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Abstract
Two mathematical models are used to simulate water quality in a non-uniform flow
stream. The first model is the hydrodynamic model that provides the velocity field
and the water elevation. The second model is an advection-diffusion-reaction model
that provides the pollutant concentration field. Both models are formulated as
one-dimensional equations. The traditional Crank-Nicolson method is also used in the
hydrodynamic model. At each step, the flow velocity fields calculated from the first
model are the inputs into the second model. A new fourth-order scheme and a
Saulyev scheme are simultaneously employed in the second model. This paper
proposes a remarkably simple alteration to the fourth-order method so as to make it
more accurate without any significant loss of computational efficiency. The results
obtained indicate that the proposed new fourth-order scheme, coupled to the
Saulyev method, does improve the prediction accuracy compared to that of the
traditional methods.
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1 Introduction
The pollution levels in a stream can be measured via data collection. This is rather diffi-
cult and complex, and the results obtained deviate in measurement from one point in each
time/place to another when the water flow in the stream is not uniform. In water quality
modeling for a non-uniform flow stream, the governing equations used are the hydro-
dynamic model and the dispersion model. The one-dimensional shallow water equation
and the advection-dispersion-reaction equation govern the first and the second models,
respectively.

Numerous numerical techniques for solving such models are available. In [], a finite
element method for solving a steady water pollution control to achieve a minimum cost is
used. Numerical techniques for solving the uniform flow of a stream water quality model,
especially the one-dimensional advection-dispersion-reaction equation, are presented in
[–], and [].

The non-uniform flow model requires the velocity of the current at any point and any
time in the domain. A hydrodynamic model provides the velocity field and tidal elevation
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of the water. In [–], and [], the hydrodynamic model and the advection-dispersion
equation are used to approximate the velocity of the water current in a bay, uniform reser-
voir and stream, respectively. Among these numerical techniques, finite difference meth-
ods, including both explicit and implicit schemes, are mostly used for one-dimensional
domains, such as longitudinal stream systems [, ].

There are two mathematical models used to simulate water quality in non-uniform wa-
ter flow systems. The first is the hydrodynamic model. This provides the velocity field and
the water elevation. The second is the dispersion model. This gives the pollutant concen-
tration field. The traditional Crank-Nicolson method is used in the hydrodynamic model.
At each step, the calculated flow velocity fields of the first model are inputs into the second
model [, , ].

Numerical techniques to solve the non-uniform flow of stream water containing one-
dimensional advection-dispersion-reaction equation are presented in []. The fully im-
plicit scheme (the Crank-Nicolson method) is used to solve the hydrodynamic model and
the backward time-central space (BTCS) for the dispersion model. In [], the Crank-
Nicolson method is also used to solve the hydrodynamic model while the explicit Saulyev
scheme is used to solve the dispersion model.

Research on finite difference techniques for the dispersion model have concentrated on
computation accuracy and numerical stability. Many complicated numerical techniques,
such as the QUICK scheme, the Lax-Wendroff scheme, and the Crandall scheme, have
been studied to increase performance. These techniques focus on their advantages in
terms of stability and higher-order accuracy [].

Simple finite difference schemes are becoming more attractive for model use. Simple
explicit methods include the forward time-central space (FTCS) scheme, the MacCor-
mack scheme, and the Saulyev scheme. Implicit schemes include the BTCS and the Crank-
Nicolson scheme []. These schemes are either first-order or second-order accurate and
have advantages in programming and computing without losing much accuracy, thus they
are used for many model applications [].

A third-order upwind scheme for the advection-diffusion equation using a simple
spreadsheet simulation is proposed in []. In [], a new flux splitting scheme is proposed.
The scheme is robust and converges as fast as the Roe splitting scheme. The Godunov
mixed method for advection-dispersion equations is introduced in []. A time-splitting
approach for the advection-dispersion equations is also considered. In addition, [] pro-
poses time-split methods for multi-dimensional advection-diffusion equations in which
advection is approximated by a Godunov-type procedure, and diffusion is approximated
by a low-order mixed finite element method. In [], a flux-limiting solution technique
for the simulation of a reaction-diffusion-convection system is proposed. A composite
scheme to solve scalar transport equations in a two-dimensional space, that accurately
resolves sharp profiles in the flow, is introduced. The total variation diminishing implicit
Runge-Kutta method for dissipative advection-diffusion problems in astrophysics is pro-
posed in []. They derive dissipative space discretizations and demonstrate that, together
with specially adapted total-variation-diminishing or strongly stable Runge-Kutta time
discretizations with adaptive step-size control, these yield reliable and efficient integra-
tors for the underlying multi-dimensional non-linear evolution equations.

We propose simple revisions to a new fourth-order scheme that improve its accuracy
for the problem of water quality measurement in a non-uniform water flow in a stream. In
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Figure 1 A shallow water system.

the following sections, the formulation of a new fourth-order scheme is introduced. The
proposed revision of a new fourth-order scheme with the Saulyev method is described.

The result from the hydrodynamic model is the water flow velocity used in the
advection-dispersion-reaction equation to determine the pollutant concentration field.
Friction forces, due to the drag of the sides of the stream, are considered. The theoretical
solution to the model at the end point of the domain that guarantees the accuracy of the
approximate solution is presented in [, ], and [].

The stream has a simple one space dimension, as shown in Figure . By averaging the
equation over the depth, discarding the term due to the Coriolis force, it follows that the
one-dimensional shallow water and the advection-dispersion-reaction equations are ap-
plicable. We use the Crank-Nicolson scheme, the traditional FTCS, and a couple of new
fourth-order schemes and the Saulyev method to approximate the velocity, the elevation,
and the pollutant concentration from the first and the second models, respectively.

2 Model formulation
2.1 The hydrodynamic model
In this section, we derive a simple hydrodynamic model describing the water current and
elevation by the one-dimensional shallow water equation. We make the usual assumption
in the continuity and momentum balance, i.e., we assume that the Coriolis and shearing
stresses are small, and the surface wind is soft [, , , ]. We obtain the one-dimensional
shallow water equations

∂ζ

∂t
+

∂

∂x
[
(h + ζ )u

]
= , ()

∂u
∂t

+ g
∂ζ

∂x
= , ()

where x is the longitudinal distance along the stream (m), t is time (s), h(x) is the depth
measured from the mean water level to the stream bed (m), ζ (x, t) is the elevation from the
mean water level to the temporary water surface or the tidal elevation (m/s), and u(x, t) is
the velocity components (m/s), for all x ∈ [, l].

Assuming that h is a constant and that ζ � h, equations () and () reduce to

∂ζ

∂t
+ h

∂u
∂x

.= , ()

∂u
∂t

+ g
∂ζ

∂x
= . ()
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We obtain a dimensionless equation by letting U = u/
√

gh, X = x/l, Z = ζ /h and T =
t
√

gh/l. Substituting these expressions into equations () and () leads to

∂Z
∂T

+
∂U
∂X

= , ()

∂U
∂T

+
∂Z
∂X

= . ()

In [, ], and [], a damping term is introduced into equations () and () to represent
the frictional forces due to the drag of sides of the stream. We have

∂Z
∂T

+
∂U
∂X

= , ()

∂U
∂T

+
∂Z
∂X

= –U . ()

The initial conditions at t =  and  ≤ X ≤  are Z =  and U = . The boundary conditions
for t >  are Z = eit at X =  and ∂Z

∂X =  at X = . Equations () and () are called the
damped equations. We solve the damped equations using a finite difference method in
[, ] × [, T]. Since Z may be used to represent the vertical coordinate, U may be used to
represent the approximated solutions, and T may be used to represent the time at which
the maximum error of computed solutions is found, it is convenient to use u, d, t and x for
U , Z, T and X, respectively. We have

∂u
∂t

+
∂d
∂x

= –u, ()

∂d
∂t

+
∂u
∂x

= . ()

The initial conditions are u =  and d =  at t = . The boundary conditions are d(, t) =
f (t) and ∂d

∂x =  at x = .

2.2 Dispersion model
In a stream water quality model, the governing equation is the dynamic one-dimensional
advection-dispersion equation. A simplified representation, averaging the equation over
the depths, as shown in [–, ], and [], is

∂C
∂t

+ u
∂C
∂x

= D
∂C
∂x . ()

Here C(x, t) is the concentration averaged over the depth at the point x at time t (mg/L),
D is the diffusion coefficient (m/s), and u(x, t) is the velocity component (m/s), for all
x ∈ [, L]. The initial conditions and the left boundary conditions are usually determined
by observations. The initial pollutant concentration is C(x, ) = C at t =  for all x > ,
where C is a positive constant. The released pollutant concentration on the left boundary
condition is given by C(, t) = r(t) at x = , where r(t) ≥ . The observed rate of change of
the pollutant concentration on the right boundary is assumed to be a constant ∂C

∂x = S at
x = L, where S is an arbitrary constant.
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3 Crank-Nicolson method for the hydrodynamic model
The hydrodynamic model provides the velocity field and the elevation of the water. The
calculated results of this model are the inputs into the dispersion model, which determine
the pollutant concentration. We follow the numerical techniques of []. To find the water
velocity and the water elevation from equations () and (), we make a change of variables,
v = etu. Substituting this into equations () and (), we obtain

∂v
∂t

+ et ∂d
∂x

= , ()

∂d
∂t

+ e–t ∂v
∂x

= . ()

Equations () and () can be written in matrix form as follows:

(
v
d

)

t

+

[
 et

e–t 

](
v
d

)

x

=

(



)

. ()

That is,

Ut + AUx = ̄, ()

where

A =

[
 et

e–t 

]

, ()

U =

(
v
d

)

and

(
v
d

)

t

=

(
∂v/∂t
∂d/∂t

)

, ()

with initial conditions d = v =  at t = . The left boundary condition at x = , t >  is
specified: d(, t) = f (t) and ∂v

∂x = –et df
dt . The right boundary condition at x = , t >  is

specified: ∂d
∂x =  and v(, t) = .

We now discretize equation () by dividing the interval [, ] into M subintervals such
that M�x =  and the interval [, T] into N subintervals such that N�t = T . We then
approximate d(xi, tn) by dn

i , the value of the difference approximation of d(x, t) at the point
x = i�x and t = n�t, where  ≤ i ≤ M and  ≤ n ≤ N . We similarly define vn

i and Un
i .

The grid point (xn, tn) is defined by xi = i�x for all i = , , , . . . , M and tn = n�t for all
n = , , , . . . , N in which M and N are positive integers. Applying the Crank-Nicolson
method [] to equation (), the following finite difference equation is obtained:

[
I –




λA(�x + ∇x)
]

Un+
i =

[
I +




λA(�x + ∇x)
]

Un
i , ()

where

Un
i =

(
vn

i

dn
i

)

, �xUn
i = Un

i+ – Un
i and ∇xUn

i = Un
i – Un

i–. ()
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I is the unit matrix of order two and λ = �t/�x. Applying the initial and boundary condi-
tions given in equations () and (), we have

Gn+Ūn+ = EnŪn + Fn, ()

where

Gn+ =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

   – λ
 an+

  
λ
 an+

  – λ
 an+

   
 λ

 an+
    – λ

 an+


λ
 an+

    – λ
 an+

 
. . . . . . . . . . . . . . . . . .

   λ
 an+

  – λ
 an+



  λ
 an+

   

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

,

En =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

   – λ
 an

  
– λ

 an
  λ

 an
   

 – λ
 an

    λ
 an



– λ
 an

    λ
 an

 
. . . . . . . . . . . . . . . . . .

   – λ
 an

  λ
 an



  – λ
 an

   

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

, Ūn =

⎛

⎜
⎜⎜
⎜
⎝

Un


Un

...

Un
M–

⎞

⎟
⎟⎟
⎟
⎠

,

Fn =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

– λ
 an+

 f (tn+) – λ
 an

 f (tn)
– λ

 an+
 �xe–tn+ df

dt (tn+) – λ
 an

�xe–tn df
dt (tn)



...



⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

where an
 = etn , an

 = e–tn and tn = n�t for all n = , , , . . . , N . The Crank-Nicolson scheme
is unconditionally stable [, ].

4 A new fourth-order scheme with a Saulyev method for the
advection-dispersion equation

Applying a new fourth-order technique [] to equation (), the discretization of each
term is obtained as follows:

C ∼= Cn
i , ()

∂C
∂t

∼= Cn+
i – Cn

i
�t

, ()

∂C
∂x

∼= Fn
i

Cn
i+ – Cn

i
�x

+ Gn
i

Cn
i – Cn

i–
�x

– Hn
i

Cn
i+ – Cn

i–
�x

, ()

∂C
∂x

∼= Pn
i

Cn
i+ – Cn

i + Cn
i–

(�x) + Qn
i

Cn
i+ – Cn

i + Cn
i–

(�x) , ()

u ∼= Ûn
i , ()
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where

λ =
D�t
(�x) ,

γ n
i =

�t
�x

Ûn
i ,

Fn
i =

(λ + (γ n
i ) – γ n

i – )


,

Gn
i =

(λ + (γ n
i ) + γ n

i – )


,

Hn
i =

((γ n
i ) + λ – )


,

Pn
i =

(–(γ n
i ) + (γ n

i ) – λ – λ(γ n
i ) + λ)

λ
,

Qn
i =

((γ n
i ) – (γ n

i ) + λ + λ(γ n
i ) – λ)

λ
.

Substituting equations ()-() into equation (), we obtain

Cn+
i – Cn

i
�t

+ Ûn
i

(
Fn

i
Cn

i+ – Cn
i

�x
+ Gn

i
Cn

i – Cn
i–

�x
– Hn

i
Cn

i+ – Cn
i–

�x

)

= D
(

Pn
i

Cn
i+ – Cn

i + Cn
i–

(�x) + Qn
i

Cn
i+ – Cn

i + Cn
i–

(�x)

)
, ()

for  ≤ i ≤ M –  and  ≤ n ≤ N – . Equation () can be written in an explicit form of
finite difference equations as follows:

Cn+
i =

(


γ n

i Gn
i + λQn

i

)
Cn

i– +
(

–


γ n

i Hn
i + λPn

i

)
Cn

i–

+
(

 +


γ n

i Fn
i –



γ n

i Gn
i – λPn

i – λQn
i

)
Cn

i +
(



γ n

i Hn
i + λPn

i

)
Cn

i+

+
(

–


γ n

i Fn
i + λQn

i

)
Cn

i+, ()

for  ≤ i ≤ M –  and  ≤ n ≤ N – . For i = , M –  and M, the new fourth-order finite
difference equation () cannot be employed to calculate the value Cn

i on the grid point
next to left and right boundaries of the domain of the solution. An alternate appropriate
finite difference method, such as the Saulyev method, is employed to approximate their
values as discussed in the following section.

4.1 The employment of a Saulyev method to the left and the right boundary
conditions

The Saulyev scheme is unconditionally stable [, ]. Applying the Saulyev technique []
to equation (), we obtain the following discretization:

C ∼= Cn
i , ()

∂C
∂t

∼= Cn+
i – Cn

i
�t

, ()
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∂C
∂x

∼= Cn
i+ – Cn+

i–
�x

, ()

∂C
∂x

∼= Cn
i+ – Cn

i – Cn+
i + Cn+

i–
(�x) , ()

u ∼= Ûn
i . ()

Substituting equations ()-() into equation (), we obtain

Cn+
i – Cn

i
�t

+ Ûn
i

(
Cn

i+ – Cn+
i–

�x

)
= D

(
Cn

i+ – Cn
i – Cn+

i + Cn+
i–

(�x)

)
, ()

for  ≤ i ≤ M and  ≤ n ≤ N – .
For i = , we put the known value of the left boundary Cn+

 = rn+
 into equation () on

the right hand side, and we obtain

Cn+
 =

(


 + λ

)((


γ n

 + λ

)
rn+

 + ( – λ)Cn
 +

(
λ –



γ n



)
Cn



)
. ()

For i = M – , we obtain an explicit form of equation (). We have

Cn+
M– =

(


 + λ

)((


γ n

M– + λ

)
Cn+

M– + ( – λ)Cn
M– +

(
λ –



γ n

M–

)
Cn

M

)
. ()

For i = M, substitution of the approximate unknown value of the right boundary by a tradi-
tional central difference approximation [] with the known derivative the right boundary
condition gives

Cn
M+ = Cn

M– + �xS. ()

Substituting equation () into equation (), we obtain

Cn+
M+ =

(


 + λ

)(
λCn

i– + ( – λ)Cn
i +

(
λ –



γ n

i

)
(�xS)

)
. ()

From equations () and (), we see that the technique does not generate fictitious points
along either side of the solution domain. It follows that the new fourth-order finite differ-
ence equation (), with the employed Saulyev finite difference equations ()-() and
(), can be used to calculate the values Cn

i on grid points of the solution domain.

5 Numerical experiment
The uniform flow of advection-diffusion is considered in a uniform stream of constant
cross-section and bottom slope. The flow velocity and diffusion coefficient are taken to be
U = . m/s and D = . m/s. We assume that the length of the stream is L =  m.
We assume that the pollutant concentration level at the left end is

C(, ) = . ()

We assume that there is no rate of change of pollutant on the right end as follows:

∂C
∂x

(L, t) = . ()
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Table 1 The error defined by error(Tmxe) = max |C(0.50, t) – ˜C(0.5, t)| for all 0 ≤ t ≤ 5, for some
Tmxe ∈ [0, 5], where C and ˜C are theoretical solutions and new fourth-order scheme solutions,
respectively

�x �t C(0.5, t) ˜C(0.5, t) error(Tmxe) Tmxe

0.0500 0.002500 0.9105 1.0961 0.1856 2.2775
0.0500 0.001250 0.9095 1.0889 0.1794 2.2738
0.0500 0.000625 0.9090 1.0654 0.1764 2.2719

0.0125 0.000625 0.5366 0.1289 0.4076 1.9513
0.0250 0.000625 0.0678 0.2856 0.2178 1.6856
0.1000 0.000625 0.9908 1.1121 0.1213 2.5000

Figure 2 The comparison of the exact solution
and the new fourth-order scheme at C(1.0, t)
while (�x = 0.0500,�t = 0.0250, �t

(�x)2
= 10.00)

and (�x = 0.0250,�t = 0.0125, �t
(�x)2

= 20.00) for
all 0 ≤ t ≤ 15.

The theoretical solution to the problem is [, ]

C(x, t) =



erfc

(
x – Ut√

Dt

)
+




e
Ux
D erfc

(
x + Ut√

Dt

)
. ()

The accuracy of the proposed new fourth-order scheme with employed Saulyev method
and the theoretical methods is compared in Table  and Figure . They are not very sen-
sitive to spatial and time discretization sizes as shown in Figures -, while the time and
location are fixed at x = . and t = . in Table .

The proposed technique gives the accurate results that depend on some spatial dis-
cretization sizes. It is a remarkably simple alteration to the fourth-order method so as
to make it more accurate without any significant loss of computational efficiency.

6 Application to a non-uniform flow stream water quality assessment
Consider the measurement of a pollutant concentration C in a non-uniform flow stream.
The stream is aligned with a longitudinal distance of . (km) and a depth of . (m). There
is a plant which discharges waste water into the stream and the pollutant concentration
at the discharge point is C(, t) = C =  (mg/L) at x =  for all t > , there is no rate of
change of pollutant level ∂C

∂x =  at x = . for all t > , and there is no initial pollutant
C(x, ) =  (mg/L) at t = . The elevation of water at the discharge point can be described
as a function d(, t) = f (t) = sin t (m) for all t > , and the elevation does not change at
x = . (km). The physical parameter of the pollutant matter is a diffusion coefficient D =
. (m/s).

In the analysis conducted in this study, we mesh the stream into  elements with �x =
. and the time increment is . s with �t = ., characterizing a one-dimensional
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Figure 3 The comparison of the exact solution and the new fourth-order scheme at C(0.5, t) while
(�x = 0.2000,�t = 0.1000, �t

(�x)2
= 2.50) and (�x = 0.0100,�t = 0.0500, �t

(�x)2
= 5.00) for all

0 ≤ t ≤ 12.50.

Figure 4 The comparison of the exact solution and the new fourth-order scheme at C(1.0, t) while
(�x = 0.0500,�t = 0.0250, �t

(�x)2
= 10.00) and (�x = 0.0250,�t = 0.0125, �t

(�x)2
= 20.00) for all

0 ≤ t ≤ 12.50.

flow. Using the Crank-Nicolson method of [, ], and [], the water flow velocity u(x, t)
is shown in Table  and Figure .



Pochai Advances in Difference Equations  (2017) 2017:286 Page 11 of 13

Table 2 The comparison sensitivity to discretization sizes of approximated pollutant
concentrations while time discretizations are halved

�x �t �t/(�x)2 C(1.0, 40)

0.0500 0.002500 1.00 0.70470
0.0500 0.001250 0.50 0.75667
0.0500 0.000625 0.25 0.76400

Table 3 The velocity of water flow u(x, t), �x = 0.05, �t = 0.00125

t, x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0.5421 0.5505 0.5421 0.5202 0.4859 0.4362 0.3701 0.2901 0.1998 0.1029 0.0000
20 1.3284 1.2315 1.1228 1.0041 0.8766 0.7416 0.6001 0.4538 0.3042 0.1526 0.0000
30 0.3291 0.2628 0.2058 0.1578 0.1182 0.0861 0.0606 0.0405 0.0246 0.0116 0.0000
40 –1.1343 –1.0752 –0.9995 –0.9086 –0.8044 –0.6884 –0.5627 –0.4290 –0.2894 –0.1457 0.0000

Figure 5 The approximated water flow velocity u(x, t) (m/s) in a uniform channel using the
Crank-Nicolson method, for all 0 ≤ t ≤ 133 min, �x = 0.05, �t = 0.00125, �t/�x = 0.50.

Table 4 The pollutant concentration C(x, t) using the new fourth-order scheme and
employing Saulyev scheme, �x = 0.05, �t = 0.00125

t, x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 1.00000 0.98707 0.96381 0.92269 0.85430 0.75311 0.62458 0.48989 0.38012 0.31931 0.30376
20 1.00000 0.99226 0.97058 0.92379 0.84269 0.72904 0.60095 0.48632 0.40726 0.36902 0.35910
30 1.00000 0.81678 0.67155 0.60392 0.58238 0.57723 0.57518 0.57294 0.57033 0.56750 0.56423
40 1.00000 0.73266 0.71148 0.71812 0.71721 0.71552 0.71391 0.71215 0.71013 0.70778 0.70470

Next, the approximate water velocity can be added to the new fourth-order scheme,
employing the Saulyev method to the left boundary near the discharge point, and the right
boundary as in equation (). The approximation of pollutant concentrations C of the
proposed scheme is shown in Table  and Figure .

They are not very sensitive to spatial and time discretization sizes as shown in Figure ,
while all discretization cases are halved and their ratios �t/(�x) are increased. The pro-
posed technique gives good agreement results. The technique can be used to solve some
water quality measurement problems that are limited by space and time discretizations.
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Figure 6 The approximated pollutant concentration using the new fourth-order scheme and
employing the Saulyev scheme, for all 0 ≤ t ≤ 133 min, �x = 0.05, �t = 0.00125, �t/�x = 0.50.

Figure 7 The approximated pollutant
concentration using the new fourth-order
scheme and employing the Saulyev scheme at
x = 500 m for all 0 ≤ t ≤ 133 min while
(�x = 0.05,�t = 0.000625,�t/(�x)2 = 0.25),
(�t = 0.00125,�t/(�x)2 = 2.0),
(�x = 0.025, �t = 0.000625,�t/(�x)2 = 1.0) and
(�x = 0.05,�t = 0.00125,�t/(�x)2 = 0.50).

The proposed method, a fourth-order accurate finite difference scheme, is more accurate
and is more efficient than the conventional second-order accurate finite difference tech-
niques such as the FTCS explicit finite difference scheme and the Saulyev explicit finite
difference scheme that are proposed in [].

7 Conclusions
In this paper, the unconditionally stable Crank-Nicolson method is proposed to solve a
one-dimensional hydrodynamic model with damped force due to the drag of stream sides.
The one-dimensional advection-diffusion equation in a non-uniform flow in the stream is
solved by using a new fourth-order scheme employing the unconditionally stable Saulyev
method near the left and right boundary conditions. The new fourth-order scheme gives
accurate results without any significant loss of computational efficiency. The results ob-
tained indicate that the proposed new fourth-order scheme, coupled with the uncondi-
tionally stable Saulyev method, improves the prediction accuracy compared to that of the
traditional computation techniques.
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