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Abstract
The principal aim of this paper is to analyze and implement two numerical algorithms
for solving two kinds of space fractional linear advection-dispersion problems. The
proposed numerical solutions are spectral and they are built on assuming the
approximate solutions to be certain double shifted Tchebyshev basis. The two typical
collocation and Petrov-Galerkin spectral methods are applied to obtain the desired
numerical solutions. The special feature of the two proposed methods is that their
applications enable one to reduce, through integration, the fractional problem under
investigation into linear systems of algebraic equations, which can be efficiently
solved via any suitable solver. The convergence and error analysis of the double
shifted Tchebyshev basis are carefully investigated, aiming to illustrate the correctness
and feasibility of the proposed double expansion. Finally, the efficiency, applicability,
and high accuracy of the suggested algorithms are demonstrated by presenting
some numerical examples accompanied with comparisons with some other existing
techniques discussed in the literature.

1 Introduction
Fractional calculus is a very important branch of mathematical analysis. This branch is ba-
sically interested in investigating the properties of derivatives and integrals of non-integer
orders (called fractional derivatives and integrals). Fractional ordinary differential equa-
tions (FODEs) and fractional partial differential equations (FPDEs) have attracted consid-
erable interest from a large number of researchers due to their ability to model a lot of phe-
nomena in engineering, control theory, chemical physics, stochastic processes, anomalous
diffusion, rheology, biology, and other sciences, such as medicine and neuronal dynamics.
Due to the growing interest in these kinds of differential equations, obtaining approximate
solutions of them is of fundamental importance and hence it is very useful to develop nu-
merical techniques for solving these types of equations.

The approach of employing spectral methods is very effective in handling ordinary dif-
ferential equations as well as fractional differential equations. This approach is basically
built on assuming the approximate solutions to be linear combinations of certain basis
functions. These basis functions may be orthogonal or nonorthogonal. Approximations
by orthogonal basis functions occupy a considerable part in the literature. In fact, there are
three commonly used spectral methods, namely the collocation, the tau, and the Galerkin
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method and its variants. The collocation method is very effective in a wide range of prac-
tical problems, particularly in the nonlinear ones (see for example []). The tau method
is useful for treating boundary value problems of complicated boundary conditions (see
for example []). In the Galerkin and Petrov-Galerkin methods, one chooses two sets of
basis functions, which are called ‘trial functions’ and ‘test functions’. These two sets are
identical in the Galerkin method, however, in the Petrov-Galerkin method, they are not
identical, so the main advantage of employing the Petrov-Galerkin method is its flexi-
bility in choosing test functions. The Galerkin and Petrov-Galerkin methods have been
applied successfully in various situations. For example, the authors in [, ] have con-
structed efficient spectral Galerkin algorithms and Petrov-Galerkin algorithms for han-
dling various even- and odd-order boundary value problems. One of the advantages of
the Galerkin and Petrov-Galerkin methods is that they enable one to investigate carefully
the algebraic systems resulting from their applications and their structures and complex-
ities.

There are three types of FPDEs, namely space FPDEs, time FPDEs and space-time
FPDEs. One of the most important fractional differential equation is the fractional
advection-diffusion equation (FADE). Due to the importance of this equation (see, for
example, []), a variety of papers with different numerical techniques have been proposed
to handle it. For example, Shen et al. in [] derived the fundamental solution for the space-
time Riesz-Caputo FADE with an initial condition. The authors in [] have derived some
analytical solutions for the multi-term time-space Caputo-Riesz FADEs on a finite do-
main. The Adomian decomposition method is employed in [] for solving an intermediate
fractional advection-dispersion equation. The finite element method is used to handle the
fractional advection-dispersion equation.

In this study, we are concerned with introducing numerical integral spectral solutions
for two kinds of the FADEs. We apply the collocation and Petrov-Galerkin methods for
this purpose. The main idea behind the proposed approach is to solve the integrated form
of the equation. The advantage of using this approach is that its use enables one to reduce
the solution of the equation with its boundary and initial conditions into a system of linear
or nonlinear algebraic equations. The linear system can be efficiently solved using the
Gaussian elimination solver or by any other suitable solver, while the nonlinear system
can be solved with the aid of Newton’s iterative method.

The paper is organized as follows. In the next section, some necessary definitions and
mathematical preliminaries of fractional calculus are presented. Besides, some proper-
ties of shifted Tchebyshev polynomials are given. Sections  and  are devoted to solving
FADEs by implementing and presenting two numerical algorithms based on the applica-
tion of the collocation and Petrov-Galerkin methods. Section  focuses on investigating
the convergence and error analysis of the suggested Tchebyshev double expansion. The
numerical results and comparisons are displayed in Section . Finally, some conclusions
are reported in Section .

2 Some fundamental properties of fractional calculus
This section is devoted to presenting some fundamental definitions and preliminary facts
of the fractional calculus theory. For fundamentals of this branch, the reader is referred to
[].
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Definition  The Riemann-Liouville fractional integral operator Iα of order α on the
usual Lebesgue space L[, ] is defined as

Iαf (t) =

⎧
⎨

⎩


�(α)

∫ t
 (t – τ )α–f (τ ) dτ , α > ,

f (t), α = .
(.)

The following properties are satisfied by the operator Iα :

(i) IαIβ = Iα+β ,

(ii) IαIβ = Iβ Iα ,

(iii) Iαtν =
�(ν + )

�(ν + α + )
tν+α ,

where α,β ≥ , and ν > –.

Definition  The left and right handed Riemann-Liouville fractional-order operators are
defined, respectively, as follows:

(R
aDγ

x f
)
(x) =


�(m – γ )

dm

dxm

∫ x

a
(x – τ )m–γ –f (τ ) dτ , (.)

(R
x Dγ

b f
)
(x) =

(–)m

�(m – γ )
dm

dxm

∫ b

x
(τ – x)m–γ –f (τ ) dτ , (.)

where m –  ≤ γ < m, m ∈N.

Definition  For a function f defined on the interval I = [a, b], the left and right handed
Caputo fractional-order derivatives are defined as

(C
a Dγ

x f
)
(x) =


�(m – γ )

∫ x

a
(x – τ )m–γ –f (m)(τ ) dτ , γ > , t > , (.)

(C
x Dγ

b f
)
(x) =

(–)m

�(m – γ )

∫ b

x
(τ – x)m–γ –f (m)(τ ) dτ , γ > , t > , (.)

where m –  ≤ γ < m, m ∈N.

It is worthwhile to mention here that the operator C
 Dα

t satisfies the following fundamen-
tal properties, for n –  ≤ α < n:

(C
 Dα

t Iαf
)
(t) = f (t),

C
 Dα

t tk =
�(k + )

�(k +  – α)
tk–α , k is a positive integer, k ≥ �α�,

(.)

where �α� is the well-known ceiling function.
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Property  (See []) The relation between the Riemann-Liouville fractional derivative
and the Caputo fractional derivative is given by

(R
Dγ

x f
)
(x) =

(C
 Dγ

x f
)
(x) +

n–∑

j=

f (j)()
�(j – γ + )

xj–γ . (.)

Definition  The Riesz fractional-order derivative of order γ is defined (see []) as

∂γ f
∂|x|γ = –c

[R
–∞Dγ

x f (x) + R
x Dγ

∞f (x)
]
, (.)

where c = 
 sec γπ

 .

For a function f defined over the interval I = [a, b], where f (a) = f (b) = , we extend the
function to be f (x) = , for all x > b and x < a. Thus we have []

∂γ f (x)
∂|x|γ = –c

[R
aDγ

x f (x) + R
x Dγ

b f (x)
]
. (.)

For several other properties of fractional derivatives and integrals, see [, ].

2.1 Some properties of shifted Tchebyshev polynomials
Let Tn(t); t ∈ [–, ], denote the standard first kind Tchebyshev polynomial of degree n.
It is well known that the set {Tn(t); t ∈ [–, ]}n≥ form a complete orthogonal system for
L

w(–, ), where w = √
–t . Moreover, Tchebyshev polynomials satisfy the following or-

thogonality relation:

∫ 

–

Ti(t)Tj(t)√
 – t

dt =

⎧
⎨

⎩

π
κi

, i = j,

, i 	= j,
where κi =

⎧
⎨

⎩

, i = ,

, otherwise.

We denote by Tτ
j (t) the shifted Tchebyshev polynomials defined on (, τ ) as

Tτ
j (t) = Tj

(
t
τ

– 
)

.

The shifted Tchebyshev polynomials form a complete orthogonal system for L
w(, τ ),

where w = √
τ t–t . The orthogonality relation satisfied by Tτ

i (t) is

∫ τ



Tτ
i (t)Tτ

j (t)√
τ t – t

dt =

⎧
⎨

⎩

π
κi

, i = j,

, i 	= j.

The linearization of the product of two Tchebyshev polynomials is given by (see [])

Tτ
� (s)Tτ

j (s) =


[
Tτ

|�–j|(s) + Tτ
�+j(s)

]
. (.)

These polynomials (see []) have the following two analytic forms:

Tτ
j (t) = j

j∑

s=

(–)j–ss(j + s – )!
(j – s)!(s)!τ s ts, (.)
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and

Tτ
j (t) = j

j∑

s=

(–)s(j + s – )!
(s)!( 

 )s(j – s)!τ s
(τ – t)s. (.)

Now if we let f (t) ∈ L[, τ ], then f (t) may be expanded in terms of a shifted Tchebyshev
basis as

f (t) =
∞∑

i=

ciTτ
i (t),

where

ci =
κi

π

∫ τ



f (t)Tτ
i (t)√

τ t – t
dt. (.)

For more properties of Tchebyshev polynomials and their shifted ones, see for example
[].

3 Integral transforms for two kinds of the space fractional
advection-dispersion equations

This section is devoted to transforming two kinds of space FADEs into their integral forms
in order to treat them numerically by our proposed techniques in the upcoming section.

3.1 The first kind of space fractional advection-dispersion problem
Consider the following space right-handed Riemann-Liouville fractional advection-
dispersion problem (see []):

∂u(x, t)
∂t

+ v(x, t)R
Dβ

x u(x, t) – k(x, t)R
Dγ

x u(x, t) = f (x, t, u),

 < β < ,  < γ < , (x, t) ∈ � := (,�) × (, τ ),
(.)

governed by the nonhomogeneous boundary conditions

u(, t) = u(t), u(�, t) = u�(t),  < t < τ , (.)

and the initial condition

u(x, ) = f(x),  < x < �, (.)

where u(x, t) represents the concentration, k(x, t) and v(x, t) are the dispersion coefficients,
and f (x, t, u) is the source term which may be linear or nonlinear.

In order to proceed in developing our two spectral algorithms for treating (.)-(.), we
make use of the following transformation:

u(x, t) = g(x, t) +
(

 –
x
�

)

u(t) +
x
�

u�(t), (.)
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and we take into consideration the following relations:

R
Dβ

x  =
x–β

�( – β)
, R

Dβ
x

x
�

=
x–β

��( – β)
,

R
Dγ

x  =
( – γ )x–γ

�( – γ )
, R

Dγ
x

x
�

=
x–γ

��( – γ )
,

to convert equation (.), subject to the nonhomogeneous boundary conditions (.) and
the initial condition (.), into the following modified one:

∂g(x, t)
∂t

+ v(x, t)R
Dβ

x g(x, t) – k(x, t)R
Dγ

x g(x, t) = f(x, t, g),

 < β < ,  < γ < , (x, t) ∈ � := (,�) × (, τ ),
(.)

subject to the homogeneous Dirichlet boundary conditions

g(, t) = g(�, t) = ,  < t < τ , (.)

and the initial condition

g(x, ) = f̃(x),  < x < �, (.)

where

f(x, t, g) = f (x, t, u) –
x–βv(x, t)
�( – β)

[

u(t) +
x

�( – β)
(
u�(t) – u(t)

)
]

+
x–γ k(x, t)
�( – γ )

[

u(t) +
x

�( – γ )
(
u�(t) – u(t)

)
]

–
(

 –
x
�

)

u′
(t) –

x
�

u′
�(t), (.)

and

f̃(x) = f(x) –
(

 –
x
�

)

u() –
x
�

u�(). (.)

Note  If β = , γ = , equation (.) has the following form:

f(x, t, g) = f (x, t, u) +
v(x, t)

�

(
u(t) – u�(t)

)
–

(

 –
x
�

)

u′
(t) –

x
�

u′
�(t). (.)

Now, the integral form of equation (.) governed by the conditions (.) and (.) is

g(x, t) = –
∫ t

 v(x, s)R
Dβ

x g(x, s) ds +
∫ t

 k(x, s)R
Dγ

x g(x, t) ds + F(x, t, g),
 < β < ,  < γ < , (x, t) ∈ � := (,�) × (, τ ),
g(, t) = g(�, t) = ,  < t < τ ,

⎫
⎪⎬

⎪⎭
(.)

and

F(x, t, g) = f̃(x) +
∫ t


f(x, s, g) ds. (.)
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3.2 The second kind of space fractional advection-dispersion problem
Consider the space Riemann-Liouville fractional advection-dispersion problem with Riesz
space fractional derivatives (see []):

∂u(x, t)
∂t

+ κβ

∂βu(x, t)
∂|x|β – κγ

∂γ u(x, t)
∂|x|γ = f (x, t, u),

 < β < ,  < γ < , (x, t) ∈ � := (,�) × (, τ ),
(.)

governed by the nonhomogeneous boundary conditions

u(, t) = u(t), u(�, t) = u�(t),  < t < τ , (.)

and the initial condition

u(x, ) = f(x),  < x < �, (.)

where u(x, t) represents the concentration, κβ and κγ represent the dispersion coefficient
and the average fluid velocity, respectively, and f (x, t, u) is the source term which may be
linear or nonlinear.

Now, with the aid of the transformation formula

u(x, t) = g(x, t) +
(

 –
x
�

)

u(t) +
x
�

u�(t), (.)

equation (.), subject to the nonhomogeneous boundary conditions (.) and the initial
condition (.), is turned into the following modified equation:

∂g(x, t)
∂t

+ κβ

∂βg(x, t)
∂|x|β – κγ

∂γ g(x, t)
∂|x|γ = f(x, t, g),

 < β < ,  < γ < , (x, t) ∈ � := (,�) × (, τ ),
(.)

subject to the homogeneous Dirichlet boundary conditions

g(, t) = g(�, t) = ,  < t < τ , (.)

and the initial condition

g(x, ) = f̃(x),  < x < �, (.)

where

f(x, t, u) = f (x, t, u) + ςβu

(

x–β –
x–β

�( – β)
+

(� – x)–β

�( – β)

)

+ ςβu�

(
x–β

�( – β)
+ (� – x)–β –

(� – x)–β

�( – β)

)

– ςγ u

(

x–γ –
x–γ

�( – γ )
+

(� – x)–γ

�( – γ )

)

– ςγ u�

(

(� – x)–γ +
x–γ

�( – γ )
–

(� – x)–γ

�( – γ )

)

–
x
�

u′
� –

(

 –
x
�

)

u′
, (.)
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where

ςμ =
κμ sec( μπ

 )
�( – μ)

and

f̃(x) = f(x) –
(

 –
x
�

)

u() –
x
�

u�(). (.)

Note  If β = , γ = , equation (.) has the following form:

f(x, t, g) = f (x, t, u) –
(

 –
x
�

)

u′
(t) –

x
�

u′
�(t). (.)

Now, the integral form of equation (.) governed by the conditions (.) and (.) is

g(x, t) = –κβ

∫ t


∂β g(x,s)
∂|x|β ds + κγ

∫ t


∂γ g(x,s)
∂|x|γ ds + F(x, t, g),

 < β < ,  < γ < , (x, t) ∈ � := (,�) × (, τ ),
g(, t) = g(�, t) = ,  < t < τ ,

⎫
⎪⎬

⎪⎭
(.)

and

F(x, t, g) = f̃(x) +
∫ t


f(x, s, g) ds. (.)

4 Numerical spectral treatment for two kinds of space fractional linear
advection-dispersion problems

This section is concerned with explaining in detail two spectral algorithms for numer-
ically solving two kinds of space fractional linear advection-dispersion problems. First,
we select a unified double Tchebyshev expansion as basis functions, and then apply the
two well-known spectral methods, namely the collocation and Petrov-Galerkin meth-
ods.

4.1 Choice of the basis functions
We choose the following two families of orthogonal polynomials:

φi(x) = x(� – x)T�
i (x), i = , , , . . . , (.)

ψj(t) = Tτ
j (t), j = , , , . . . . (.)

It is not difficult to show that the polynomials {φi(x)}i≥ are linearly independent and or-
thogonal with respect to the weight function w(x) = 

x/(�–x)/ on [,�]. Moreover, it is also
clear that each member of them fulfills the boundary conditions (.). The orthogonality
relation for {φi(x)}i≥ is

∫ �



φi(x)φj(x) dx
x/(� – x)/ = hi =

⎧
⎨

⎩

π
κi

, i = j,

, i 	= j.
(.)
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Now, we define the following two spaces:

V =
{

y ∈ H
w(x,t)(�) : y(, t) = y(�, t) = , t ∈ [, τ ]

}
, (.)

VM = span
{
φi(x)ψj(t) : i, j = , , . . . , M

}
,

where H
w(x,t)(�), � = (,�) × (, τ ] is the Sobolev space defined in [], and

w(x, t) =


x/(� – x)/t/(τ – t)/ .

Now, let g(x, t) ∈ V . Then this function can be expanded in the following double expan-
sion:

g(x, t) =
∞∑

i=

∞∑

j=

cijφi(x)ψj(t), (.)

and the coefficients cij are given by the formula

cij =


hihj

∫ τ



∫ �



g(x, t)φi(x)ψj(t)
x/(� – x)/t/(τ – t)/ dx dt. (.)

Numerically, g(x, t) can be approximated by the truncated double series

g(x, t) ≈ gM(x, t) =
M∑

i=

M∑

j=

cijφi(x)ψj(t). (.)

In the following, we are going to state and prove three important theorems concerned with
the basis functions φi(x) and ψj(t). In the first, we give a new formula for the fractional
derivatives of the polynomials φi(x) in the sense of Riemann-Liouville, while the second
gives the Riesz fractional derivatives for the same basis. In the third theorem, an integral
formula for ψj(t) is given.

Theorem  Let α ∈ (, ). Then the following fractional derivative (in the Riemann-
Liouville sense) relation is valid:

R
Dα

x φi(x) = i
i∑

k=

(–)i+k+(k + )(i + k – )!�(α – k – ) sin(π (α – k))
π ( 

 )k(i – k)!�k–

×
(

x–α+k+ –
(k + )

(–α + k + )�
x–α+k+

)

. (.)

Proof The power form representation for T�
i (x) given in (.) enables one to write φi(x)

as

φi(x) = i
i∑

k=

(–)i–k(i + k – )!k

(k)!(i – k)!�k– xk+ – i
i∑

k=

(–)i–k(i + k – )!k

(k)!(i – k)!�k xk+. (.)
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If the operator R
Dα

x is applied to both sides of (.), and making use of the formula

R
Dα

x xk =
k!

�( + k – α)
xk–α ,

then we get

R
Dα

x φi(x) = i
i∑

k=

(–)i–k(i + k – )!k(k + )!
(k)!(i – k)!�(k +  – α)�k– xk+–α

– i
i∑

k=

(–)i–k(i + k – )!k(k + )!
(k)!(i – k)!�(k +  – α)�k xk+–α . (.)

If we make use of the relation

�(ξ )�( – ξ ) =
π

sin(ξπ )
,

then after performing some rather lengthy manipulations, we get the desired equa-
tion (.). �

Note  By writing ak � bk , we mean that there exists a generic constant C such that ak <
C bk for large k.

Lemma  For x ∈ [, ] and  < α < , we have

∣
∣R
Dα

x φi(x)
∣
∣� i. (.)

Proof From relation . and knowing that φi() = , we have

(R
Dα

x φi
)
(x) =

(C
 Dα

x φi
)
(x),

so it suffices to prove the lemma for Caputo’s definition:

(C
 Dα

x φi
)
(x) =


�( – α)

∫ x


(x – τ )–αφ′

i(τ ) dτ . (.)

Noting that φi(x) = ( – x) cos(iθ ) – i
√

x – x sin(iθ ), where θ = arccos(x – ), and since√
x – x ≤ 

 , we get

∣
∣C
 Dα

x φi(x)
∣
∣ ≤  + i


�( – α)

∫ x


(x – τ )–α dτ =

x–α( + i
 )

�( – α)
,

and since x–α ≤ , then the lemma is proved. �

Lemma  For x ∈ [, ] and  < γ < , we have

∣
∣R
Dγ

x φi(x)
∣
∣� i. (.)
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Proof The proof of this lemma is similar to the proof of Lemma . �

Theorem  For β ∈ (, ) – {}, the following Riesz fractional derivatives relation is valid:

∂βφi(x)
∂|x|β = i

i∑

k=

(i + k – )!(k + )!�(β – k – ) sec( πβ
 ) sin(π (β – k))

π (k)!(i – k)!�k

×
[(

(–)k((� – x)+k–β
(
–( + k)x + �β

)
+ (–)ix+k–β

(
( + k)(–� + x) + �β

)))]
.

(.)

Proof Based on the two analytic forms of T�
i (x) given in (.) and (.) and if we perform

similar manipulations as in the proof of Theorem , then we get the desired result. �

Similarly we can prove the following estimates for the Riesz fractional derivatives of φi(x).

Lemma  For x ∈ [, ] and  < β < , we have

∣
∣
∣
∣
∂βφi(x)
∂|x|β

∣
∣
∣
∣ � i. (.)

Lemma  For x ∈ [, ] and  < γ < , we have

∣
∣
∣
∣
∂γ φi(x)
∂|x|γ

∣
∣
∣
∣� i. (.)

Theorem  If ψj(t) is defined as in (.), then the following integral formula holds:

∫ t


ψj(s) ds = j

j∑

k=

(–)j–k(j + k – )!k

(k + )(j – k)!(k)!τ k tk+. (.)

Proof The proof is easily obtained by integrating relation (.) over the interval [, t]. �

4.2 Numerical algorithms for handling equation (3.11)
This section is devoted to describing in detail two numerical algorithms for handling
equation (.). The first algorithm depends on the application of the typical collocation
method, while the second depends on the application of the Petrov-Galerkin method. The
main idea behind the two proposed algorithms is based on making use of Theorems 
and  along with the application of the collocation and Petrov-Galerkin methods in order
to transform equation (.) into a system of linear or nonlinear algebraic equations in the
unknown expansion coefficients cij. The linear system is solved using Gauss elimination,
and the nonlinear one is solved via Newton’s iterative method.

.. The collocation approach
Consider the following approximate solution of equation (.):

gM(x, t) =
M∑

i=

M∑

j=

cijφi(x)ψj(t). (.)
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Now, let v(x, t) and k(x, t) ∈ V . Then these two functions can be expanded in the following
double expansions:

v(x, t) =
∞∑

p=

∞∑

q=

vpqT�
p (x)Tτ

q (t), (.)

k(x, t) =
∞∑

p=

∞∑

q=

kpqT�
p (x)Tτ

q (t), (.)

and the coefficients vpq and kpq are given by the formulas

vpq =


hphq

∫ τ



∫ �



v(x, t)T�
p(x)Tτ

q (t),
x/(� – x)/t/(τ – t)/ dx dt, (.)

kpq =


hphq

∫ τ



∫ �



k(x, t)T�
p(x)Tτ

q (t),
x/(� – x)/t/(τ – t)/ dx dt. (.)

Now consider the following approximations:

v(x, s) ≈ vM(x, s) =
M∑

p=

M∑

q=

vpqT�
p (x)Tτ

q (s), (.)

and

k(x, s) ≈ kM(x, s) =
M∑

p=

M∑

q=

kpqT�
p (x)Tτ

q (s). (.)

In order to apply the collocation method, and due to (.), we note that the residual of
(.) takes the form

R(x, t) =
M∑

i=

M∑

j=

cijφi(x)ψj(t) +
M∑

i=

M∑

j=

cij
R
Dβ

x φi(x)
∫ t


v(x, s)ψj(s) ds

–
M∑

i=

M∑

j=

cij
R
Dγ

x φ(x)
∫ t


k(x, s)ψj(s) ds – F(x, t, g), (.)

and therefore

R(x, t) =
M∑

i=

M∑

j=

cijφi(x)ψj(t) +
M∑

i,j=

M∑

p,q=

cijvpqT�
p (x)R

Dβ
x φi(x)

∫ t


Tτ

q (s)ψj(s) ds

–
M∑

i,j=

M∑

p,q=

cijkpqT�
p (x)R

Dγ
x φi(x)

∫ t


Tτ

q (s)ψj(s) ds – F(x, t, g). (.)

Now, making use of the two power form representations of the polynomials φi(x) and ψj(t),
and the two relations in (.), (.) and (.) enable us to write the residual R(x, t) in the
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following form:

R(x, t) =
M∑

i=

M∑

j=

i∑

k=

j∑

s=

cij
(–)i+j–k–sks(i + k – )!(j + s – )!

(k)!(s)!(i – k)!(j – s)!τ s�k (� – x)xk+ts

+
M∑

i,j=

M∑

p,q=

i∑

k=

p∑

s=

ipcijvpq

× (–)i+k+p–s+(k + )s(p + s – )!(i + k – )!�(β – k – ) sin(π (β – k))

√

π (p – s)!(s)!(i – k)!�(k + 
 )�s+k–

×
(

x–β+s+k+ –
(k + )

(–β + k + )�
x–β+s+k+

)

×
(

ζ

ζ∑

s=

(–)ζ–s(ζ + s – )!s

(s + )(ζ – s)!(s)!τ s ts+ + η

η∑

s=

(–)η–s(η + s – )!s

(s + )(η – s)!(s)!τ s ts+

)

–
M∑

i,j=

M∑

p,q=

i∑

k=

p∑

s=

ipcijkpq

× (–)i+k+p–s+(k + )s(p + s – )!(i + k – )!�(γ – k – ) sin(π (γ – k))

√

π (p – s)!(s)!(i – k)!�r+k–�(k + 
 )

×
(

x–γ +s+k+ –
(k + )

(–γ + k + )�
x–γ +s+k+

)

×
(

ζ

ζ∑

s=

(–)ζ–s(ζ + s – )!s

(s + )(ζ – s)!(s)!τ s ts+ + η

η∑

s=

(–)η–s(η + s – )!s

(s + )(η – s)!(s)!τ s ts+

)

– F(x, t, g), (.)

where ζ = |q – j| and η = q + j. Now, we apply the typical collocation method to equation
(.). In fact, if this equation is collocated at the following set of points: {( i�

M+ , jτ
M+ ) :

 ≤ i, j ≤ M + }, then we obtain a system of algebraic equations of dimension (M + )

in the unknown expansion coefficients {cij :  ≤ i, j ≤ M}. This linear algebraic system is
solved by the Gaussian elimination procedure or by any suitable solver, while the nonlinear
system is solved with the aid of Newton’s iterative method. Hence, the desired spectral
solution can be obtained.

.. Petrov-Galerkin approach
This section is devoted to introducing an alternative algorithm for finding a spectral so-
lution to equation (.). The main advantage of employing the Petrov-Galerkin method
is its flexibility in choosing test functions, since we can choose a suitable set of functions
that is not identical to the set of trial functions. Now, we choose the test functions to be

ρmn(x, t) = xmtn.

Then the application of the Petrov-Galerkin method leads to
∫ τ



∫ �


R(x, t)ρmn(x, t) dx dt = ,  ≤ m, n ≤ M + , (.)

where R(x, t) is defined as in (.).
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Now, equation (.) can be written alternatively as

M∑

i=

M∑

j=

i∑

k=

j∑

s=

cij
(–)i+j–k–sk+s(i + k – )!(j + s – )!�m+τ n+

(k)!(s)!(i – k)!(j – s)!(k + m + )(k + m + )(n + s + )

+
M∑

i,j=

M∑

p,q=

i∑

k=

j∑

s=

ijpcijvpq

× (–)i+j–s+k+(k + )(i + k – )!�(β – k – ) sin(π (β – k))(j + s – )!s

(s + )(j – s)!(s)!τ s√π (i – k)!�k–�(k + 
 )

×
p∑

s=

(–)p–ss(p + s – )!
(p – s)!(s)!

×
(

ζ

ζ∑

s=

(–)ζ–s(ζ + s – )!sτ n+

(s + )(ζ – s)!(s)!( + n + s)
+ η

η∑

s=

(–)η–s(η + s – )!sτ n+

(s + )(η – s)!(s)!( + n + s)

)

×
(

�–β+k+m+s+

–β + k + m + s + 
–

(k + )�–β+k+m+s+

(–β + k + )(–β + k + m + s + )

)

–
M∑

i,j=

M∑

p,q=

i∑

k=

j∑

s=

ijpcijkpq

× (–)i+k–s+(k + )(i + k – )!(j + s – )!s�(γ – k – ) sin(π (γ – k))
(s + )(j – s)!(s)!τ s√π (i – k)!�s+k–�(k + 

 )

×
p∑

s=

(–)p–sr(p + s – )!
(p – s)!(s)!

×
(

ζ

ζ∑

s=

(–)ζ–s(ζ + s – )!sτ n+

(s + )(ζ – s)!(s)!(n + s + )
+ η

η∑

s=

(–)η–s(η + s – )!sτ n+

(s + )(η – s)!(s)!(n + s + )
tn+s+

)

×
(

�–γ +k+m+s+

–β + k + m + s + 
–

(k + )�–γ +k+m+s+

(–γ + k + )(–γ + k + m + s + )

)

– Fm,n = , (.)

where Fm,n =
∫ τ


∫ �

 F(x, t, g)ρmn(x, t) dx dt. Hence, a system of equations of dimension
(M + ) in the unknown expansion coefficients cij is generated. This system can be ef-
ficiently solved by the Gauss elimination technique, and hence an approximate spectral
solution can be obtained.

4.3 Numerical algorithms for handling equation (3.23)
In this section, we describe how the collocation and Petrov-Galerkin procedures can be
employed to handle equation (.). As we have done in Section .., collocation and
Petrov-Galerkin are employed along with Theorems  and  to convert equation (.)
into a system of linear algebraic equations in the unknown expansion coefficients cij.

.. The collocation approach
Now, consider the following approximate spectral solution of equation (.):

gM(x, t) =
M∑

i=

M∑

j=

cijφi(x)ψj(t). (.)
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In order to apply the collocation method, and due to (.), we note that the residual of
(.) takes the form

R(x, t) =
M∑

i=

M∑

j=

cijφi(x)ψj(t) + κβ

M∑

i=

M∑

j=

cij
∂βφi(x)
∂|x|β

∫ t


ψj(s) ds

– κγ

M∑

i=

M∑

j=

cij
∂γ φi(x)
∂|x|γ

∫ t


ψj(s) ds – F(x, t, g). (.)

The latter formula, along with the aid of the two power form representations of the poly-
nomials φi(x) and ψj(t), and the two relations in (.) and (.), enable one to write the
residual R(x, t) in the following form:

R(x, t) =
M∑

i=

M∑

j=

i∑

k=

j∑

s=
ijcij

(–)j–s+k(i + k – )!(j + s – )!s√π

�(k + 
 )(i – k)!(j – s)!k!(s)!�kτ s

x(� – x)k+ts

+ κβ

M∑

i=

M∑

j=

i∑

k=
ciji

i∑

k=

(i + k – )!�( + k)�(β – k – ) sec( πβ
 ) sin(π (β – k))

π (k)!(i – k)!�k

× (
(

(–)k((–)k(� – x)+k–β
(
–( + k)x + �β

)
+ (–)ix+k–β

(
( + k)(–� + x) + �β

))
)

× j
j∑

s=

(–)j–s(j + s – )!s

(s + )(j – s)!(s)!τ s ts+

– κγ

M∑

i=

M∑

j=

i∑

k=
ciji

i∑

k=

(i + k – )!�( + k)�(γ – k – ) sec( πγ
 ) sin(π (γ – k))

π (k)!(i – k)!�k

× (
(

(–)k((–)k(� – x)+k–γ
(
–( + k)x + �γ

)
+ (–)ix+k–γ

(
( + k)(–� + x) + �γ

))
)

× j
j∑

s=

(–)j–s(j + s – )!s

(s + )(j – s)!(s)!τ s ts+ – F(x, t, g). (.)

Now, we apply the typical collocation method. In fact, the residual R(x, t) is enforced to
vanish at the following set of points: {( i�

M+ , jτ
M+ ) :  ≤ i, j ≤ M + }. Then we obtain a linear

algebraic system of equations of dimension (M +) in the unknown expansion coefficients
{cij :  ≤ i, j ≤ M} which is solved by Gauss elimination solver.

.. Petrov-Galerkin approach
To apply the Petrov-Galerkin method to equation (.), we choose the test functions to
be

ρmn(x, t) = xmtn,

and therefore the application of the Petrov-Galerkin method leads to

∫ τ



∫ �


R(x, t)ρmn(x, t) dx dt = ,  ≤ m, n ≤ M + , (.)
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where R(x, t) is defined as in (.). Now, equation (.) can be written alternatively as

M∑

i=

M∑

j=

i∑

k=

j∑

s=

ijcij
(–)j–s+k(i + k – )!(j + s – )!s√π

�(k + 
 )(i – k)!(j – s)!k!(s)!�kτ s

∫ �



∫ τ


xm+(� – x)k+tn+s dt dx

+ (κβ – κγ )
M∑

i=

M∑

j=

i∑

k=

j∑

s=

ijcij

× (i + k – )!�( + k)�(β – k – ) sec( πβ

 ) sin(π (β – k))(–)j–s(j + s – )!s

π (k)!(i – k)!�k(s + )(j – s)!(s)!τ s

×
∫ �



∫ τ


(
((

(–)k((–)k(� – x)+k–β

× (
–( + k)x + �β

)
+ (–)ix+k–β

(
( + k)(–� + x) + �β

))
))

× xmtn+s+ dt dx – Fm,n = , (.)

where

Fm,n =
∫ τ



∫ �


F(x, t, g)ρmn(x, t) dx dt.

Equation (.) generates a linear system of dimension (M +) in the unknown expansion
coefficients cij, which is efficiently solved using Gauss elimination solver.

5 Convergence and error analysis of the suggested double expansion
In this section we concentrate on investigating the convergence and error analysis of the
suggested double Tchebyshev expansion. Three important theorems are stated and proved
for this purpose. The first theorem shows that the double Tchebyshev expansion of a func-
tion u(x, t) converges uniformly to u(x, t). The second and third theorems discuss the error
analysis of the full discretization scheme for the two problems (.) and (.).

First, the following lemma is useful.

Lemma  (See [], p.) Let u(x) be a function such that u(k) = ak . Suppose that the
following assumptions are satisfied:

. u(x) is a continuous, positive, decreasing function for x ≥ n.
.

∑
an is convergent, and Rn =

∑∞
k=n+ ak .

Then

Rn ≤
∫ ∞

n
u(x) dx.

Theorem  A function

g(x, t) = x(� – x)f (x)h(t) ∈ L
w(x,t)(�), w(x, t) =


x/(� – x)/t/(τ – t)/

with |f ()(x)| ≤ M, |h()(x)| ≤ M can be expanded as an infinite sum of the basis
{φi(x)ψj(t)}≤i,j≤M , and the series converges uniformly to g(x, t). Moreover, the following
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inequality is satisfied by the expansion coefficients in (.):

|cij|� 
ij ∀i, j > . (.)

Proof Relation (.) implies that

cij =


hihj

∫ τ



∫ �



g(x, t)φi(x)ψj(t)
x/(� – x)/t/(τ – t)/ dx dt. (.)

We make use of the two substitutions:

t
τ

–  = cos ξ ,
x
�

–  = cos θ ,

to convert the coefficients cij in (.) into the form

cij =


hihj

∫ π


f
(

�


( + cos θ )

)

cos(iθ ) dθ

×
∫ π


h
(

τ


( + cos ξ )

)

cos(jξ ) dξ . (.)

Application of the integration by parts three times to the right hand side of equation (.)
enables one to write cij in the form

cij =
�τ 

hihj

∫ π


f ()

(
�


( + cos θ )

)

�i(θ ) sin(θ ) dθ

×
∫ π


h()

(
τ


( + cos ξ )

)

�j(ξ ) sin(ξ ) dξ , (.)

where

�i(θ ) =
i sin(θ )((i + ) cos(θ ) – i + ) cos(θ i) –  cos(θ ) sin(θ i)((i + ) cos(θ ) – i + )

(i – )(i – )(i – i)
.

In virtue of the two assumptions |f ()(x)| ≤ M, |h()(t)| ≤ M and the well-known inequal-
ity |T�

i (x)| ≤ , and since

∣
∣�i(θ )

∣
∣ ≤ i + i + i + 

(i – )
� i–,

we get the theorem. �

Theorem  Let EM be the residual of equation (.), i.e.,

EM =
∣
∣DtgM(x, t) + v(x, t)R

Dβ
x gM(x, t) – k(x, t)R

Dγ
x gM(x, t) – f(x, t, gM)

∣
∣.

If f(x, t, z) satisfies the Lipschitz condition in the variable z, and v(x, t) and k(x, t) are
bounded functions, then we have the following estimate:

EM � M–.
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Proof We have

EM =
∣
∣DtgM(x, t) + v(x, t)R

Dβ
x gM(x, t) – k(x, t)R

Dγ
x gM(x, t)

– f(x, t, g) – f(x, t, gM) + f(x, t, g)
∣
∣

≤ ∣
∣DtgM(x, t) + v(x, t)R

Dβ
x gM(x, t) – k(x, t)R

Dγ
x gM(x, t) – f(x, t, g)

∣
∣

+
∣
∣f(x, t, gM) – f(x, t, g)

∣
∣

≤ ∣
∣DtgM(x, t) + v(x, t)R

Dβ
x gM(x, t) – k(x, t)R

Dγ
x gM(x, t) – f(x, t, g)

∣
∣ + L|gM – g|

≤ ∣
∣Dt(gM – g) + v(x, t)R

Dβ
x (gM – g) – k(x, t)R

Dγ
x (gM – g)

∣
∣ + L|gM – g|.

Now, noting that

g – gM =
∞∑

j=M+

M∑

i=

ci,jφ
�
i (x)Tτ

j (t) +
∞∑

j=

∞∑

i=M+

ci,jφ
�
i (x)Tτ

j (t),

and based on Theorem , Lemmas  and  and the hypothesis of the theorem, we get the
desired result. �

Theorem  Let FM be the residual of equation (.), i.e.,

FM =
∣
∣
∣
∣
∂gM

∂t
+ κβ

∂βgM

∂|x|β – κγ

∂γ gM

∂|x|γ – f(x, t, gM)
∣
∣
∣
∣.

If f(x, t, z) satisfies the Lipschitz condition in the variable z, then we have the following
estimate:

FM � M–.

Proof The steps of the proof are similar to those followed in the proof of Theorem , but
based on Lemmas  and  instead of Lemmas  and . �

Now, the following theorem investigates the stability of the suggested double Tcheby-
shev expansion.

Theorem  Under the assumptions of Theorem , we have ‖gM+(x, t) – gM(x, t)‖ω � M–.

Proof We have

∥
∥gM+(x, t) – gM(x, t)

∥
∥

ω

=

∥
∥
∥
∥
∥

M∑

i=

ci,M+φ
�
M+(x)Tτ

j (t) +
M∑

j=

cM+,jφ
�
M+(x)Tτ

j (t) + cM+,M+φ
�
M+(x)Tτ

M+(t)

∥
∥
∥
∥
∥



ω

.

With the aid of the identity

∥
∥φi(x)T�

j (t)
∥
∥

ω
= hihj ≤ π,
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we get

∥
∥gM+(x, t) – gM(x, t)

∥
∥

ω
< π

( M∑

i=

c
i,M+ +

M∑

i=

c
M+,j + c

M+,M+

)

.

Now, based on the result of Theorem , and following [], and after some manipulations,
we get the desired result. �

6 Numerical results and comparisons
This section is devoted to presenting some numerical results obtained by the application
of the two proposed numerical methods. All the results are obtained using the software
Mathematica . The results are accompanied by a comparison with results from the liter-
ature, obtained by applying some other numerical techniques.

Example  Consider the following equation (see []):

∂u
∂t

= �(.)x.(
Dγ

x u
)
(x, t) – u + u + μ(x, t), (x, t) ∈ (, ) × (, τ ), (.)

where

μ(x, t) = e–t(–x + x – x + x – x + x – x), (.)

subject to the boundary conditions

u(, t) = , u(, t) = , t ∈ [, τ ],

and the initial condition

u(x, ) = 
(
x – x), x ∈ [, ],

where γ = ., such that the exact solution of (.) is u(x, t) = e–t(x – x). In [], the au-
thors assumed that the solution of (.) is given by uM(x, t) =

∑M
i= ai(t)P(α·β)

i (x). Then they
obtained a linear system of differential equations in the unknowns ai(t), and they solved it
using the finite difference method with step size τ . In Table  we list the maximum point-
wise error of Example , while in Table , we compare the best errors of Example . We
mention here that the computational complexity required to solve a linear system of differ-
ential equations of dimension  with step size 

 is much smaller than the computational
cost to solve a linear system of algebraic equations in the unknown expansion coefficients
cij of dimension . Our computational cost is of order 

 (M + ) ≈ ,, while their
computational cost is of order τM+ ln  ≈ ,,. Let EC and EPG denote, respec-
tively, the maximum pointwise errors resulting from the application of the two methods,
namely, the shifted Tchebyshev collocation method (SCCM) and the shifted Tchebyshev
Petrov-Galerkin method (SCPGM).

Example  Consider the following equation (see []):

∂u
∂t

+ v
∂u
∂x

= σ Dγ
x u + e–tx(v – x – x–γ

)
, (x, t) ∈ (, ) × (, τ ), (.)
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Table 1 Maximum pointwise error of Example 1

M γ EC EPG γ EC EPG γ EC EPG

4 1.5 2.1 · 10–4 8.5 · 10–5 1.8 6.2 · 10–4 3.4 · 10–5 1.9 2.7 · 10–4 8.6 · 10–5
5 3.8 · 10–6 5.2 · 10–7 5.4 · 10–6 3.6 · 10–7 9.3 · 10–6 8.1 · 10–7
6 3.3 · 10–8 2.7 · 10–9 3.9 · 10–8 1.9 · 10–9 6.1 · 10–8 9.7 · 10–9

Table 2 Comparison of best errors of Example 1

γ

1.8

Method in [14] (M = 6,τ = 1
300 ) 1.8 · 10–9

SCCM (M = 6) 3.9 · 10–8
SCPGM (M = 6) 1.9 · 10–9

Table 3 Comparison between best errors of Example 2

γ

1.2 1.4 1.6 1.8

Method in [19] (�x = 0.01) 0.5667 · 10–5 0.4444 · 10–5 0.3561 · 10–5 0.4848 · 10–5
SCCM (M = 14) 2.54 · 10–16 7.28 · 10–16 5.77 · 10–15 2.78 · 10–15
SCPGM (M = 14) 3.57 · 10–15 5.36 · 10–15 2.22 · 10–14 3.47 · 10–14

subject to the nonhomogeneous boundary conditions

u(, t) = , u(, t) = e–t , t ∈ [, τ ],

where v = ., σ = �(–γ )
 , and the initial condition

u(x, ) = x, x ∈ [, ].

The exact solution of (.) is u(x, t) = e–tx. In Table  we compare our results with the
results obtained in [].

From the results in Table , we conclude that our spectral method is more accurate than
the fractional difference method used in [].

Example  Consider the space fractional diffusion problem []

∂u
∂t

= A
∂σ u
∂|x|σ + B

∂γ u
∂|x|γ + f (x, t),

γ ∈ (, ], σ ∈ (, ], (x, t) ∈ (, ) × (, τ ),
(.)

subject to the homogeneous boundary conditions

u(, t) = u(, t) = , t ∈ [, τ ],

and the initial condition

u(x, ) = , x ∈ [, ],
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Table 4 Maximum pointwise error of Example 3 (M = 7)

(γ , σ ) EC EPG (γ , σ ) EC EPG (γ , σ ) EC EPG

(1.4, 0.2) 3.7 · 10–9 4.2 · 10–9 (1.5, 0.6) 5.7 · 10–9 8.2 · 10–9 (1.7, 0.4) 6.1 · 10–9 8.4 · 10–9

Table 5 Comparison between different errors of Example 3 (t = 2)

x EC (M = 7) EPG (M = 7) [14] (M = 7, τ = 0.002)

0.1 1.7 · 10–9 7.5 · 10–9 0.94 · 10–7
0.3 4.5 · 10–9 5.9 · 10–9 5.48 · 10–7
0.5 3.8 · 10–9 6.2 · 10–9 7.02 · 10–7
0.7 5.4 · 10–9 1.4 · 10–9 2.89 · 10–6
0.9 1.88 · 10–9 7.2 · 10–9 6.06 · 10–6

where f (x, t) is chosen such that the exact solution of equation (.) is u(x, t) =
tγ eσ tx( – x). We take A = B = . We apply SCCM and SCPGM with M = . In Table ,
we list the maximum pointwise error for different values of σ and γ , while in Table ,
we compare our results with those obtained by the method developed in [] for the case
corresponding to σ = ., γ = ., and α = β = .

Example  Consider the following Riesz fractional reaction dispersion equation [, ]:

∂u
∂t

+ u =
∂αu
∂|x|α + f (x, t),

α ∈ (, ), (x, t) ∈ (,�) × (, τ ),
(.)

subject to the boundary conditions

u(, t) = u(�, t) = , t ∈ [, τ ],

and the initial condition

u(x, ) = x(� – x), x ∈ [,�],

where

f (x, t) =
x–ν (�(ν – )(ν – ) + �(ν – )x + x) + (� – x)–ν (�(ν – )ν – �νx + x)

cos( π
 ν)�( – ν)

e–t .

We apply the Petrov-Galerkin Tchebyshev collocation method (PGCCM) to equation
(.). In Table , we compare our results with the results obtained by [] and []. The
results in this table demonstrate that our method is more accurate than the methods de-
veloped in [] and [].

Example  Consider the Riesz space fractional diffusion problem

∂u
∂t

= –
∂βu
∂|x|β +

∂γ u
∂|x|γ + f (x, t),

γ ∈ (, ], β ∈ (, ], (x, t) ∈ (, ) × (, τ ),
(.)
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Table 6 Comparison between different errors of Example 4 for the case M = 9

x PGCCM [20] [21]

ν = 1.2 ν = 1.5 ν = 1.8 ν = 1.2 ν = 1.5 ν = 1.8 ν = 1.2 ν = 1.5 ν = 1.8

0.2 1 · 10–12 2 · 10–12 1 · 10–12 2 · 10–12 4 · 10–11 4 · 10–11 2 · 10–3 1 · 10–3 7 · 10–4
0.4 3 · 10–12 5 · 10–12 1 · 10–12 1 · 10–10 9 · 10–11 1 · 10–10 1 · 10–3 1 · 10–3 6 · 10–4
0.6 4 · 10–12 6 · 10–12 1 · 10–12 2 · 10–10 2 · 10–10 1 · 10–10 9 · 10–4 7 · 10–4 4 · 10–4
0.8 2 · 10–12 1 · 10–12 2 · 10–12 1 · 10–10 2 · 10–10 2 · 10–10 8 · 10–4 6 · 10–4 3 · 10–4
1.0 7 · 10–12 3 · 10–12 2 · 10–12 2 · 10–10 2 · 10–10 2 · 10–10 7 · 10–4 6 · 10–4 3 · 10–4
1.2 4 · 10–12 2 · 10–12 2 · 10–12 2 · 10–10 2 · 10–10 3 · 10–10 8 · 10–4 6 · 10–4 3 · 10–4
1.4 2 · 10–12 3 · 10–12 2 · 10–12 2 · 10–10 2 · 10–10 2 · 10–10 9 · 10–4 7 · 10–4 4 · 10–4
1.6 3 · 10–12 3 · 10–12 1 · 10–12 5 · 10–11 1 · 10–10 6 · 10–11 1 · 10–3 1 · 10–3 6 · 10–4
1.8 5 · 10–12 4 · 10–12 3 · 10–12 3 · 10–11 4 · 10–11 3 · 10–11 2 · 10–3 1 · 10–3 7 · 10–4
Max 7 · 10–12 6 · 10–12 3 · 10–12 2 · 10–10 2 · 10–10 3 · 10–10 - - -

Table 7 Pointwise error of Example 5 for the case M = 14 at t = 0.3

x β = 0.7, γ = 1.7 β = 0.8, γ = 1.8 β = 0.9, γ = 1.9

0.0 0 0 0
0.2 2.2 · 10–12 7.8 · 10–13 3.5 · 10–15
0.4 2.3 · 10–12 2.5 · 10–13 5.7 · 10–15
0.6 4.7 · 10–12 3.1 · 10–13 7.4 · 10–15
0.8 4.1 · 10–12 2.4 · 10–13 4.2 · 10–15
1.0 0 0 0

subject to the boundary conditions

u(, t) = e–t , u(, t) = e–t , t ∈ [, τ ],

and the initial condition

u(x, ) = x + , x ∈ [, ],

where f (x, t) is chosen such that the exact solution of equation (.) is u(x, t) = (x+)
et . We

apply the SCPGM with M = . In Table , we list the pointwise error for different values
of β and γ .

7 Concluding remarks
FADEs are used in groundwater hydrology to model the transport of passive tracers car-
ried by fluid flow in a porous medium. In this research article, two efficient spectral meth-
ods are presented and analyzed to solve two kinds of space fractional linear advection-
dispersion problems. The spectral collocation and Petrov-Galerkin methods are employed
to obtain semi-analytic solutions for the FADE. Efficient and highly accurate solutions are
obtained with a small number of retained modes.
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