A solution of (E), (.) is an absolutely continuous on [t,∞) function satisfying (E) for

almost all t ≥ t and (.) for all t ≤ t. By a solution of (E′) we mean an absolutely contin-
uous on [t,∞) function satisfying (E′) for almost all t ≥ t.

A solution of (E) or (E′) is oscillatory if it is neither eventually positive nor eventually neg-
ative. If there exists an eventually positive or an eventually negative solution, the equation
is nonoscillatory. An equation is oscillatory if all its solutions oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions of
equations (E) or (E′) has been the subject of many investigations. The reader is referred
to [–] and the references cited therein. Most of these papers concern the special case
where the arguments are nondecreasing, while a small number of these papers are con-
cerned with the general case where the arguments are not necessarily monotone. See, for
example, [–, ] and the references cited therein.

In the present paper, we establish new oscillation criteria for the oscillation of all solu-
tions of (E) and (E′) when the arguments are not necessarily monotone. Our results essen-
tially improve several known criteria existing in the literature.

Throughout this paper, we are going to use the following notation:

α := lim inf
t→∞

∫ t

τ (t)

m∑

i=

pi(s) ds, (.)

β := lim inf
t→∞

∫ σ (t)

t

m∑

i=

qi(s) ds, (.)

D(ω) :=

⎧
⎨

⎩
, if ω > /e,
–ω–

√
–ω–ω
 , if ω ∈ [, /e],

(.)

MD := lim sup
t→∞

∫ t

τ (t)

m∑

i=

pi(s) ds, (.)

MA := lim sup
t→∞

∫ σ (t)

t

m∑

i=

qi(s) ds, (.)

where τ (t) = max≤i≤m τi(t), σ (t) = min≤i≤m σi(t) and τi(t), σi(t) (in (.) and (.)) are non-
decreasing, i = , , . . . , m.

1.1 DDEs
By Remark .. in [], it is clear that if τi(t),  ≤ i ≤ m, are nondecreasing and

MD > , (.)

then all solutions of (E) are oscillatory. This result is similar to Theorem .. [] which
is a special case of Ladas, Lakshmikantham and Papadakis’s result [].
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In  Ladde [] and in  Ladas and Stavroulakis [] proved that if

α >

e

, (.)

then all solutions of (E) are oscillatory.
In , Hunt and Yorke [] proved that if τi(t) are nondecreasing, t – τi(t) ≤ τ,  ≤ i ≤

m, and

lim inf
t→∞

m∑

i=

pi(t)
(
t – τi(t)

)
>


e

, (.)

then all solutions of (E) are oscillatory.
Assume that τi(t),  ≤ i ≤ m, are not necessarily monotone. Set

hi(t) := sup
t≤s≤t

τi(s) and h(t) := max
≤i≤m

hi(t), i = , , . . . , m, (.)

for t ≥ t, and

a(t, s) := exp

{∫ t

s

m∑

i=

pi(ζ ) dζ

}
,

ar+(t, s) := exp

{∫ t

s

m∑

i=

pi(ζ )ar
(
ζ , τi(ζ )

)
dζ

}
, r ∈ N.

(.)

Clearly, hi(t), h(t) are nondecreasing and τi(t) ≤ hi(t) ≤ h(t) < t for all t ≥ t.
In , Braverman et al. [] proved that if, for some r ∈N,

lim sup
t→∞

∫ t

h(t)

m∑

i=

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ > , (.)

or

lim sup
t→∞

∫ t

h(t)

m∑

i=

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ >  – D(α), (.)

or

lim inf
t→∞

∫ t

h(t)

m∑

i=

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ >


e

, (.)

then all solutions of (E) oscillate.
In , Chatzarakis and Péics [] proved that if

lim sup
t→∞

∫ t

h(t)

m∑

i=

pi(ζ )ar
(
h(ζ ), τi(ζ )

)
dζ >

 + lnλ

λ
– D(α), (.)

where λ is the smaller root of the transcendental equation eαλ = λ, then all solutions of
(E) are oscillatory.
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Very recently, Chatzarakis [] proved that if, for some j ∈N,

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
Pj(u) du

)
ds > , (.)

or

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
Pj(u) du

)
ds >  – D(α), (.)

or

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
Pj(u) du

)
ds >


D(α)

, (.)

or

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
Pj(u) du

)
ds >

 + lnλ

λ
– D(α), (.)

or

lim inf
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
Pj(u) du

)
ds >


e

, (.)

where

Pj(t) = P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Pj–(ξ ) dξ

)
du

)
ds

]
, (.)

with P(t) = P(t) =
∑m

i= pi(t), then all solutions of (E) are oscillatory.

1.2 ADEs
For equation (E′), the dual condition of (.) is

MA >  (.)

(see [], paragraph .).
In  Ladde [] and in  Ladas and Stavroulakis [] proved that if

β >

e

, (.)

then all solutions of (E′) are oscillatory.
In , Zhou [] proved that if σi(t) are nondecreasing, σi(t) – t ≤ σ,  ≤ i ≤ m, and

lim inf
t→∞

m∑

i=

qi(t)
(
σi(t) – t

)
>


e

, (.)

then all solutions of (E′) are oscillatory. (See also [], Corollary ...)
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Assume that σi(t),  ≤ i ≤ m, are not necessarily monotone. Set

ρi(t) := inf
s≥t

σi(s), t ≥ t and ρ(t) := min
≤i≤m

ρi(t), t ≥ t (.)

and

b(t, s) := exp

{∫ s

t

m∑

i=

qi(ζ ) dζ

}
,

br+(t, s) := exp

{∫ s

t

m∑

i=

qi(ζ )br
(
t,σi(ζ )

)
dζ

}
, r ∈ N.

(.)

Clearly, ρi(t), ρ(t) are nondecreasing and σi(t) ≥ ρi(t) ≥ ρ(t) > t for all t ≥ t.
In , Braverman et al. [] proved that if, for some r ∈N,

lim sup
t→∞

∫ ρ(t)

t

m∑

i=

qi(ζ )br
(
ρ(t),σi(ζ )

)
dζ > , (.)

or

lim sup
t→∞

∫ ρ(t)

t

m∑

i=

qi(ζ )br
(
ρ(t),σi(ζ )

)
dζ >  – D(β), (.)

or

lim inf
t→∞

∫ ρ(t)

t

m∑

i=

qi(ζ )br
(
ρ(t),σi(ζ )

)
dζ >


e

, (.)

then all solutions of (E′) are oscillatory.
Very recently, Chatzarakis [] proved that if, for some j ∈N,

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Qj(u) du

)
ds > , (.)

or

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Qj(u) du

)
ds >  – D(β), (.)

or

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

t
Qj(u) du

)
ds >


D(β)

, (.)

or

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(s)
Qj(u) du

)
ds >

 + lnλ

λ
– D(β), (.)

or

lim inf
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(s)
Qj(u) du

)
ds >


e

, (.)
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where

Qj(t) = Q(t)
[

 +
∫ σ (t)

t
Q(s) exp

(∫ σ (s)

t
Q(u) exp

(∫ σ (u)

u
Qj–(ξ ) dξ

)
du

)
ds

]
, (.)

with Q(t) = Q(t) =
∑m

i= qi(t), then all solutions of (E′) are oscillatory.

2 Main results
2.1 DDEs
We further study (E) and derive new sufficient oscillation conditions, involving lim sup

and lim inf, which essentially improve all known results in the literature. For this purpose,
we will use the following three lemmas. The proofs of them are similar to the proofs of
Lemmas .., .. and .. in [], respectively.

Lemma  Assume that h(t) is defined by (.). Then

lim inf
t→∞

∫ t

τ (t)

m∑

i=

pi(s) ds = lim inf
t→∞

∫ t

h(t)

m∑

i=

pi(s) ds. (.)

Lemma  Assume that x is an eventually positive solution of (E), h(t) is defined by (.)
and α by (.) with  < α ≤ /e. Then

lim inf
t→∞

x(t)
x(h(t))

≥ D(α). (.)

Lemma  Assume that x is an eventually positive solution of (E), h(t) is defined by (.)
and α by (.) with  < α ≤ /e. Then

lim inf
t→∞

x(h(t))
x(t)

≥ λ, (.)

where λ is the smaller root of the transcendental equation λ = eαλ.

Based on the above lemmas, we establish the following theorems.

Theorem  Assume that h(t) is defined by (.) and, for some j ∈N,

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds > , (.)

where

Rj(t) = P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj–(ξ ) dξ

)
du

)
ds

]
, (.)

with P(t) =
∑m

i= pi(t), R(t) = λP(t), and λ is the smaller root of the transcendental equa-
tion λ = eαλ. Then all solutions of (E) are oscillatory.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t)
of (E). Since –x(t) is also a solution of (E), we can confine our discussion only to the case
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where the solution x(t) is eventually positive. Then there exists a t > t such that x(t) > 
and x(τi(t)) > ,  ≤ i ≤ m, for all t ≥ t. Thus, from (E) we have

x′(t) = –
m∑

i=

pi(t)x
(
τi(t)

) ≤  for all t ≥ t,

which means that x(t) is an eventually nonincreasing function of positive numbers. Taking
into account that τi(t) ≤ h(t), (E) implies that

x′(t) +

( m∑

i=

pi(t)

)
x
(
h(t)

) ≤ x′(t) +
m∑

i=

pi(t)x
(
τi(t)

)
=  for all t ≥ t,

or

x′(t) + P(t)x
(
h(t)

) ≤  for all t ≥ t. (.)

Observe that (.) implies that, for each ε > , there exists a tε such that

x(h(t))
x(t)

> λ – ε for all t ≥ tε ≥ t. (.)

Combining inequalities (.) and (.), we obtain

x′(t) + (λ – ε)P(t)x(t) ≤ , t ≥ tε ,

or

x′(t) + R(t, ε)x(t) ≤ , t ≥ tε , (.)

where

R(t, ε) = (λ – ε)P(t). (.)

Applying the Grönwall inequality in (.), we conclude that

x(s) ≥ x(t) exp

(∫ t

s
R(ξ , ε) dξ

)
, t ≥ s ≥ tε . (.)

Now we divide (E) by x(t) >  and integrate on [s, t], so

–
∫ t

s

x′(u)
x(u)

du =
∫ t

s

m∑

i=

pi(u)
x(τi(u))

x(u)
du

≥
∫ t

s

( m∑

i=

pi(u)

)
x(τ (u))

x(u)
du

=
∫ t

s
P(u)

x(τ (u))
x(u)

du
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or

ln
x(s)
x(t)

≥
∫ t

s
P(u)

x(τ (u))
x(u)

du, t ≥ s ≥ tε . (.)

Since τ (u) < u, setting u = t, s = τ (u) in (.), we take

x
(
τ (u)

) ≥ x(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
. (.)

Combining (.) and (.), we obtain, for sufficiently large t,

ln
x(s)
x(t)

≥
∫ t

s
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

or

x(s) ≥ x(t) exp

(∫ t

s
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
. (.)

Hence,

x
(
τ (s)

) ≥ x(t) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
. (.)

Integrating (E) from τ (t) to t, we have

x(t) – x
(
τ (t)

)
+

∫ t

τ (t)

m∑

i=

pi(s)x
(
τi(s)

)
ds = ,

or

x(t) – x
(
τ (t)

)
+

∫ t

τ (t)

( m∑

i=

pi(s)

)
x
(
τ (s)

)
ds ≤ ,

i.e.,

x(t) – x
(
τ (t)

)
+

∫ t

τ (t)
P(s)x

(
τ (s)

)
ds ≤ . (.)

It follows from (.) and (.) that

x(t) – x
(
τ (t)

)
+ x(t)

∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds ≤ .

Multiplying the last inequality by P(t), we find

P(t)x(t) – P(t)x
(
τ (t)

)

+ P(t)x(t)
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds ≤ . (.)
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Furthermore,

x′(t) = –
m∑

i=

pi(t)x
(
τi(t)

) ≤ –x
(
τ (t)

) m∑

i=

pi(t) = –P(t)x
(
τ (t)

)
. (.)

Combining inequalities (.) and (.), we have

x′(t) + P(t)x(t)

+ P(t)x(t)
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds ≤ .

Hence,

x′(t) + P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds

]
x(t) ≤ ,

or

x′(t) + R(t, ε)x(t) ≤ , (.)

where

R(t, ε) = P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds

]
.

Clearly, (.) resembles (.) with R replaced by R, so an integration of (.) on [s, t]
leads to

x(s) ≥ x(t) exp

(∫ t

s
R(ξ , ε) dξ

)
. (.)

Taking the steps starting from (.) to (.), we may see that x satisfies the inequality

x
(
τ (u)

) ≥ x(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
. (.)

Combining now (.) and (.), we obtain

x(s) ≥ x(t) exp

(∫ t

s
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
,

from which we take

x
(
τ (s)

) ≥ x(t) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
. (.)

By (.) and (.) we have

x(t) – x
(
τ (t)

)
+ x(t)

∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds ≤ .



Chatzarakis and Li Advances in Difference Equations  (2017) 2017:292 Page 10 of 24

Multiplying the last inequality by P(t), as before, we find

x′(t) + P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds

]
x(t) ≤ .

Therefore, for sufficiently large t,

x′(t) + R(t, ε)x(t) ≤ , (.)

where

R(t, ε) = P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ , ε) dξ

)
du

)
ds

]
.

Repeating the above procedure, it follows by induction that for sufficiently large t

x′(t) + Rj(t, ε)x(t) ≤ , j ∈N,

where

Rj(t) = P(t)
[

 +
∫ t

τ (t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj–(ξ , ε) dξ

)
du

)
ds

]
.

Moreover, since τ (s) ≤ h(s) ≤ h(t), we have

x
(
τ (s)

) ≥ x
(
h(t)

)
exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
. (.)

Integrating (E) from h(t) to t and using (.), we obtain

 = x(t) – x
(
h(t)

)
+

∫ t

h(t)

m∑

i=

pi(s)x
(
τi(s)

)
ds

≥ x(t) – x
(
h(t)

)
+

∫ t

h(t)

( m∑

i=

pi(s)

)
x
(
τ (s)

)
ds

= x(t) – x
(
h(t)

)
+

∫ t

h(t)
P(s)x

(
τ (s)

)
ds

≥ x(t) – x
(
h(t)

)
+ x

(
h(t)

)∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds,

i.e.,

x(t) – x
(
h(t)

)

+ x
(
h(t)

)∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ . (.)

The strict inequality is valid if we omit x(t) >  on the left-hand side. Therefore,

x
(
h(t)

)[∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds – 

]
< ,
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or

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds –  < .

Taking the limit as t → ∞, we have

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ .

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Theorem  Assume that α is defined by (.) with  < α ≤ /e and h(t) by (.). If for some
j ∈ N

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds >  – D(α), (.)

where Rj is defined by (.), then all solutions of (E) are oscillatory.

Proof Let x be an eventually positive solution of (E). Then, as in the proof of Theorem ,
(.) is satisfied, i.e.,

x(t) – x
(
h(t)

)
+ x

(
h(t)

)∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ .

That is,

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤  –

x(t)
x(h(t))

,

which gives

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds

≤  – lim inf
t→∞

x(t)
x(h(t))

. (.)

By combining Lemmas  and , it becomes obvious that inequality (.) is fulfilled. So,
(.) leads to

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤  – D(α).

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Remark  It is clear that the left-hand sides of both conditions (.) and (.) are iden-
tical, also the right-hand side of condition (.) reduces to (.) in case that α = . So it
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seems that Theorem  is the same as Theorem  when α = . However, one may notice
that the condition  < α ≤ /e is required in Theorem  but not in Theorem .

Theorem  Assume that α is defined by (.) with  < α ≤ /e and h(t) by (.). If for some
j ∈ N

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds >


D(α)

– , (.)

where Rj is defined by (.), then all solutions of (E) are oscillatory.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution x of
(E) and that x is eventually positive. Then, as in the proof of Theorem , (.) is satisfied,
which yields

x
(
τ (s)

) ≥ x(t) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
.

Integrating (E) from h(t) to t, we have

x(t) – x
(
h(t)

)
+

∫ t

h(t)

m∑

i=

pi(s)x
(
τi(s)

)
ds = ,

or

x(t) – x
(
h(t)

)
+

∫ t

h(t)

( m∑

i=

pi(s)

)
x
(
τ (s)

)
ds ≤ .

Thus

x(t) – x
(
h(t)

)
+

∫ t

h(t)
P(s)x

(
τ (s)

)
ds ≤ .

By virtue of (.), the last inequality gives

x(t) – x
(
h(t)

)
+

∫ t

h(t)
P(s)x(t) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ ,

or

x(t) – x
(
h(t)

)
+ x(t)

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ .

Thus, for all sufficiently large t, it holds

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ x(h(t))

x(t)
– .

Letting t → ∞, we take

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ lim sup

t→∞
x(h(t))

x(t)
– ,
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which, in view of (.), gives

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ 

D(α)
– .

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Theorem  Assume that α is defined by (.) with  < α ≤ /e and h(t) by (.). If for some
j ∈ N

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds >

 + lnλ

λ
– D(α), (.)

where Rj is defined by (.) and λ is the smaller root of the transcendental equation λ = eαλ,
then all solutions of (E) are oscillatory.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution x
of (E) and that x is eventually positive. Then, as in Theorem , (.) holds.

Observe that (.) implies that, for each ε > , there exists a tε such that

λ – ε <
x(h(t))

x(t)
for all t ≥ tε . (.)

Noting that by nonincreasingness of the function x(h(t))/x(s) in s it holds

 =
x(h(t))
x(h(t))

≤ x(h(t))
x(s)

≤ x(h(t))
x(t)

, tε ≤ h(t) ≤ s ≤ t,

in particular for ε ∈ (,λ – ), by continuity we see that there exists a t∗ ∈ (h(t), t] such
that

 < λ – ε =
x(h(t))
x(t∗)

. (.)

By (.), it is obvious that

x
(
τ (s)

) ≥ x
(
h(s)

)
exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
. (.)

Integrating (E) from t∗ to t, we have

x(t) – x
(
t∗) +

∫ t

t∗

m∑

i=

pi(s)x
(
τi(s)

)
ds = ,

or

x(t) – x
(
t∗) +

∫ t

t∗

( m∑

i=

pi(s)

)
x
(
τ (s)

)
ds ≤ ,
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i.e.,

x(t) – x
(
t∗) +

∫ t

t∗
P(s)x

(
τ (s)

)
ds ≤ .

By using (.) along with h(s) ≤ h(t) in combination with the nonincreasingness of x, we
have

x(t) – x
(
t∗) + x

(
h(t)

)∫ t

t∗
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ ,

or

∫ t

t∗
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ x(t∗)

x(h(t))
–

x(t)
x(h(t))

.

In view of (.) and Lemma , for the ε considered, there exists a t′
ε ≥ tε such that

∫ t

t∗
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds <


λ – ε

– D(α) + ε (.)

for t ≥ t′
ε .

Dividing (E) by x(t) and integrating from h(t) to t∗, we find

∫ t∗

h(t)

m∑

i=

pi(s)
x(τi(s))

x(s)
ds = –

∫ t∗

h(t)

x′(s)
x(s)

ds,

or

∫ t∗

h(t)

( m∑

i=

pi(s)

)
x(τ (s))

x(s)
ds ≤ –

∫ t∗

h(t)

x′(s)
x(s)

ds,

i.e.,

∫ t∗

h(t)
P(s)

x(τ (s))
x(s)

ds ≤ –
∫ t∗

h(t)

x′(s)
x(s)

ds,

and using (.), we find

∫ t∗

h(t)
P(s)

x(h(s))
x(s)

exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ –

∫ t∗

h(t)

x′(s)
x(s)

ds. (.)

By (.), for s ≥ h(t) ≥ t′
ε , we have x(h(s))/x(s) > λ – ε, so from (.) we get

(λ – ε)
∫ t∗

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds < –

∫ t∗

h(t)

x′(s)
x(s)

ds.
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Hence, for all sufficiently large t, we have

∫ t∗

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds

< –


λ – ε

∫ t∗

h(t)

x′(s)
x(s)

ds =


λ – ε
ln

x(h(t))
x(t∗)

=
ln(λ – ε)

λ – ε
,

i.e.,

∫ t∗

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds <

ln(λ – ε)
λ – ε

. (.)

Adding (.) and (.), and then taking the limit as t → ∞, we have

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds

≤  + ln(λ – ε)
λ – ε

– D(α) + ε.

Since ε may be taken arbitrarily small, this inequality contradicts (.).
The proof of the theorem is complete. �

Theorem  Assume that h(t) is defined by (.) and for some j ∈N

lim inf
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds >


e

, (.)

where Rj is defined by (.). Then all solutions of (E) are oscillatory.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t)
of (E). Since –x(t) is also a solution of (E), we can confine our discussion only to the case
where the solution x(t) is eventually positive. Then there exists a t > t such that x(t) > 
and x(τi(t)) > ,  ≤ i ≤ m for all t ≥ t. Thus, from (E) we have

x′(t) = –
m∑

i=

pi(t)x
(
τi(t)

) ≤  for all t ≥ t,

which means that x(t) is an eventually nonincreasing function of positive numbers. Fur-
thermore, as in previous theorem, (.) is satisfied.

Dividing (E) by x(t) and integrating from h(t) to t, for some t ≥ t, we get

ln

(
x(h(t))

x(t)

)
=

∫ t

h(t)

m∑

i=

pi(s)
x(τi(s))

x(s)
ds

≥
∫ t

h(t)

( m∑

i=

pi(s)

)
x(τ (s))

x(s)
ds

=
∫ t

h(t)
P(s)

x(τ (s))
x(s)

ds. (.)
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Combining inequalities (.) and (.), we obtain

ln

(
x(h(t))

x(t)

)
≥

∫ t

h(t)
P(s)

x(h(s))
x(s)

exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds.

Taking into account that x is nonincreasing and h(s) < s, the last inequality becomes

ln

(
x(h(t))

x(t)

)
≥

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds. (.)

From (.), it follows that there exists a constant c >  such that for sufficiently large t

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds ≥ c >


e

.

Choose c′ such that c > c′ > /e. For every ε >  such that c – ε > c′, we have

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds > c – ε > c′ >


e

. (.)

Combining inequalities (.) and (.), we obtain

ln

(
x(h(t))

x(t)

)
≥ c′, t ≥ t.

Thus

x(h(t))
x(t)

≥ ec′ ≥ ec′ > ,

which yields, for some t ≥ t ≥ t,

x
(
h(t)

) ≥ (
ec′)x(t).

Repeating the above procedure, it follows by induction that for any positive integer k,

x(h(t))
x(t)

≥ (
ec′)k for sufficiently large t.

Since ec′ > , there is a k ∈ N satisfying k > (ln() – ln(c′))/( + ln(c′)) such that for t suffi-
ciently large

x(h(t))
x(t)

≥ (
ec′)k >

(

c′

)

. (.)

Next we split the integral in (.) into two integrals, each integral being no less than c′/:

∫ tm

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≥ c′


,

∫ t

tm

P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≥ c′


.

(.)
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Integrating (E) from tm to t, we deduce that

x(t) – x(tm) +
∫ t

tm

m∑

i=

pi(s)x
(
τi(s)

)
ds = ,

or

x(t) – x(tm) +
∫ t

tm

( m∑

i=

pi(s)

)
x
(
τ (s)

)
ds ≤ .

Thus

x(t) – x(tm) +
∫ t

tm

P(s)x
(
τ (s)

)
ds ≤ ,

which, in view of (.), gives

x(t) – x(tm) + x
(
h(t)

)∫ t

tm

P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ .

The strict inequality is valid if we omit x(t) >  on the left-hand side:

–x(tm) + x
(
h(t)

)∫ t

tm

P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds < .

Using the second inequality in (.), we conclude that

x(tm) >
c′


x
(
h(t)

)
. (.)

Similarly, integration of (E) from h(t) to tm with a later application of (.) leads to

x(tm) – x
(
h(t)

)
+ x

(
h(tm)

)∫ tm

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds ≤ .

The strict inequality is valid if we omit x(tm) >  on the left-hand side:

–x
(
h(t)

)
+ x

(
h(tm)

)∫ tm

h(t)
exp

(∫ h(s)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ , ε) dξ

)
du

)
ds < .

Using the first inequality in (.) implies that

x
(
h(t)

)
>

c′


x
(
h(tm)

)
. (.)

Combining inequalities (.) and (.), we obtain

x
(
h(tm)

)
<


c′ x

(
h(t)

)
<

(

c′

)

x(tm),

which contradicts (.).
The proof of the theorem is complete. �
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2.2 ADEs
Similar oscillation conditions for the (dual) advanced differential equation (E′) can be de-
rived easily. The proofs are omitted since they are quite similar to the delay equation.

Theorem  Assume that ρ(t) is defined by (.), and for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
Lj(ξ ) dξ

)
du

)
ds > , (.)

where

Lj(t) = Q(t)
[

 +
∫ σ (t)

t
Q(s) exp

(∫ σ (s)

t
Q(u) exp

(∫ σ (u)

u
Lj–(ξ ) dξ

)
du

)
ds

]
, (.)

with Q(t) =
∑m

i= qi(t), L(t) = λQ(t) and λ is the smaller root of the transcendental equa-
tion λ = eβλ. Then all solutions of (E′) are oscillatory.

Theorem  Assume that β is defined by (.) with  < β ≤ /e and ρ(t) by (.). If for
some j ∈ N

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(t)
Q(u) exp

(∫ σ (u)

u
Lj(ξ ) dξ

)
du

)
ds >  – D(β), (.)

where Lj is defined by (.), then all solutions of (E′) are oscillatory.

Remark  It is clear that the left-hand sides of both conditions (.) and (.) are iden-
tical, also the right-hand side of condition (.) reduces to (.) in case that β = . So
it seems that Theorem  is the same as Theorem  when β = . However, one may notice
that the condition  < β ≤ /e is required in Theorem  but not in Theorem .

Theorem  Assume that β is defined by (.) with  < β ≤ /e and ρ(t) by (.). If for
some j ∈ N

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

t
Q(u) exp

(∫ σ (u)

u
Lj(ξ ) dξ

)
du

)
ds >


D(β)

– , (.)

where Lj is defined by (.), then all solutions of (E′) are oscillatory.

Theorem  Assume that β is defined by (.) with  < β ≤ /e and ρ(t) by (.). If for
some j ∈ N

lim sup
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(s)
Q(u) exp

(∫ σ (u)

u
Lj(ξ ) dξ

)
du

)
ds

>
 + lnλ

λ
– D(β), (.)

where Lj is defined by (.) and λ is the smaller root of the transcendental equation λ =
eβλ, then all solutions of (E′) are oscillatory.
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Theorem  Assume that ρ(t) is defined by (.) and for some j ∈N

lim inf
t→∞

∫ ρ(t)

t
Q(s) exp

(∫ σ (s)

ρ(s)
Q(u) exp

(∫ σ (u)

u
Lj(ξ ) dξ

)
du

)
ds >


e

, (.)

where Qj is defined by (.). Then all solutions of (E′) are oscillatory.

2.3 Differential inequalities
A slight modification in the proofs of Theorems - leads to the following results about
differential inequalities.

Theorem  Assume that all the conditions of Theorem  [] or  [] or  [] or  [] or 
[] hold. Then

(i) the delay [advanced] differential inequality

x′(t) +
m∑

i=

pi(t)x
(
τi(t)

) ≤ 

[
x′(t) –

m∑

i=

qi(t)x
(
σi(t)

) ≥ 

]
, ∀t ≥ t,

has no eventually positive solutions;
(ii) the delay [advanced] differential inequality

x′(t) +
m∑

i=

pi(t)x
(
τi(t)

) ≥ 

[
x′(t) –

m∑

i=

qi(t)x
(
σi(t)

) ≤ 

]
, ∀t ≥ t,

has no eventually negative solutions.

2.4 An example
We give an example that illustrates a case when Theorem  of the present paper yields
oscillation, while previously known results fail. The calculations were made by the use of
MATLAB software.

Example  Consider the delay differential equation

x′(t) +



x
(
τ(t)

)
+




x
(
τ(t)

)
+




x
(
τ(t)

)
= , t ≥ , (.)

with (see Figure , (a))

τ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–t + k – , if t ∈ [k, k + ],

t – k – , if t ∈ [k + , k + ],

–t + k + , if t ∈ [k + , k + ],

t – , if t ∈ [k + , k + ],

–t + k + , if t ∈ [k + , k + ],

t – k – , if t ∈ [k + , k + ],

and
τ(t) = τ(t) – .,

τ(t) = τ(t) – .,

where k ∈N and N is the set of nonnegative integers.
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Figure 1 The graphs of τ1(t) and h1(t).

By (.), we see (Figure , (b)) that

h(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k – , if t ∈ [k, k + .],

t – k – , if t ∈ [k + ., k + ],

k + , if t ∈ [k + , k + .],

t – k – , if t ∈ [k + ., k + ],

and
h(t) = h(t) – .,

h(t) = h(t) – .,

and consequently,

h(t) = max
≤i≤

{
hi(t)

}
= h(t) and τ (t) = max

≤i≤

{
τi(t)

}
= τ(t).

It is easy to verify that

α = lim inf
t→∞

∫ t

τ (t)

∑

i=

pi(s) ds = . · lim inf
k→∞

∫ k+

k+
ds = .,

and therefore, the smaller root of e.λ = λ is λ = ..
Observe that the function Fj : [,∞) →R+ defined as

Fj(t) =
∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) exp

(∫ u

τ (u)
Rj(ξ ) dξ

)
du

)
ds

attains its maximum at t = k + ., k ∈N, for every j ≥ . Specifically,

F(t = k + .) =
∫ k+.

k+
P(s) exp

(∫ k+

τ (s)
P(u) exp

(∫ u

τ (u)
R(ξ ) dξ

)
du

)
ds

with

R(ξ ) = P(ξ )
[

 +
∫ ξ

τ (ξ )
P(v) exp

(∫ ξ

τ (v)
P(w) exp

(∫ w

τ (w)
λP(z) dz

)
dw

)
dv

]
.
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By using an algorithm on MATLAB software, we obtain

F(t = k + .) � .,

and so

lim sup
t→∞

F(t) � . > .

That is, condition (.) of Theorem  is satisfied for j = , and therefore all solutions of
(.) are oscillatory.

Observe, however, that

MD = lim sup
k→∞

∫ k+.

k+

∑

i=

pi(s) ds = . < ,

α = . <

e

,

and

lim inf
t→∞

∑

i=

pi(t)
(
t – τi(t)

)

= lim inf
t→∞

[



(
t – τ(t)

)
+




(
t –

(
τ(t) – .

))
+




(
t –

(
τ(t) – .

))]

= lim inf
t→∞

[
.

(
t – τ(t)

)
+ .

]
= lim inf

t→∞
[
.

(
t – τ(t)

)]
+ .

= . · lim inf
t→∞

(
t – τ(t)

)
+ . = . ·  + . = . <


e

.

Also, observe that the function Gr : [,∞) →R+ defined as

Gr(t) =
∫ t

h(t)

m∑

i=

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ

attains its maximum at t = k + . and its minimum at t = k + , k ∈N, for every r ∈N.
Specifically,

G(t = k + .) =
∫ k+.

k+

∑

i=

pi(ζ )a
(
k + , τi(ζ )

)
dζ

=
∫ k+

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)

+ p(ζ )a
(
k + , τ(ζ )

)]
dζ

+
∫ k+

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)

+ p(ζ )a
(
k + , τ(ζ )

)]
dζ

+
∫ k+

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)
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+ p(ζ )a
(
k + , τ(ζ )

)]
dζ

+
∫ k+

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)

+ p(ζ )a
(
k + , τ(ζ )

)]
dζ

+
∫ k+.

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)

+ p(ζ )a
(
k + , τ(ζ )

)]
dζ

� .

and

G(t = k + ) =
∫ k+

k+

∑

i=

pi(ζ )a
(
k + , τi(ζ )

)
dζ

=
∫ k+

k+

[
p(ζ )a

(
k + , τ(ζ )

)
+ p(ζ )a

(
k + , τ(ζ )

)

+ p(ζ )a
(
k + , τ(ζ )

)]
dζ

� ..

Thus

lim sup
t→∞

G(t) � . < ,

lim inf
t→∞ G(t) � . < /e,

and

. <  – D(α) � ..

Also

∫ k+.

k+

∑

i=

pi(ζ )a
(
h(ζ ), τi(ζ )

)
dζ ≤ G(t = k + .) � ..

Thus

lim sup
k→∞

∫ k+.

k+

∑

i=

pi(ζ )a
(
h(ζ ), τi(ζ )

)
dζ ≤ . <

 + lnλ

λ
– D(α) � ..

Also

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) du

)
ds � . < ,

. <  – D(α) � .,
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lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ t

τ (s)
P(u) du

)
ds

= lim sup
k→∞

∫ k+.

k+
P(s) exp

(∫ k+.

τ (s)
P(u) du

)
ds � .

<


D(α)
� .,

lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(s)

τ (s)
P(u) du

)
ds

≤ lim sup
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) du

)
ds

� . <
 + lnλ

λ
– D(α) � .,

lim inf
t→∞

∫ t

h(t)
P(s) exp

(∫ h(t)

τ (s)
P(u) du

)
ds � . <


e

.

That is, none of the conditions (.)-(.), (.)-(.) (for r = ) and (.)-(.) (for
j = ) is satisfied.

Comments It is worth noting that the improvement of condition (.) to the correspond-
ing condition (.) is significant, approximately .%, if we compare the values on the
left-hand side of these conditions. Also, the improvement compared to conditions (.)
and (.) is very satisfactory, around .% and .%, respectively.

Finally, observe that conditions (.)-(.) do not lead to oscillation for the first itera-
tion. On the contrary, condition (.) is satisfied from the first iteration. This means that
our condition is better and much faster than (.)-(.).

Remark  Similarly, one can construct examples to illustrate the other main results.
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