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Abstract
In this paper, an effective numerical method to solve the Cauchy type singular
Fredholm integral equations (CSFIEs) of the first kind is proposed. The collocation
technique based on Bernstein polynomials is used for approximation the solution of
various cases of CSFIEs. By transforming the problem into systems of linear algebraic
equations, we see that this approach is computationally simple and attractive. Then
the approximate solution of the problem in truncated series form is obtained by
using the matrix form of this method. Convergence and error analyses of the
presented method are mentioned. Finally, numerical experiments show the validity,
accuracy, and efficiency of the proposed method.
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1 Introduction
The concept of the principal value of a Cauchy type singular integral equation is well
known. This kind of equations is applied in many branches of engineering and science
like fracture mechanics [], aerodynamics [] and occurs in a variety of mixed boundary
value problems of mathematical physics [–]. The Cauchy singular integral equations
form is given as

∫ 

–

y(t)
t – s

dt +
∫ 

–
k(s, t)y(t) dt = g(s), – < s < , ()

where y(t) is an unknown function and g(s) is a given function []. When k(s, t) = , equa-
tion () is reduced to the following equation:

∫ 

–

y(t)
t – s

dt = g(s), – < s < . ()

Equation () is an airfoil equation in aerodynamics. For all different cases in [], the
complete analytical solution of () is presented. Let it be displayed by

y(s) = yj(s), ()
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where j = , , ,  show Cases (i), (ii), (iii), (iv), respectively.
Case (i). The solution is bounded at both end points s = ±,

y(x) = –
√

 – s

π

∫ 

–

g(t)√
 – t(t – s)

dt, ()

provided that

∫ 

–

g(t)√
 – t

dt = .

Case (ii). The solution is unbounded at both end points s = ±,

y(s) = –


π
√

 – s

∫ 

–

√
 – t

t – s
g(t) dt +

ω√
 – s

, ()

where

ω =
∫ 

–
y(t) dt.

Case (iii). The solution is bounded at the end point s = , but unbounded at s = –,

y(x) = –


π

√
 – s
 + s

∫ 

–

√
 + t
 – t

g(t)
(t – s)

dt. ()

Case (iv). The solution is bounded at the end point s = –, but unbounded at s = ,

y(x) = –


π

√
 + s
 – s

∫ 

–

√
 – t
 + t

g(t)
(t – s)

dt. ()

Due to the singularity of the integrands of CSFIEs, solving the CSFIEs is analytically
difficult. However, a wide variety of applications of these equations show that cases of the
CSFIEs have a special significance. On the other hand, the volume of work done in the area
of the CSFIEs is relatively small. Hence, it is important that the approximate solutions of
the CSFIEs can be solved by numerical methods.

In previous work, several numerical methods have been introduced to solve the Cauchy
singular integral equation in various techniques, such as the cubic spline method [], us-
ing Gaussian quadrature and an overdetermined system [], the generalized inverses tech-
nique [], the iteration method [], using Bernstein polynomials [], the Jacobi polyno-
mials technique [], the rational functions method [], using Chebyshev polynomials
[] and the Nyström method []. Liu et al. [] devised a collocation scheme for a cer-
tain Cauchy singular integral equation based on the superconvergence analysis. Panja and
Mandal [] used the Daubechies scale function to solve the second kind integral equation
with a Cauchy type kernel. Recently, other good numerical methods have been proposed
for an approximate solution of a Cauchy type singular integral equation, like the Bern-
stein polynomials method [], using Legendre polynomials [], the differential trans-
form technique [] and the reproducing kernel method []. Also, Dezhbord et al. []
presented the reproducing kernel Hilbert space method for solving equation ().
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In recent years, several types of matrix collocation methods have been proposed for
solving the singular integral and the singular integro-differential equations (see [, ]).
In the present paper, we use a different collocation method for CSFIEs. Since the Bern-
stein polynomials have many good properties, such as the positivity continuity, recur-
sion’s relation, symmetry, unity partition of the basis set over [a, b], uniform approxi-
mation, differentiability and integrability, these polynomials are applied for the colloca-
tion methods [–]. Also, using the expansion of different functions in Bernstein poly-
nomials leads to good numerical results and has a high efficiency in convergence theo-
rems.

In this work, we use the different matrix collocation method based on Bernstein poly-
nomials for solving the CSFIEs of the first kind. The rest of this paper is organized as
follows: In Section , we point out some definitions of the Bernstein polynomials and col-
location method as used for solving CSFIEs. By reducing the singularity, the transforma-
tion of the main equation to the equivalent integral equations is performed in Section .
The next section is devoted to a description of a numerical method based on Bernstein
polynomials. In Section , an error analysis of the proposed method are discussed. In
Section , numerical results with the exact solution for some examples have been com-
pared.

2 Preliminaries
2.1 The Bernstein polynomials
The Bernstein polynomials of degree n are defined by

Bi,n(s) =
(

n
i

)
si( – s)n–i, s ∈ [, ]. ()

By using the binomial expansion, they can be written

Bi,n(s) =
n–i∑
k=

(–)k
(

n
i

)(
n – i

k

)
si+k , s ∈ [, ]. ()

Also, the Bernstein polynomials of the nth degree on the interval [a, b] are []

Bi,n(s) =
(

n
i

)
(s – a)i(b – s)n–i

(b – a)n for i = , , , . . . , n. ()

2.2 Collocation method
We use the truncated Bernstein polynomial series form based on the Cases (i), (ii), (iii)
and (iv) from () to obtain approximate solutions as follows:

x(s) � xn(s) =
n∑

i=

x,iBi,n(s), for Case (i),

x(s) � xn(s) =
n∑

i=

x,iBi,n(s), for Case (ii),

x(s) � xn(s) =
n∑

i=

x,iBi,n(s), for Case (iii),

()
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x(s) � xn(s) =
n∑

i=

x,iBi,n(s), for Case (iv),

where xj,i, (i = , , . . . , n), (j = , , , ) are the unknown Bernstein coefficients.

3 Removing singularity of equation (2)
It is clear that the approximate solutions based on the analytical solutions of equation ()
can be represented by the following relations []:

yj(s) = ωj(s)x(s), j = , , , , ()

where x(s) is the well-behaved function on [–, ] and we have the weight functions for the
corresponding cases as follows, respectively:

ω(s) =
 – s

√
 – s

, ω(s) =
√

 – s
,

ω(s) =
 – s√
 – s

, ω(s) =
 + s√
 – s

.
()

Now, in order to reduce the singular term, we have to convert equation () to the equiv-
alent integral equations. The unknown functions x(s) of equation () can be expressed as
the following cases:

Case (i). By using (), () and (), y(s) can be represented in the form

y(s) =
 – s

√
 – s

x(s) =
√

 – sx(s), s ∈ (–, ). ()

So by substituting () into equation (), we have

∫ 

–

√
 – t x(t)

t – s
dt = g(s),

∫ 

–

√
 – t x(t)

t – s
dt =

∫ 

–

√
 – t x(t) – x(s)

t – s
dt +

∫ 

–

√
 – t x(s)

t – s
dt.

()

Note that the singular term is integrable in the sense of the Cauchy principal value. We
have

∫ 

–

√
 – t x(s)

t – s
dt = x(s)

∫ 

–

√
 – t 

t – s
dt = –πsx(s), s ∈ [–, ]. ()

Thus, the singular term has been removed and equation () is transformed into

∫ 

–

√
 – t x(t) – x(s)

t – s
dt – πsx(s) = g(s), s ∈ (–, ). ()

Case (ii). The solution y(s) can be represented in the form

y(s) =
√

 – s
x(s), s ∈ (–, ). ()
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Also, by substituting () into equation (), we have

∫ 

–

√
 – t

x(t)
t – s

dt = g(s), s ∈ (–, )

∫ 

–

√
 – t

x(t)
t – s

dt =
∫ 

–

√
 – t

x(t) – x(s)
t – s

dt +
∫ 

–

√
 – t

x(s)
t – s

dt.
()

In the sense of the Cauchy principal value,

∫ 

–

√
 – t

x(s)
t – s

dt = x(s)
∫ 

–

√
 – t


t – s

dt = , s ∈ [–, ]. ()

Thus, the singular term has been removed and equation () is transformed into

∫ 

–

√
 – t

x(t) – x(s)
t – s

dt = g(s), s ∈ (–, ). ()

Case (iii). The solution y(s) can be represented in the form

y(s) =
√

 – s
 + s

x(s), s ∈ (–, ]. ()

We substitute () into equation () and we get

∫ 

–

√
 – t
 + t

x(t)
t – s

dt = g(s),

∫ 

–

√
 – t
 + t

x(t)
t – s

dt =
∫ 

–

√
 – t

 + t
x(t)
t – s

dt

=
∫ 

–

√
 – t

t – s

((
x(t)
 + t

–
x(s)
 + s

)
+

x(s)
 + s

)
dt

=
∫ 

–

√
 – t

t – s

(
(x(t) – x(s))( + t) – x(t)(t – s)

( + t)( + s)

)
dt

+
∫ 

–

√
 – tx(s)

(t – s)( + s)
dt

=


 + s

((∫ 

–

√
 – t x(t) – x(s)

t – s
dt –

∫ 

–

√
 – t x(t)

 + t
dt

)

+
∫ 

–

√
 – tx(s)

t – s
dt

)
,

()

also, from (), we get

∫ 

–

√
 – tx(s)
(t – s)

dt = –πsx(s), ()

so, equation () is converted into


 + s

(∫ 

–

√
 – t x(t) – x(s)

t – s
dt –

∫ 

–

√
 – t x(t)

 + t
dt

)
–

πsx(s)
 + s

= g(s). ()
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Case (iv). The solution y(s) can be represented in the form

y(s) =
√

 + s
 – s

x(s), s ∈ [–, ). ()

By substituting () into equation (), we have

∫ 

–

√
 + t
 – t

x(t)
t – s

dt = g(s),

∫ 

–

√
 + t
 – t

x(t)
t – s

dt =
∫ 

–

√
 – t

 – t
x(t)
t – s

dt

=
∫ 

–

√
 – t

t – s

((
x(t)
 – t

–
x(s)
 – s

)
+

x(s)
 – s

)
dt

=
∫ 

–

√
 – t

t – s

(
(x(t) – x(s))( – t) + x(t)(t – s)

( – t)( – s)

)
dt

+
∫ 

–

√
 – tx(s)

(t – s)( – s)
dt

=


 – s

((∫ 

–

√
 – t x(t) – x(s)

t – s
dt +

∫ 

–

√
 – t x(t)

 – t
dt

)

+
∫ 

–

√
 – tx(s)

t – s
dt

)
,

()

also, from (), we get

∫ 

–

√
 – tx(s)
(t – s)

dt = –πsx(s), ()

so, equation () is transformed into


 – s

(∫ 

–

√
 – t x(t) – x(s)

t – s
dt +

∫ 

–

√
 – t x(t)

 – t
dt

)
–

πsx(s)
 – s

= g(s). ()

In all of equations (), (), () and () x(t)–x(s)
t–s = x′(s) while t = s and it means that the

singularity of equation () has been removed. Finally, for computing integrals, we use the
Gauss-Chebyshev quadrature rule.

4 Description of the technique
First, we rewrite equations (), (), (), and () in the following form:

Fj(s) + Gj(s) = g(s), j = , , , , ()

where

F(s) =
∫ 

–

√
 – t x(t) – x(s)

t – s
dt,

G(s) = –πsx(s), for Case (i),
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F(s) =
∫ 

–

√
 – t

x(t) – x(s)
t – s

dt,

G(s) = , for Case (ii),

F(s) =


 + s

(∫ 

–

√
 – t x(t) – x(s)

t – s
dt –

∫ 

–

√
 – t x(t)

 + t
dt

)
,

()

G(s) = –
πsx(s)
 + s

, for Case (iii),

F(s) =


 – s

(∫ 

–

√
 – t x(t) – x(s)

t – s
dt +

∫ 

–

√
 – t x(t)

 – t
dt

)
,

G(s) = –
πsx(s)
 – s

, for Case (iv),

and x(t)–x(s)
t–s = x′(s) while t = s. According to equations () and by placing the collocation

points sm defined by

sm = – +


n + 
(m + ), m = , , . . . , n, ()

into (), we get

Fj(sm) + Gj(sm) = g(sm), j = , , , . ()

Using () and (), we obtain

F(sm) �
n∑

i=

x,i

∫ 

–

√
 – t Bi,n(t) – Bi,n(sm)

t – sm
dt, for Case (i),

F(sm) �
n∑

i=

x,i

∫ 

–

√
 – t

Bi,n(t) – Bi,n(sm)
t – sm

dt, for Case (ii),

F(sm) � 
 + sm

( n∑
i=

x,i

∫ 

–

√
 – t Bi,n(t) – Bi,n(sm)

t – sm
dt

–
n∑

i=

x,i

∫ 

–

√
 – t Bi,n(t)

 + t
dt

)
, for Case (iii),

F(sm) � 
 – sm

( n∑
i=

x,i

∫ 

–

√
 – t Bi,n(t) – Bi,n(sm)

t – sm
dt

+
n∑

i=

x,i

∫ 

–

√
 – t Bi,n(t)

 – t
dt

)
, for Case (iv)

()

and

G(sm) � –
n∑

i=

x,iBi,n(sm)πsm, for Case (i),

G(sm) = , for Case (ii),

G(sm) � –
n∑

i=

x,iBi,n(sm)
πsm

 + sm
, for Case (iii),
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G(sm) � –
n∑

i=

x,iBi,n(sm)
πsm

 – sm
, for Case (iv).

We use the Gauss-Chebyshev quadrature rule of the first kind for computing the integral
part in Case (ii) and select the Gauss-Chebyshev quadrature rule of the second kind for
computing the integral part in the other cases. So, we can rewrite () for all cases as
follows:

n∑
i=

[ N∑
k=

ωk
Bi,n(tk) – Bi,n(sm)

tk – sm
– Bi,n(sm)πsm

]
x,i = g(sm), for Case (i),

n∑
i=

[ N∑
k=

ωk
Bi,n(tk) – Bi,n(sm)

tk – sm

]
x,i = g(sm), for Case (ii),

n∑
i=

[∑N
k= ωk

Bi,n(tk )–Bi,n(sm)
tk –sm

–
∑N

k= ωk
Bi,n(tk )

+tk

 + sm
–

πsmBi,n(sm)
 + sm

]
x,i = g(sm),

for Case (iii),

n∑
i=

[∑N
k= ωk

Bi,n(tk )–Bi,n(sm)
tk –sm

–
∑N

k= ωk
Bi,n(tk )

–tk

 – sm
–

πsmBi,n(sm)
 – sm

]
x,i = g(sm),

for Case (iv),

()

where

tk = cos

(
kπ

N + 

)
,

ωk =
π

N + 

(
sin

(
kπ

N + 

))

for Cases (i), (iii), (iv),

tk = cos

(
(k – )π

N

)
,

ωk =
π

N
, for Case (ii), k = , , . . . , N .

()

For simplicity, we write equations () as follows:

n∑
i=

[
Fj(sm) + Gj(sm)

]
xj,i = g(sm), j = , , , . ()

Hence, the main matrix form () corresponding to all cases of () can be written sepa-
rately in the form

AjXj = G, j = , , , , ()

where

[Aj](m+)(i+) = Fj(sm) + Gj(sm), m, i = , , . . . , n,

Xj = [xj,, xj,, . . . , xj,n]T , j = , , , ,
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and

G =
[
g(s), g(s), . . . , g(sn)

]T , for Cases (i), (ii), (iii), (iv).

After solving equations () for Cases (i), (ii), (iii) and (iv), the unknown coefficients
xj,i are determined and we can approximate the solutions of (), (), () and () with
substituting xj,i, i = , , . . . , n j = , , ,  in (). So, the approximate solutions for () in all
cases follow:

yn(s) =
 – s

√
 – s

xn(s) =
 – s

√
 – s

n∑
i=

x,iBi,n(s), for Case (i),

yn(s) =
√

 – s
xn(s) =

√
 – s

n∑
i=

x,iBi,n(s), for Case (ii),

yn(s) =
√

 – s
 + s

xn(s) =
√

 – s
 + s

n∑
i=

x,iBi,n(s), for Case (iii),

yn(s) =
√

 + s
 – s

xn(s) =
√

 + s
 – s

n∑
i=

x,iBi,n(s), for Case (iv).

()

5 Error estimation analysis
In the current section, we intend to give an error analysis based on the Bernstein polyno-
mials for the presented method by using an interpolation polynomial [].

Theorem  Let f be a function in Cn+[–, ] and let pn be a polynomial of degree ≤ n
that interpolates the function f at n +  distinct points s, s, . . . , sn ∈ [–, ], then for each
s ∈ [–, ] there exists a point ξs ∈ [–, ] such that

f (s) – pn(s) =
∏n

i=(s – si)
(n + )!

f (n+)(ξs).

Let ωjf , j = , , ,  be the exact solution of equation () and pn be the interpolation
polynomial of f . Now, if f is sufficiently smooth, we can write f as f = pn + Rn where Rn is
the error function

Rn(s) =
(s – s)(s – s) . . . (s – sn)

(n + )!
f (n+)(ξs), ξs ∈ (–, ).

If yn = ωjxn, j = , , ,  is the Bernstein polynomial series solution of (), given by Cases
(i), (ii), (iii) and (iv) of (), then yn satisfies () on the nodes. So, xn and pn are the solutions
of AjXj = G and AjX̄j = G + �G where

[�G](i+) =
∫ 

–

√
 – t Rn(t) – Rn(si)

t – si
dt – πsiRn(si), for Case (i),

[�G](i+) =
∫ 

–

√
 – t

Rn(t) – Rn(si)
t – si

dt, for Case (ii),

[�G](i+) =


 + si

(∫ 

–

√
 – t Rn(t) – Rn(si)

t – si
dt –

∫ 

–

√
 – t Rn(t)

 + t
dt

)
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–
πsiRn(si)

 + si
, for Case (iii),

[�G](i+) =


 – si

(∫ 

–

√
 – t Rn(t) – Rn(si)

t – si
dt +

∫ 

–

√
 – t Rn(t)

 – t
dt

)

–
πsiRn(si)

 – si
, for Case (iv),

where i = , , . . . , n.
In the following theorem, we present an upper bound of the absolute errors for our

method.

Theorem  Assume that x(s) and f (s) are Bernstein polynomial series solution and exact
solution of (), so y(s) = ω(s)x(s) and ω(s)f (s) are Bernstein polynomial series solution
and the exact solution of equation (). pn(s) denotes the interpolation polynomial of f (s). If
A, X, X̄, G and �G are defined as above, and f (s) is sufficiently smooth, then

∣∣ω(s)f (s) – yn(s)
∣∣ ≤ M

(∣∣Rn(s)
∣∣ + M

)
,

where max–≤s≤ |ω(s)| ≤ M and max≤i≤n |x,i – x̄,i| ≤ M.

Proof Taking into account the given assumptions, we have

∣∣ω(s)f (s) – yn(s)
∣∣ =

∣∣ω(s)f (s) – ω(s)pn(s) + ω(s)pn(s) – yn(s)
∣∣

≤ ∣∣ω(s)f (s) – ω(s)pn(s)
∣∣ +

∣∣yn(s) – ω(s)pn(s)
∣∣

≤ ∣∣ω(s)Rn(s)
∣∣ +

∣∣∣∣∣ω(s)
n∑

i=

x,iBi,n(s) – ω(s)
n∑

i=

x̄,iBi,n(s)

∣∣∣∣∣

≤ ∣∣ω(s)
∣∣∣∣Rn(s)

∣∣ +
∣∣ω(s)

∣∣
∣∣∣∣∣

n∑
i=

(x,i – x̄,i)Bi,n(s)

∣∣∣∣∣

≤ M
∣∣Rn(s)

∣∣ + MM

∣∣∣∣∣
n∑

i=

Bi,n(s)

∣∣∣∣∣, ()

where

n∑
i=

Bi,n(s) = , – ≤ s ≤ .

This completes the proof. �

The same reasoning applies for other similar theorems for Cases (ii), (iii), and (iv).

6 Numerical experiments
In this section, the following examples are given to illustrate the performance of the pre-
sented method in solving the CSFIEs and the accuracy of the technique. These examples
have been solved by our method with n = , N =  and the results are showed in the ta-
bles and figures. In Example , the results are computed by using a program written in
Mathematica . and are compared with the computed solutions of another well-known
method.
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Figure 1 x(s) and x5(s) for Case (i).

Figure 2 Absolute error |y(s) – y5(s)| for Case (i).

Figure 3 x(s) and x5(s) for Case (ii).

Example  ([, ]) Let us consider the first kind of Cauchy type singular Fredholm in-
tegral equation given by

∫ 

–

y(t)
t – s

dt = g(s), – < s < , ()

where g(s) = s + s + s + s – 
 .

This equation has an exact solution for all following cases:

Case (i) : y(s) = –

π

√
 – s

(
s + s +




s +



)
,

Case (ii) : y(s) =


π
√

 – s

(
s + s +



(
s – s) –




s –



)
,

Case (iii) : y(s) = –

π

√
 – s
 + s

(
s + s +




s + s +



)
,

Case (iv) : y(s) =

π

√
 + s
 – s

(
s + s –




s + s –



)
.

In Figures , ,  and , we plot the exact solutions and the approximate solutions for n = 
and N =  for all cases and it is clear that the approximate solution is in good agreement
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Figure 4 Absolute error |y(s) – y5(s)| for Case (ii).

Figure 5 x(s) and x5(s) for Case (iii).

Figure 6 Absolute error |y(s) – y5(s)| for Case (iii).

Figure 7 x(s) and x5(s) for Case (iv).

Figure 8 Absolute error |y(s) – y5(s)| for Case (iv).

with the exact solution. Also, the errors of the presented method are plotted in Figures ,
,  and  and are compared with Chebyshev polynomial approximations in all cases in
Tables , ,  and .
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Table 1 Numerical results of Example 1 for Case (i)

Node y(s) y5(s) |y(s) – y5(s)| for N = 4 |y(s) – y20(s)| [13]

–0.9 –0.634217 –0.634217 2.22045e–16 3.33067e–16
–0.7 –0.876768 –0.876768 0.00000e–00 1.77636e–15
–0.5 –0.930368 –0.930368 1.11022e–16 –5.5511e–16
–0.3 –0.963476 –0.963476 2.22045e–16 2.22045e–16
–0.1 –1.044840 –1.044840 2.22045e–16 2.22045e–16
0.0 –1.114080 –1.114080 0.00000e–00 6.66134e–16
0.1 –1.203830 –1.203830 0.00000e–00 0.00000e–00
0.3 –1.435350 –1.435350 2.22045e–16 6.66134e–16
0.5 –1.688440 –1.688440 0.00000e–00 8.88179e–16
0.7 –1.828320 –1.828320 2.22045e–16 0.00000e–00
0.9 –1.460880 –1.460880 4.44089e–16 2.22045e–16

Table 2 Numerical results of Example 1 for Case (ii)

Node y(s) y5(s) |y(s) – y5(s)| for N = 4 |y(s) – y20(s)| [13]

–0.9 –0.634217 –0.634217 1.11022e–16 –6.6613e–16
–0.7 –0.876768 –0.876768 1.11022e–16 7.49401e–16
–0.5 –0.930368 –0.930368 1.11022e–16 –5.5511e–16
–0.3 –0.963476 –0.963476 2.22045e–16 4.16334e–16
–0.1 –1.044840 –1.044840 2.22045e–16 –3.3307e–16
0.0 –1.114080 –1.114080 2.22045e–16 1.66533e–16
0.1 –1.203830 –1.203830 0.00000e–00 5.55112e–16
0.3 –1.435350 –1.435350 2.22045e–16 0.00000e–00
0.5 –1.688440 –1.688440 0.00000e–00 –7.7716e–16
0.7 –1.828320 –1.828320 0.00000e–00 0.00000e–00
0.9 –1.460880 –1.460880 2.22045e–16 9.43690e–16

Table 3 Numerical results of Example 1 for Case (iii)

Node y(s) y5(s) |y(s) – y5(s)| for N = 4 |y(s) – y20(s)| [13]

–0.9 –0.634217 –0.634217 2.22045e–16 3.21965e–15
–0.7 –0.876768 –0.876768 4.44089e–16 3.33067e–16
–0.5 –0.930368 –0.930368 1.11022e–16 –2.2204e–16
–0.3 –0.963476 –0.963476 2.22045e–16 1.44329e–15
–0.1 –1.044840 –1.044840 0.00000e–00 6.66134e–16
0.0 –1.114080 –1.114080 2.22045e–16 6.66134e–16
0.1 –1.203830 –1.203830 2.22045e–16 2.22045e–16
0.3 –1.435350 –1.435350 2.22045e–16 2.22045e–16
0.5 –1.688440 –1.688440 2.22045e–16 4.44090e–16
0.7 –1.828320 –1.828320 0.00000e–00 4.44090e–16
0.9 –1.460880 –1.460880 4.44089e–16 –8.8818e–16

Table 4 Numerical results of Example 1 for Case (iv)

Node y(s) y5(s) |y(s) – y5(s)| for N = 4 |y(s) – y20(s)| [13]

–0.9 –0.634217 –0.634217 1.11022e–16 7.77156e–16
–0.7 –0.876768 –0.876768 1.11022e–16 2.22045e–16
–0.5 –0.930368 –0.930368 1.11022e–16 0.00000e–00
–0.3 –0.963476 –0.963476 3.33067e–16 –1.1102e–16
–0.1 –1.044840 –1.044840 2.22045e–16 –8.8818e–16
0.0 –1.114080 –1.114080 2.22045e–16 –4.4409e–16
0.1 –1.203830 –1.203830 2.22045e–16 0.00000e–00
0.3 –1.435350 –1.435350 2.22045e–16 0.00000e–00
0.5 –1.688440 –1.688440 0.00000e–00 –6.6613e–16
0.7 –1.828320 –1.828320 0.00000e–00 –2.2204e–16
0.9 –1.460880 –1.460880 0.00000e–00 1.11022e–15
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Figure 9 x(s) and x5(s) for Case (i).

Figure 10 Absolute error |y(s) – y5(s)| for Case (i).

Figure 11 x(s) and x5(s) for Case (ii).

Figure 12 Absolute error |y(s) – y5(s)| for Case (ii).

Example  Suppose we have the following CSFIE:

∫ 

–

y(t)
t – s

dt = g(s), – < s < , ()

where g(s) = –s + 
 s – 

 .



Seifi et al. Advances in Difference Equations  (2017) 2017:280 Page 15 of 18

Figure 13 x(s) and x5(s) for Case (iii).

Figure 14 Absolute error |y(s) – y5(s)| for Case
(iii).

Figure 15 x(s) and x5(s) for Case (iv).

Figure 16 Absolute error |y(s) – y5(s)| for Case
(iv).

This equation has exact solution for all following cases:

Case (i) : y(s) = –

π

√
 – s

(
–s + s

)
,

Case (ii) : y(s) =


π
√

 – s

(
–s + s – s

)
,

Case (iii) : y(s) = –

π

√
 – s
 + s

(
–s – s + s + s

)
,
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Table 5 Numerical results of Example 2 for Case (i)

Node y(s) y5(s) |y(s) – y5(s)|
–0.9 0.0237259 0.0237259 6.93889e–18
–0.7 0.0811528 0.0811528 0.00000e–00
–0.5 0.103374 0.103374 1.38778e–17
–0.3 0.082896 0.082896 2.77556e–17
–0.1 0.0313547 0.0313547 2.08167e–17
0.1 –0.0313547 –0.0313547 0.00000e–00
0.3 –0.082896 –0.082896 2.77556e–17
0.5 –0.103374 –0.103374 1.38778e–17
0.7 –0.0811528 –0.0811528 1.38778e–17
0.9 –0.0237259 –0.0237259 6.93889e–18

Table 6 Numerical results of Example 2 for Case (ii)

Node y(s) y5(s) |y(s) – y5(s)|
–0.9 0.0237259 0.0237259 2.77556e–17
–0.7 0.0811528 0.0811528 1.38778e–17
–0.5 0.103374 0.103374 1.38778e–17
–0.3 0.082896 0.082896 1.38778e–17
–0.1 0.0313547 0.0313547 2.08167e–17
0.1 –0.0313547 –0.0313547 3.46945e–17
0.3 –0.082896 –0.082896 4.16334e–17
0.5 –0.103374 –0.103374 1.38778e–17
0.7 –0.0811528 –0.0811528 1.38778e–17
0.9 –0.0237259 –0.0237259 7.63278e–17

Table 7 Numerical results of Example 1 for Case (iii)

Node y(s) y5(s) |y(s) – y5(s)|
–0.9 0.0237259 0.0237259 2.08167e–17
–0.7 0.0811528 0.0811528 1.38778e–17
–0.5 0.103374 0.103374 1.38778e–17
–0.3 0.082896 0.082896 2.77556e–17
–0.1 0.0313547 0.0313547 2.08167e–17
0.1 –0.0313547 –0.0313547 6.93889e–18
0.3 –0.082896 –0.082896 2.77556e–17
0.5 –0.103374 –0.103374 0.00000e–00
0.7 –0.0811528 –0.0811528 0.00000e–00
0.9 –0.0237259 –0.0237259 3.46945e–18

Case (iv) : y(s) =

π

√
 + s
 – s

(
–s + s + s – s

)
.

In Figures , ,  and , we plot the exact solutions and the approximate solutions
for n =  and N =  for all cases and it is clear that the approximate solution is in good
agreement with the exact solution. Also, the errors of the presented method are plotted
in Figures , ,  and  and are presented in all cases in Tables , ,  and .

7 Conclusion
Earlier, other numerical methods for solving the singular integral equation with Cauchy
kernel were introduced, but in this work we present a new efficient approach. The present
technique is a simple method to obtain the approximate solutions of different cases of sin-
gular integral equation with Cauchy kernel. The approximate approach is based on the
Bernstein polynomials based on the collocation method. Removing the singularity of the
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Table 8 Numerical results of Example 1 for Case (iv)

Node y(s) y5(s) |y(s) – y5(s)|
–0.9 0.0237259 0.0237259 1.38778e–17
–0.7 0.0811528 0.0811528 1.38778e–17
–0.5 0.103374 0.103374 0.00000e–00
–0.3 0.082896 0.082896 4.16334e–17
–0.1 0.0313547 0.0313547 2.08167e–17
0.1 –0.0313547 –0.0313547 1.38778e–17
0.3 –0.082896 –0.082896 2.77556e–17
0.5 –0.103374 –0.103374 1.38778e–17
0.7 –0.0811528 –0.0811528 1.38778e–17
0.9 –0.0237259 –0.0237259 6.93889e–17

equations in all cases has been set and an approximation for the integral in determining
the system of linear equations was implemented as well. By comparing the approximate
solutions with the exact solutions in the numerical results, it is obvious that the approxi-
mate solutions are close to the well-known results for various cases.
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