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Abstract
In this paper, we prove uniform optimal-order error estimates for
characteristics-mixed finite element methods for two-dimensional
convection-dominated diffusion equations. The generic constants in the error
estimates do not explicitly depend on the scaling diffusion parameter ε, but depend
linearly on certain Sobolev norms of the true solution. Combining the estimates with
the stability estimates of the true solution, we prove that these constants depend
only on the initial and the right-hand side data. Numerical experiments are presented
to confirm our theoretical findings.
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1 Introduction
The characteristics-mixed finite element method is an efficient numerical scheme fre-
quently used to solve the two-dimensional advection-dominated transport problem and
tends to generate accurate numerical solutions for both the concentration and the flux if
large time steps are used. Much research has been conducted on the error estimates of the
characteristics-mixed finite element method in the context of linear convection-diffusion
equations [–] or coupled systems for flow and transport in porous media [–]. Nu-
merical examples suggest this kind of methods is effective and efficient. In particular, the
characteristics-mixed finite element methods proposed in [, , ] are mass-conservative,
which is crucial in the practical applications. However, owing to the use of mixed elliptic
projections whose estimates depend inversely on the diffusion coefficient ε, the corre-
sponding error estimates derived for these methods should also depend on the inverse of
ε and could blow up when ε approaches zero.

In order to overcome these difficulties, in this article, enlightened by the ideas in [–]
for the Eulerian-Lagrangian localized adjoint method and the modified method of charac-
teristics, we use an interpolation operator and Raviart-Thomas projection to replace the
mixed elliptic projections and prove the uniform error estimates for characteristics-mixed
finite element schemes for time dependent convection-diffusion equations with a periodic
boundary condition. In these estimates, the generic constants depend linearly on certain
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Sobolev norms of the true solution but not explicitly on ε. Moreover, we take advantage of
the stability estimates of the true solution and we prove the constants in these estimates
depend only on certain Sobolev norms of the initial and the right-hand side data.

This article is organized as follows. In Section , we revisit the characteristics-mixed
finite element scheme. In Section , we derive the uniform error estimates for the low-
est Raviart-Thomas rectangle mixed finite element. In Section , combining the stability
estimates of the true solution, we prove the constants depend only on the initial and the
right-hand side data. In Section , we conduct the numerical experiments to verify our
theoretical results. In Section , we summarize our main results and present the future
work.

2 Characteristics-mixed finite element scheme
We consider the following two-dimensional convection-diffusion equation:

(a)
∂c
∂t

+ u(x, t) · ∇c – ε∇ · (D(x, t)∇c
)

= f (x, t), (x, t) ∈ � × (, T],

(b) c(x, ) = c(x), x ∈ �,
(.)

with a periodic boundary condition [, , ]. Here x = (x, y) and � = [a, a] × [b, b] is a
rectangular domain, ∂� represents the boundary of �. u(x, t) = (u(x, t), u(x, t))′ accounts
for the velocity of the flow, where (, . . . , )′ denotes the transpose of a vector. The parameter
 < ε �  characterizes the advection-dominance of problem (.). f represents a source
term, c is the initial concentration and c is the ε-dependent unknown function. D denotes
the diffusive coefficient tensor and satisfies αχ ′χ ≤ χ ′Dχ ≤ βχ ′χ and αχ

′χ ≤ χ ′D–χ ≤
βχ

′χ for any χ = (χ,χ)′ ∈ R, where α, α, β and β >  are four positive constants.
Let Hs(�) denote the usual Sobolev space, provided the norm ‖·‖s, for s ≥ . When s = ,

we use ‖ · ‖ to denote the corresponding L-norm. Furthermore, for any χ ∈ (L(�)), we
define the space L

ε(�) = {χ : ε– 
 χ ∈ (L(�))}, with the norm ‖χ‖L

ε (�) = ε– 
 ‖χ‖. For any

Banach space X, we introduce the following spaces that incorporate time dependence []:

W k
p (t, t; X) =

{
v :

∥∥
∥∥
∂ lv
∂tl (·, t)

∥∥
∥∥

X
∈ Lp(t, t),  ≤ l ≤ k,  ≤ p ≤ ∞

}
,

‖v‖W k
p (t,t;X) =

{∑k
l=(

∫ t
t

‖ ∂ lv
∂tl (·, t)‖p

X dt)

p ,  ≤ p < ∞,

max≤l≤k ess supt∈(t,t) ‖ ∂ lv
∂tl (·, t)‖X , p = ∞.

To derive the characteristics-mixed variational formulation for problem (.), we let
ψ(x, t) = ( + |u(x, t)|) 

 = ( + u
 (x, t) + u

(x, t)) 
 , and let the characteristic direction asso-

ciated with the operator ct + u(x, t) · ∇c be denoted by τ (x, t), so the total derivative along
τ is

∂

∂τ (x, t)
=


ψ(x, t)

∂

∂t
+

u(x, t)
ψ(x, t)

· ∇

=


ψ(x, t)
∂

∂t
+

u(x, t)
ψ(x, t)

∂

∂x
+

u(x, t)
ψ(x, t)

∂

∂y
,

therefore (.a) can be written in the following form:

ψ
∂c
∂τ

– ε∇ · (D∇c) = f , (x, t) ∈ � × [, T].
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We define the space H = {χ : χ ∈ (L(�)),∇ · χ ∈ L(�)} and let z(x, t) = –εD(x, t)∇c.
Then the mixed variational formulation corresponding to (.) is to find (z, c) : (, T] →
H × L(�) such that

(a)
(

ψ
∂c
∂τ

, v
)

+ (∇ · z, v) = (f , v), v ∈ L(�),

(b)
(
D–z,χ

)
– ε(c,∇ · χ ) = , χ ∈ H,

(c) c(x, ) = c(x), x ∈ �.

(.)

Take notice of the positive definiteness of D–. We use the Brezzi theorem to obtain the
existence and uniqueness of solutions of system (.).

Now we define a uniform rectangular partition of � denoted by Th: xi = a + i
x,
i = , , . . . , I , yj = b + j
y, j = , , . . . , J . Here 
x = (a – a)/I , 
y = (b – b)/J . For
any �ij ∈ Th, let �ij = (xi–, xi) × (yj–, yj) and h =

√
(
x) + (
y), xi– 


= (xi– + xi)/,

yj– 


= (yj– + yj)/.
In this paper, we use the following lowest Raviart-Thomas rectangle mixed finite element

spaces []:

Hh =
{
χ = (χ,χ)′ ∈ H : χ|�ij = c

ij + c
ijx and χ|�ij = c

ij + c
ijy,�ij ∈ Th

}
,

Vh =
{

v ∈ L(�) : v|�ij = c
ij ∈Q(�ij),�ij ∈ Th

}
,

where Qk(�ij) (k ≥ ) denotes the space of polynomials of a degree less than or equal to k
in each space direction and cl

ij (l = , , , , ) are constants.
To define the discrete scheme for problem (.), firstly, we use a uniform partition to

divide the interval [, T]: tn = n
t,  ≤ n ≤ N , where 
t = T/N . Based on this partition,
we define a discrete norm as follows:

|||χ |||L(,T ;L
ε (�)) =

( N∑

n=


t
∥
∥χ

(
tn)∥∥

L
ε

) 


. (.)

Next, we consider a time step 
t >  and approximate the solution at times tn = n
t.
The characteristics derivative is approximated by a backward difference quotient along
the approximate characteristic τ in the time stepping procedure [].

Let

x̄ = (x̄, ȳ) = x – u
(
x, tn)
t

=
(
x – u

(
x, tn)
t, y – u

(
x, tn)
t

)
,

and note that

ψn ∂cn

∂τ
≈ ψn c(x, tn) – c(x̄, tn–)

√|(x – x̄)| + (tn – tn–)

=
c(x, tn) – c(x̄, tn–)


t
.

For simplicity, we use cn and c̄n– to replace c(x, tn) and c(x̄, tn–), respectively.
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So the characteristics-mixed finite element scheme is the determination of the map
(zh, ch) : {t, t, . . . , tN } → Hh × Vh satisfying

(a)
(

cn
h – c̄n–

h

t

, vh

)
+

(∇ · zn
h, vh

)
=

(
f n, vh

)
, vh ∈ Vh,  ≤ n ≤ N ,

(b)
(
D–

n zn
h,χh

)
– ε

(
cn

h,∇ · χh
)

= , χh ∈ Hh,  ≤ n ≤ N ,

(c) ch(x, ) = ch(x), x ∈ �.

(.)

The following theorem gives the existence and uniqueness of the solution of the discrete
scheme (.).

Theorem . (see Theorem . of []) If the coefficient D(x, t) is uniformly positive definite,
then there exists a unique solution of (.).

3 Uniform error estimates for the discrete scheme
In this section, we derive the uniform error estimates for the lowest Raviart-Thomas rect-
angle mixed finite element for problem (.) enclosed with a periodic boundary condition.
In order to achieve this goal, we introduce the following projections at first:

We define Rhv ∈ Q(�ij) to be the piecewise constant interpolation for any v ∈ C(�ij),
i.e.

Rhv(x, y) = v(xi– 


, yj– 


). (.)

Let �h be the Raviart-Thomas projection (see []) satisfying

(∇ · (χ – �hχ ), vh
)

= , vh ∈ Vh, (.)

and

‖χ – �hχ‖ ≤ Qh‖χ‖. (.)

Let η = z –�hz, ξh = �hz – zh, ρ = c – Rhc and eh = Rhc – ch. Then the following estimates
are well known for k = ,  (see [, ]):

‖ρ‖L∞(Hk (�)) ≤ Qh–k‖c‖L∞(H(�)), (.)

‖vh‖ ≤ Qh–‖vh‖, vh ∈P, (.)

where all constants Q are independent of h and ε. Moreover, we denote by Pk the space
of polynomials of a degree less than or equal to k (k ≥ ).

Combining (.) with the assumption z = –ε∇c, we have

‖η‖L∞(L(�)) ≤ εQh‖c‖L∞(H(�)). (.)

With the help of these preliminary results we are in a position to prove the uniform error
estimates for ‖c – ch‖L∞(L) and |||z – zh|||L(L

ε ). By (.), (.) and (.), we obtain the error
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equations in the following form:

(a)
(
D–

n ξn
h,χh

)
– ε

(
en

h,∇ · χh
)

= ε
(
ρn,∇ · χh

)
–

(
D–

n ηn,χh
)
, χh ∈ Hh,

(b)
(

en
h – ēn–

h

t

, vh

)
+

(∇ · ξn
h, vh

)

=
(

cn – c̄n–


t
– ψn ∂cn

∂τ
, vh

)
–

(
ρn – ρ̄n–


t
, vh

)
, vh ∈ Vh.

(.)

We choose χh = ξn
h and vh = en

h in (.a) and (.b), respectively. We multiply (.b) by
ε and add (.a) and (.b) together to yield

(
D–

n ξn
h, ξn

h
)

+ ε

(
en

h,
en

h – ēn–
h


t

)

= ε

(
en

h,
cn – c̄n–


t
– ψn ∂cn

∂τ

)
– ε

(
en

h,
ρn – ρ̄n–


t

)

+ ε
(
ρn,∇ · ξn

h
)

–
(
D–

n ηn, ξn
h
)
. (.)

By the results of [], we get

∥∥ēn–
h

∥∥ ≤ ( + Q
t)
∥∥en–

h
∥∥. (.)

Combining (.), the left-hand side of (.) is bounded by

(
D–

n ξn
h, ξn

h
)

+ ε

(
en

h,
en

h – ēn–
h


t

)

≥ ε


t
((

en
h, en

h
)

–
(
ēn–

h , ēn–
h

))
+ α

∥∥ξn
h
∥∥

≥ ε


t
(∥∥en

h
∥
∥ – ( + Q
t)

∥
∥en–

h
∥
∥) + α

∥
∥ξn

h
∥
∥, (.)

where we use the following inequality in the first step:



(
x – y) ≤ 


(
x – y) +




(x – y) = (x – y)x, for any x, y ∈ R.

We plug (.) into (.) and use triangle inequalities to obtain

ε


t
(∥∥en

h
∥
∥ – ( + Q
t)

∥
∥en–

h
∥
∥) + α

∥
∥ξn

h
∥
∥

≤
∣∣
∣∣ε

(
en

h,
cn – c̄n–


t
– ψn ∂cn

∂τ

)∣∣
∣∣ +

∣
∣ε

(
ρn,∇ · ξn

h
)∣∣

+
∣∣
∣∣ε

(
en

h,
ρn – ρ̄n–


t

)∣∣
∣∣ +

∣
∣(D–

n ηn, ξn
h
)∣∣. (.)
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Next we begin to estimate the right-hand side of (.) term by term. The first and fourth
terms in (.) are bounded directly by Hölder’s inequality and the results derived in []:

∣∣
∣∣ε

(
en

h,
cn – cn–


t
– ψn ∂cn

∂τ

)∣∣
∣∣

≤ εQ
∥∥
∥∥

∂c
∂τ 

∥∥
∥∥



L(�×[tn–,tn])

t +

ε


∥
∥en

h
∥
∥, (.)

∣
∣(D–

n ηn, ξn
h
)∣∣ ≤ Q

∥
∥ηn∥∥ +

α


∥
∥ξn

h
∥
∥. (.)

Due to the discontinuity of en
h and the influence of ε in the third term on the right-hand

side of (.), we are unable to employ either the H–-duality in [] or the method in [] to
bound this term. Fortunately, Chen et al. proposed an effective method to overcome these
difficulties. In Lemma . of [], an H-function ζ n

h was found to approximate en
h and the

error estimate of ζ n
h – en

h in the L(�)-norm was derived. We now introduce this result by
the following lemma.

Lemma . (see []) If en
h satisfies

(
D–

n ξn
h,χh

)
– ε

(
en

h,∇ · χh
)

= ε
(
ρn,∇ · χh

)
–

(
D–

n ηn,χh
)
, (.)

then there exists a function ζ n
h ∈ H(�) and some constant Q independent of h, n and ε,

such that

∥
∥ζ n

h
∥
∥

 ≤ Q
∥
∥en

h
∥
∥, (.)

∥
∥ζ n

h – en
h
∥
∥ ≤ Qh

(∥∥en
h
∥
∥ + h‖c‖L∞(H)

)
. (.)

Based on Lemma ., we set out to estimate the third term. We rewrite ρn – ρ̄n– as the
sum (ρn – ρn–) + (ρn– – ρ̄n–) and apply the triangle inequalities to get

ε

∣
∣∣∣

(
en

h,
ρn – ρ̄n–


t

)∣
∣∣∣ ≤ ε

∣
∣∣∣

(
ρn – ρn–


t
, en

h

)∣
∣∣∣ + ε

∣
∣∣∣

(
ρn– – ρn–


t
, en

h

)∣
∣∣∣

≤ ε



∥∥
∥∥
ρn – ρn–


t

∥∥
∥∥



+
ε


∥
∥en

h
∥
∥

+ ε

∣∣
∣∣

(
ρn– – ρn–


t
, ζ n

h

)∣∣
∣∣ + ε

∣∣
∣∣

(
ρn– – ρn–


t
, ζ n

h – en
h

)∣∣
∣∣

≤ Qεh


t

∫ tn

tn–
‖ct‖

 dt + Qε
∥∥en

h
∥∥

+
Q

t

∥
∥ρn– – ρ̄n–∥∥

–

∥
∥en

h
∥
∥

+
Qh

t

(∥∥en
h
∥
∥ + h‖c‖L∞(H)

)∥∥ρn– – ρ̄n–∥∥. (.)

Following [], we have

∥∥ρn– – ρ̄n–∥∥
– ≤ Q

∥∥ρn–∥∥
t and
∥∥ρn– – ρ̄n–∥∥ ≤ Q

∥∥ρn–∥∥. (.)
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We take these two estimates in (.) and suppose h = O(
t) to yield

ε

∣
∣∣
∣

(
en

h,
ρn – ρ̄n–


t

)∣
∣∣
∣ ≤ Q

{
εh


t

∫ tn

tn–
‖ct‖

 dt + ε
∥∥ρn–∥∥∥∥en

h
∥∥

+ ε
h

t

∥∥ρn–∥∥(∥∥en
h
∥∥ + h‖c‖L∞(H)

)
+ ε

∥∥en
h
∥∥

}

≤ Q
{

εh


t

∫ tn

tn–

∥
∥ct

∥
∥

 dt + ε
∥
∥en

h
∥
∥

+ εh
∥∥en

h
∥∥‖c‖L∞(H) + εh‖c‖

L∞(H)

}

≤ Qεh
(



t

∫ tn

tn–
‖ct‖

 dt + ‖c‖
L∞(H)

)
+ Qε

∥
∥en

h
∥
∥. (.)

The second term in (.), resulting from the replacement of the mixed elliptic pro-
jection by the interpolation operator, cannot be estimated straightforwardly by Hölder’s
inequality, (.) or the inverse inequality (.). However, a straight estimate would bring
about a suboptimal-order estimate owing to the appearance of ∇ · ξn

h . Hence, this term
needs to be re-estimated by some new techniques.

In order to bound the second term, we use Taylor’s expansion to prove Lemma ., which
plays an important role in raising the convergence rate.

Lemma . Let Rh be the piecewise constant interpolation of v ∈ H(�). Then the following
estimate holds:

(v – Rhv, w) ≤ Qh‖v‖‖w‖, w ∈ Vh. (.)

Here Q is a constant independent of h.

Proof We sum the left-hand side of (.) by parts

(v – Rhv, w) = –
∑

i,j

∫

�ij

(Rh – I)v(x, y)w dx dy. (.)

By Taylor’s expansion, we have the following expression for v ∈ H(�ij):

(Rh – I)v(x, y)|�ij =
∫ xi– 



x

∂v
∂γ

(γ, y) dγ +
∫ yj– 



y

∂v
∂γ

(x,γ) dγ

+
∫ xi– 



x

∫ yj– 


y

∂v
∂γ∂γ

(γ,γ) dγ dγ. (.)

We use (.) to replace (Rh – I)v(x, y) in (.), and we can get

∫

�ij

(Rh – I)v(x, y)w dx dy

=
∫

�ij

w
∫ xi– 



x

∂v
∂γ

(γ, y) dγ dx dy
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+
∫

�ij

w
∫ yj– 



y

∂v
∂γ

(x,γ) dγ dx dy

+
∫

�ij

w
∫ xi– 



x

∫ yj– 


y

∂v
∂γ∂γ

(γ,γ) dγ dγ dx dy. (.)

We estimate the third term at first, and use Hölder’s inequality to obtain

∫

�ij

w
∫ xi– 



x

∫ yj– 


y

∂v
∂γ∂γ

(γ,γ) dγ dγ dx dy ≤ Qh‖w‖�ij‖v‖,�ij . (.)

We need only to bound the first term on the right-hand side, since the second one can be
bounded by symmetry. Note that

∫ xi
xi–

(x – xi– 


) dx = . We have

∣
∣∣∣

∫

�ij

w
∫ xi– 



x

∂v
∂γ

(γ, y) dγ dx dy
∣
∣∣∣

=
∣∣
∣∣

∫

�ij

w
∫ xi– 



x

∫ xi– 


γ

vzz(z, y) dz dγ dx dy
∣∣
∣∣

≤ Qh‖w‖�ij‖v‖,�ij . (.)

Combining these estimates, we obtain the lemma. �

Now we use Lemma . and the inverse inequality (.) to bound the second term on
the right-hand side of (.) by

∣∣ε
(
ρn,∇ · ξn

h
)∣∣ ≤ Qεh∥∥cn∥∥



∥∥∇ · ξn
h
∥∥ ≤ Qεh‖c‖L∞(H)

∥∥ξn
h
∥∥

≤ Qεh‖c‖
L∞(H) +

α


∥∥ξn

h
∥∥

≤ Qεh‖c‖
L∞(H) +

α


∥
∥ξn

h
∥
∥, (.)

where the relationship  < ε < ε �  has been used.
Putting (.), (.), (.) and (.) into (.) and rearranging, we have

ε


t
(∥∥en

h
∥
∥ –

∥
∥en–

h
∥
∥) +

α


∥
∥ξn

h
∥
∥

≤ Q
{∥
∥ηn∥∥ + εh‖c‖

L∞(H) + ε
t
∫ tn

tn–

∥∥
∥∥

∂c
∂τ 

∥∥
∥∥



dt

+ εh
(



t

∫ tn

tn–
‖ct‖

 dt + ‖c‖
L∞(H)

)}
+ εQ

∥∥en
h
∥∥ + εQ

∥∥en–
h

∥∥.

Multiplying 
t
ε

with the above inequality, summing from n =  to n = N and selecting the
initial as ch() = Rhc(), we obtain

∥∥eN
h
∥∥ + ε–α
t

N∑

n=

∥∥ξn
h
∥∥

+ εh
(∫ T


‖ct‖

 dt + ‖c‖
L∞(H)

)
+ Qε
t

N∑

n=

∥∥en
h
∥∥



Gao and Xie Advances in Difference Equations  (2017) 2017:260 Page 9 of 14

≤ Q

{

ε–
t
N∑

n=

∥
∥ηn∥∥ + h‖c‖

L∞(H) + (
t)
∫ T



∥∥
∥∥

∂c
∂τ 

∥∥
∥∥



dt

+ h
(∫ T


‖ct‖

 dt + ‖c‖
L∞(H)

)}

+ Q
t
N∑

n=

∥∥en
h
∥∥

≤ Q
{

h(‖c‖
L∞(H) + ‖ct‖

L(H)
)

+ (
t)
∥
∥∥∥

∂c
∂τ 

∥
∥∥∥



L(L)

}
.

By the Gronwall lemma, for sufficiently small 
t, we have

‖eh‖L∞(L) + |||ξh|||L(L
ε )

≤ Q
{

t

∥∥
∥∥

∂c
∂τ 

∥∥
∥∥

L(L)
+ h

(‖c‖L∞(H) + ‖ct‖L(H)
)}

. (.)

Combining the estimates for ρ and η in (.) and (.) with (.), assuming h = O(
t)
and applying triangle inequalities, we obtain the following theorem.

Theorem . Let (z, c) and (zh, ch) be the solutions of (.) and (.), respectively.
Then the following ε-uniform estimate holds for h = O(
t) and c ∈ L∞(, T ; H(�)) ∩
H(, T ; H(�)):

‖c – ch‖L∞(L) + |||z – zh|||L(L
ε )

≤ Q
{

t

∥
∥∥
∥

∂c
∂τ 

∥
∥∥
∥

L(L)
+ h

(‖c‖L∞(H) + ‖ct‖L(H)
)
}

. (.)

Here the constant Q is independent of ε, h and 
t.

4 Error estimate based on the data
We have proved the uniform optimal-order error estimates for the lowest Raivart-Thomas
rectangle mixed finite element. In this section, we will restrict these estimates by the initial
c and the right-hand side data f .

Theorem . If D ∈ (W ,∞(, T ; W ,∞(�))), u ∈ (W ,∞(, T ; W ,∞(�))), f ∈ H(, T ;
H(�)) and c ∈ H(�), then the following error estimate holds:

‖c – ch‖L∞(L) + |||z – zh|||L(L
ε )

≤ Q
{

h
(‖c‖ + ‖f ‖L(H)

)
+ 
t

(‖c‖ + ‖f ‖H(H)
)}

. (.)

Here the constant Q is independent of ε, h and 
t.

Proof We need to restrict ‖c‖L∞(H), ‖c‖L(H) and ‖ ∂c
∂τ ‖L(L) by c and f . Firstly, we bound

‖c‖L∞(H). We integrate equation (.a) that is multiplied by c on � and combine Green’s
formula with the periodic boundary condition to yield




d
dt

‖c‖ + ε(D∇c,∇c) = (f , c) +


(∇ · u, c). (.)
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We note the boundedness of D, multiply (.) by  and integrate the resulting equation
from  to t to obtain

‖c‖ + αε

∫ t



∥
∥∇c(s)

∥
∥ ds ≤ ‖c‖ +

∫ t



∥
∥f (s)

∥
∥ ds

+
(
 + ‖u‖L∞(W ,∞)

)∫ t



∥∥c(s)
∥∥ ds. (.)

By the Gronwall lemma, we have

‖c‖
L∞(L) + ε‖∇c‖

L(L) ≤ Q
(‖c‖

 + ‖f ‖
L(L)

)
, (.)

where Q = 
{max ,α} .

We differentiate equation (.a) with respect to x and y, respectively, and we have

ctx + ux · ∇c + u · ∇cx – ε∇ · (Dx∇c) – ε∇ · (D∇cx) = fx (.)

and

cty + uy · ∇c + u · ∇cy – ε∇ · (Dy∇c) – ε∇ · (D∇cy) = fy. (.)

Multiplying (.) by cx and (.) by cy, integrating the resulting equations over � and
summing them, we derive




d
dt

‖∇c‖ + ε(D∇cx,∇cx) + ε(D∇cy,∇cy)

= (∇f ,∇c) – (∇u∇c,∇c) +


(∇ · u, (∇c)) – ε(Dx∇c,∇cx) – ε(Dy∇c,∇cy), (.)

where we use Green’s formula and the periodic boundary condition again. By Cauchy’s
inequality, we have




d
dt

‖∇c‖ + αε
(‖∇cx‖ + ‖∇cy‖)

≤ 

‖∇f ‖ +

(



+ ‖∇u‖L∞(L∞) +


‖∇ · u‖L∞(L∞)

+
‖Dx‖L∞(L∞) + ‖Dy‖L∞(L∞)

α

)
‖∇c‖

≤ 

‖∇f ‖ + Q‖∇c‖. (.)

Here Q = 
 + 

‖u‖L∞(W ,∞) + 
α
‖D‖

L∞(W ,∞).
We multiply the above inequality by , integrate it from  to t and use Gronwall’s lemma

to yield

‖∇c‖
L∞(L) + αε

(‖∇cx‖
L(L) + ‖∇cy‖

L(L)
) ≤ ‖c‖

 + ‖f ‖
L(H). (.)
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We use the same method to derive the following bounds:

αε
(‖∇cxx‖

L(L) + ‖∇cxy‖
L(L) + ‖∇cyy‖

L(L)
)

+
∥
∥∇(∇c)

∥
∥

L∞(L) ≤ Q
(‖c‖

 + ‖f ‖
L(H)

)
, (.)

αε
(‖∇cxxx‖

L(L) + ‖∇cxxy‖
L(L) + ‖∇cxyy‖

L(L) + ‖∇cyyy‖
L(L)

)

+ |c|L∞(H) ≤ Q
(‖c‖

 + ‖f ‖
L(H)

)
. (.)

Here Q =  + ‖u‖L∞(W ,∞) +
‖D‖

L∞(W ,∞)
α

and Q =  + ( + Q)( 
 ‖u‖L∞(W ,∞) +


α

‖D‖
L∞(W ,∞)).

By the estimates (.), (.), (.) and the definitions of the H-norm and the H-norm,
we derive the two inequalities

‖c‖
L∞(H) = ‖c‖

L∞(L) + ‖∇c‖
L∞(L) +

∥∥∇(∇c)
∥∥

L∞(L)

≤ ( + Q + Q)
(‖c‖

 + ‖f ‖
L(H)

)
(.)

and

‖c‖
L∞(H) = ‖c‖

L∞(H) + |c|L∞(H)

≤ ( + Q + Q + Q)
(‖c‖

 + ‖f ‖
L(H)

)
. (.)

Therefore, we have

‖c‖L∞(H) ≤ Q
(‖c‖ + ‖f ‖L(H)

)
(.)

and

‖c‖L∞(H) ≤ Q
(‖c‖ + ‖f ‖L(H)

)
, (.)

where Q =
√

 + Q + Q and Q =
√

 + Q + Q + Q.
In order to bound ‖ct‖L(H), we use equation (.a) to express ct and apply the estimates

(.) and (.) to gain

‖ct‖L(H) =
∥∥f – u · ∇c + ε∇ · (D∇c)

∥∥
L(H)

≤ ‖f ‖L(H) + ‖u‖L∞(W ,∞)‖∇c‖L(H) + ε‖D‖L∞(W ,∞)‖∇c‖L(H)

+ ε‖D‖L∞(W ,∞)
(‖cxx‖L(H) + ‖cxy‖L(H) + ‖cyy‖L(H)

)

≤ ‖f ‖L(H) +
(‖u‖L∞(W ,∞) + ‖D‖L∞(W ,∞)

)‖c‖L∞(H)

+
Q

α
‖D‖L∞(W ,∞)

(‖c‖ + ‖f ‖L(H)
)

≤ Q
(‖c‖ + ‖f ‖L(H)

)
, (.)

where Q =  + Q‖u‖L∞(W ,∞) + (Q + Q
α

)‖D‖L∞(W ,∞). Similarly, we have

‖ct‖L(H) ≤ Q
(‖c‖ + ‖f ‖L(H)

)
. (.)
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Here Q =  + (Q + (+α)
α

√
Q + 

√
Q

α
)‖D‖L∞(W ,∞) + Q‖u‖L∞(W ,∞).

To prove the bound of ‖ ∂c
∂τ ‖L(L), we differentiate the governing equation in (.) with

respect to t and express ctt in terms of the spatial derivatives and combine (.) with
(.) to obtain

‖ctt‖L(L) =
∥∥ft – (u∇c)t – ε

(∇ · (D∇c)
)

t

∥∥
L(L)

≤ ‖ft‖L(L) + ‖u‖W ,∞(L∞)‖c‖H(H) + ‖D‖W ,∞(W ,∞)‖c‖H(H)

≤ Q
(‖c‖ + ‖f ‖H(H)

)
. (.)

Here Q =  + Q‖u‖W ,∞(L∞) + Q‖D‖W ,∞(W ,∞).
Note that ‖ ∂c

∂τ ‖L(L) ≤ Q‖ctt‖L(L), so combining (.) with (.) and (.), we ob-
tain (.). �

5 Numerical experiments
In this section, we carry out numerical experiments to verify our theoretical results. The
initial data are chosen as

� = [–., .] × [–., .], T =
π


, u = (–y, x)′, D = ,

and the exact solution is given by

c(x, y, t) =
.

. + εt

× exp

{
–

(x cos(t) + y sin(t) + .) + (–x sin(t) + y cos(t))

. + εt

}
. (.)

Let t = . Then we get the initial value

c(x, y) = exp

{
–

(x + .) + y

.

}
. (.)

By inserting (.) into equation (.a), we derive the source term f = .
In our numerical convergence analysis, we use the lowest Raviart-Thomas rectangle

mixed finite element space to fit the convergence rate

∥
∥c(x, T) – ch(x, T)

∥
∥ ≤ Q̄(h + 
t),

∣
∣
∣
∣
∣
∣z(x, T) – zh(x, T)

∣
∣
∣
∣
∣
∣

L
ε
≤ Q̄(h + 
t).

Here we choose h = 
t and ε = ., ., ., .. The results are pre-
sented in Tables - which show that we nearly obtain the same convergence rates and
constants for different ε. This suggests that our derived error estimates do not depend
explicitly on ε as predicted by Theorem .. Furthermore, these results show that the
characteristics-mixed finite element scheme possesses the first-order accuracy in space
and time as predicted by the theorem in Section .
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Table 1 The convergence rate for ‖c – ch‖ in the two-dimensional case

h = �t ‖c – ch‖
ε = 0.001 ε = 0.0005 ε = 0.0001 ε = 0.00005

1/16 0.0025 0.0025 0.0026 0.0026
1/32 0.0017 0.0017 0.0017 0.0017
1/48 8.8193e–04 8.6351e–04 8.6170e–04 8.6252e–04
1/64 6.7982e–04 6.5229e–04 6.4625e–04 6.4692e–04

Convergence rate 0.9512 Constant Q̄1 = 0.0205

Table 2 The convergence rate for ‖z – zh‖L2
ε

in the two-dimensional case

h = �t ‖z – zh‖L2
ε

ε = 0.001 ε = 0.0005 ε = 0.0001 ε = 0.00005

1/16 4.8981e–04 5.0423e–04 5.1575e–04 5.1719e–04
1/32 3.1965e–04 3.3192e–04 3.4191e–04 3.4317e–04
1/48 1.5467e–04 1.6197e–04 1.6828e–04 1.6911e–04
1/64 1.1503e–04 1.2055e–04 1.2548e–04 1.2614e–04

Convergence rate 1.0526 Constant Q̄2 = 0.0041

6 Concluding remarks
In this paper, we use the lowest Raviart-Thomas rectangle mixed finite element to approx-
imate problem (.) and derive the uniform error estimates for the characteristics-mixed
finite element schemes. Furthermore, combining the stability estimates of the true solu-
tion, we prove the generic constants depend only on the initial and right-hand side data.
In the end, we conduct numerical experiments to certify our theoretical results. However,
we see that the analysis in this paper is carried out on a rectangular domain with a uniform
rectangular partition, the extension to the irregular region with a triangulation is open for
future work.
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