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Abstract
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1 Introduction
Let A be a Banach ∗-algebra. A map δ : A→A is called a derivation on A if it satisfies the
following property:

δ(λa + b) = λδ(a) + δ(b), (.)

δ(ab) = δ(a)b + aδ(b) (.)

for all a, b ∈ A and λ ∈ C. Equation (.) is called the derivation property. If δ satisfies
the additional condition δ(a∗) = δ(a)∗ for all a ∈ A, then δ is called a ∗-derivation on A.
Sakai showed that if A is a C∗-algebra, then the ∗-derivation δ is bounded. And also he
showed that δ(x) = adih(x) = i(hx – xh) for some self-adjoint element h in the enveloping
von Neumann algebra A′′ of the C∗-algebra A. If the self-adjoint element h is in the mul-
tiplier algebra M(A) of A, δ is called an inner ∗-derivation on A. Furthermore, if we put
Ut = expith for h in M(A) and t ∈ R, then Ut can be a unitary operator and generate a one-
parameter group of ∗-automorphisms on A. So bounded derivations of C∗-algebras have
deep relations with generators of C∗-dynamical systems. Besides these, since derivations
play an important role in the classifications of operator algebras, the theory of bounded
∗-derivations of C∗-algebras is very important in the theory of quantum mechanics and
operator algebras [–].

We can say that a mathematical property is stable if any mathematical object satisfying
a certain mathematical property approximately is near to the object exactly satisfying the
mathematical property. On the stability of the functional equation, Ulam was the first
beginner. He suggested the question ‘Under what condition is there an additive mapping
near an approximately additive mapping?’ in . Hyers [] gave an affirmative answer
for the problem of Ulam on the case of Banach spaces after one year. Since then, there
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have been a lot of results obtained related to the stability problems of various functional
equations (for instances, [–]). In particular, some of the important functional equations
are the following functional equations:

f (x + y) = f (x) + f (y), (.)

f (x + y) + f (x – y) = f (x) + f (y) (.)

which are called Cauchy additive functional equation and Cauchy quadratic functional
equation, respectively.

It is said that a mathematical property is superstable if every mathematical object sat-
isfying approximately the property is an exact object satisfying it. The superstability
phenomenon was first investigated by Baker, Lawrence and Zorzitto, etc. [–]. They
showed the superstability of the exponential functional equation from the vector space
to the set of real numbers. In the proof of the superstability of the exponential functional
equation, the multiplicative property of the norm was the necessary condition. We say that
when E is a normed algebra and ‖xy‖ = ‖x‖‖y‖ for all x, y ∈ E, the norm is multiplicative.

In this paper we define functional equations of a ∗-derivation and a quadratic
∗-derivation. And we show that the stability of ∗-derivations and ∗-quadratic derivations
on Banach ∗-algebras without the multiplicative property of the norm are superstable by
using the fixed point theorem.

In order to use the fixed point theory, we should introduce a fundamental result in the
fixed point theory. Let S be a set. A function d : S × S → [,∞] is called a generalized
metric on S if d satisfies

() d(x, y) =  if and only if x = y;
() d(x, y) = d(y, x) for all x, y ∈ S;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

Theorem . ([, ]) Let (S, d) be a complete generalized metric space, and let J : S → S
be a strictly contractive mapping with Lipschitz constant L < . Then, for each given element
x ∈ S, either

d
(
Jnx, Jn+x

)
= ∞

for all non-negative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n ≥ n;
() the sequence {Jnx} converges to a point y∗ in S;
() J(y∗) = y∗;
() y∗ is the unique fixed point of J in the set T = {y ∈ S | d(Jn x, y) < ∞};
() d(y, y∗) ≤ 

–L d(y, Jy) for all y ∈ T .

2 Superstability of derivations on Banach ∗-algebras
Let A denote a ∗-Banach algebra with the unit e in Section  and Section .

Theorem . Let ψ : A × A → [,∞) and ψ : A → [,∞) be functions. Suppose that
f : A→A is a mapping such that

∥∥f (λx + y) – λf (x) – f (y)
∥∥ ≤ ψ(x, y), (.)
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∥∥f (xy) – xf (y) – f (x)y
∥∥ ≤ ψ(x, y), (.)

∥
∥f

(
x∗) – f (x)∗

∥
∥ ≤ ψ(x) (.)

for all λ ∈ T and x, y ∈ A. If there exist a natural number s ∈ N and  < L <  such
that |s|–ψ(sx, sy) < Lψ(x, y), |s|–ψ(sx, y) < Lψ(x, y), |s|–ψ(x, sy) < Lψ(x, y), and
|s|–ψ(sx) < Lψ(x) for all x, y ∈A, then f is a ∗-derivation on A.

Proof If we put x = y and λ =  in (.), then we have

∥∥f (x) – f (x)
∥∥ ≤ ψ(x, x) (.)

for all x ∈A. We can see that

∥∥f (nx) – nf (x)
∥∥ ≤

n–∑

j=

ψ(jx, x) (.)

for all x, y ∈A and n ≥  by using the induction.
We put

�(x) =
s–∑

j=

ψ(jx, x)

for x ∈A. Then we have

∥
∥f (sx) – sf (x)

∥
∥ ≤ �(x). (.)

Let S be the set of all functions r : A → A. We define a function d : S × S → [,∞] as
follows:

d(u, v) = inf
{
α >  :

∥∥u(x) – v(x)
∥∥ ≤ α�(x),∀x ∈ A

}

for u, v ∈ S. We can easily show that (S, d) is a generalized complete metric space. Define
a function H : S → S by H(u)(x) = s–u(sx). If we put

d(u, v) = α(u, v ∈ S),

then we can have

∥
∥H(u)(x) – H(v)(x)

∥
∥ = |s|–∥∥u(sx) – v(sx)

∥
∥ ≤ α|s|–�(sx) ≤ Lα�(x).

It follows that for u, v ∈ S

d
(
H(u), H(v)

) ≤ Ld(u, v). (.)

Therefore H is a strictly contractive mapping on S with Lipschitz constant L. By (.),

∥∥(Hf )(x) – f (x)
∥∥ =

∥∥s–f (sx) – f (x)
∥∥ = |s|–∥∥f (sx) – sf (x)

∥∥ ≤ |s|–�(x).
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This means that d(H(f ), f ) ≤ /|s|. By Theorem ., H has a unique fixed point h : A→A
in the set

U =
{

u ∈ S : d
(
u, H(f )

)
< ∞}

.

We see that for each x ∈A

h(x) = lim
m→∞ Hm(

f (x)
)

= lim
m→∞ s–mf

(
smx

)
. (.)

From (.) we can have

∥∥h(λx + y) – λh(x) – h(y)
∥∥

= lim
n→∞|s|–n∥∥f

(
sn(λx + y)

)
– λf

(
snx

)
– f

(
sny

)∥∥

≤ lim
n→∞|s|–nψ

(
snx, sny

)

≤ lim
n→∞ Lnψ(x, y) = 

for all x, y ∈A and λ ∈ T. Next, let λ = λ + iλ ∈C, where λ,λ ∈R. Let μ = λ – [λ] and
μ = λ – [λ], where [λ] denotes the integer part of λ. One can represent μi as μi = λi,+λi,


such that λi,j ∈ T ( ≤ i, j ≤ ). Since we show that h(λx + y) = λh(x) + h(y) for λ ∈ T, we
can infer that

h(λx) = h(λx) + ih(λx)

=
(
[λ]h(x) + h(μx)

)
+ i

(
[λ]h(x) + h(μx)

)

=
(

[λ]h(x) +



h(λ,x + λ,x)
)

+ i
(

[λ]h(x) +



h(λ,x + λ,x)
)

=
(

[λ]h(x) +


λ,h(x) +



λ,h(x)

)
+ i

(
[λ]h(x) +



λ,h(x) +



λ,h(x)

)

= λh(x) + iλh(x)

= λh(x)

for all x ∈A and λ ∈C. So h is a C-linear map on A. For the involution of h, we can have

∥∥h
(
x∗) – h(x)∗

∥∥ = lim
n→∞|s|–n∥∥f

(
snx∗) – f

(
snx

)∗∥∥

≤ lim
n→∞|s|–nψ

(
snx

)

≤ lim
n→∞ Lnψ(x) = .

Next, we are going to prove the derivation property of h. Replacing x by snx and y by sny
in (.) and dividing by sn, we get

∥∥
∥∥

f (snxsny)
sn – x

f (sny)
sn –

f (snx)
sn y

∥∥
∥∥ ≤ 

|s|n ψ
(
snx, sny

) ≤ Lnψ(x, y).
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By taking n → ∞, we have

h(xy) = xh(y) + h(x)y (.)

for all x, y ∈A. It follows that h is a ∗-derivation on A. Next, if we replace x by snx in (.)
and divide by sn, we get

∥∥
∥∥

f (snxy)
sn – xf (y) –

f (snx)
sn y

∥∥
∥∥ ≤ 

|s|n ψ
(
snx, y

) ≤ Lnψ(x, y)

for all x, y ∈A and all n ∈N. By taking n → ∞, we have

h(xy) = xf (y) + h(x)y (.)

for all x, y ∈A. Fix m ∈N. And considering the following equations

xf
(
smy

)
= h

(
smxy

)
– h(x)smy

= smxf (y) (.)

for all x, y ∈A, we can get xf (y) = x f (smy)
sm for all x, y ∈A and each m ∈N. By taking m → ∞,

we have xf (y) = xh(y). If we put x = e, then h(y) = f (y) for all y ∈ A. So f is an exactly ∗-
derivation on A. �

3 Superstability of quadratic ∗-derivations on Banach ∗-algebras
Definition . A mapping δ : A → A is a ∗-quadratic derivation of A if a map δ satisfies
the following properties: for all a, b ∈A and λ ∈C,

() δ(a + b) + δ(a – b) – δ(a) – δ(b) = ;
() δ is quadratic homogeneous, that is, δ(λa) = λδ(a);
() δ(ab) = δ(a)b + aδ(b);
() δ(a∗) = δ(a)∗.

Theorem . Let ψ : A × A → [,∞) and ψ : A → [,∞) be functions. Suppose that
f : A→A is a mapping such that

∥∥f (x + y) + f (x – y) – f (x) – f (y)
∥∥ ≤ ψ(x, y), (.)

∥
∥f (xy) – xf (y) – f (x)y∥∥ ≤ ψ(x, y), (.)
∥
∥f (λx) – λf (x)

∥
∥ ≤ ψ(x), (.)

∥∥f
(
x∗) – f (x)∗

∥∥ ≤ ψ(x) (.)

for all λ ∈ C and x, y ∈ A. If there exist a natural number s ∈ N and  < L <  such
that –sψ(sx, sy) < Lψ(x, y), –sψ(sx, y) < Lψ(x, y), –sψ(x, sy) < Lψ(x, y), and
–sψ(sx) < Lψ(x) for all x, y ∈A, then f is a ∗-quadratic derivation on A.

Proof If we put x = y and λ =  in (.), then we have

∥∥f (x) – f (x)
∥∥ ≤ ψ(x, x), x ∈A.
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By induction on n, we can see that

∥
∥f

(
nx

)
– nf (x)

∥
∥ ≤

n–∑

i=

(n–i)ψ
(
ix, ix

)
(.)

for all x, y ∈A and n ≥ . For simplicity, if we put

�(x) =
s–∑

i=

(s–i)ψ
(
ix, ix

)
, (.)

then we have

∥∥f
(
sx

)
– sf (x)

∥∥ ≤ �(x).

Let S be the set of all functions u : A → A. We define a function d : S × S → [,∞] as
follows:

d(u, v) = inf
{
α >  :

∥
∥u(x) – v(x)

∥
∥ ≤ α�(x),∀x ∈A

}
.

We can easily show that (S, d) is a generalized complete metric space. Define a function
H : S → S by H(u)(x) = –su(sx). If we put d(u – v) = α for u, v ∈ S, then we can have

∥∥H(u)(x) – H(v)(x)
∥∥ = –s∥∥u

(
sx

)
– v

(
sx

)∥∥ ≤ α–s�
(
sx

) ≤ Lα�(x).

It follows that for u, v ∈ S

d
(
H(u), H(v)

) ≤ Ld(u, v). (.)

Hence H is a strictly contractive mapping on X with Lipschitz constant L. We have that
for x ∈A

∥∥(Hf )(x) – f (x)
∥∥ =

∥∥–sf
(
sx

)
– f (x)

∥∥ = –s∥∥f
(
s) – sf (x)

∥∥ ≤ –s�(x).

This means that d(H(f ), f ) ≤ /s. By Theorem ., H has a unique fixed point h : A→ A
in the set

U =
{

u ∈ X : d
(
u, H(f )

)
< ∞}

, (.)

and for each x ∈A

h(x) = lim
m→∞ Hm(

f (x)
)

= lim –smf
(
smx

)
. (.)

From (.), we can have

∥∥h(x + y) + h(x – y) – h(x) – h(y)
∥∥

= lim
n→∞ –sn∥∥f

(
sn(x + y) + f

(
sn(x – y)

)
– f

(
snx

)
– f

(
sny

)∥∥
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≤ lim
n→∞ –nsψ

(
nsx, nsy

)

≤ lim
n→∞ Lnψ(x, y) = 

for all x, y ∈A. So h is a quadratic map on A. Since we can have that

∥∥h(λx) – λh(x)
∥∥

= lim
n→∞ –ns∥∥f

(
ns(λx)

)
– λf

(
nsx

)∥∥

≤ lim
n→∞ –nsψ

(
nsx

)

≤ lim
n→∞ Lnψ(x) = ,

it follows that h is quadratic homogeneous.
Next, if we replace x by nsx in (.) and divide by –sn, then we get

∥
∥∥
∥

f (nsxy)
ns – xf (y) –

f (nsx)
ns y

∥
∥∥
∥ ≤ 

ns ψ
(
nsx, y

)

≤ Lnψ(x, y) (.)

for all x, y ∈A and all n ∈N. By taking n → ∞, we have

h(xy) = xf (y) + h(x)y (.)

for all x, y ∈A. Fix m ∈N. If we consider the following equations

xf
(
msy

)
= h

(
msxy

)
– h

(
msx

)
y

= msxf (y) + h
(
msx

)
y – h

(
msx

)
y

= msxf (y)

for all x, y ∈ A, then we have xf (y) = x f (msy)
ms for all x, y ∈ A and for each m ∈ N. Taking

m → ∞, we have xf (y) = xh(y). If we put x = e, then h(y) = f (y) for all y ∈ A. So f is a
∗-quadratic derivation on A. �

4 Derivations on C∗-ternary algebras
A C∗-ternary algebra is a complex Banach space A equipped with a ternary product
(x, y, z) �→ [x, y, z] of A into A satisfying the following properties:

() [λx + u, y, z] = λ[x, y, z] + [u, y, z] for all λ ∈C;
() [x,λy + u, z] = λ̄[x, y, z] + [x, u, z] for all λ ∈C;
() [x, y,λz + u] = λ[x, y, z] + [x, y, u] for all λ ∈C;
() [x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v];
() ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖;
() ‖[x, x, x]‖ = ‖x‖ (see [, ])

for x, y, z, u, v, w ∈ A. We say that a C∗-ternary algebra A has the unit e if there exists a
unique element e ∈ A such that x = [x, e, e] = [e, e, x] for all x ∈ A. Also we can define an
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involution ∗ on the C∗-ternary algebraAwith the unit e such as [e, x, e] = x∗ for each x ∈A.
A mapping δ : A→A is called a C∗-ternary derivation if it satisfies

δ
(
[x, y, z]

)
=

[
δ(x), y, z

]
+

[
x, δ(y), z

]
+

[
x, y, δ(z)

]
,

δ(λx + y) = λδ(x) + δ(y)

for all x, y, z ∈ A and λ ∈ C. In addition, if δ satisfies that δ([e, x, e]) = [e, δ(x), e] on the C∗-
ternary algebraAwith the unit e, then it is said that δ is an involutive C∗-ternary derivation
on A.

Theorem . Let A be a C∗-ternary algebra with the unit e. Let ψ : A → [,∞) and
ψ : A → [,∞) be functions. Suppose that f : A→A is a mapping such that

∥∥f (λx + y) – λf (x) – f (y)
∥∥ ≤ ψ(x, y), (.)

∥
∥f

(
[x, y, z]

)
–

[
f (x), y, z

]
–

[
x, f (y), z

]
–

[
x, y, f (z)

]∥∥ ≤ ψ(x, y, z), (.)
∥∥f

(
[e, y, e]

)
–

[
e, f (y), e

]∥∥ ≤ ψ(e, y, e) (.)

for all λ ∈ T. Also suppose that there exist a natural number s ∈ N and  < L <  such that
|s|–(i+j)ψ(six, sjy) < Li+jψ(x, y), |s|–(i+j+k)ψ(isx, sjy, skz) < Li+j+kψ(x, y, z) for all x, y, z ∈ A
and i, j, k = , . Then f is an involutive C∗-ternary derivation on A.

Proof If we put

�(x) =
s–∑

j=

ψ(jx, x)

for x ∈A, then we have

∥∥f (sx) – sf (x)
∥∥ ≤ �(x) (.)

similar to Theorem .. Let S be the set of all functions r : A → A. We define a function
d : S × S → [,∞] as follows:

d(u, v) = inf
{
α >  :

∥
∥u(x) – v(x)

∥
∥ ≤ α�(x),∀x ∈ A

}

for u, v ∈ S. We can easily show that (S, d) is a generalized complete metric space. Define
a function H : S → S by H(u)(x) = s–u(sx). When

d(u, v) = α(u, v ∈ S),

then we can have

∥∥H(u)(x) – H(v)(x)
∥∥ = |s|–∥∥u(sx) – v(sx)

∥∥ ≤ α|s|–�(sx) ≤ Lα�(x).

It follows that for u, v ∈ S

d
(
H(u), H(v)

) ≤ Ld(u, v). (.)
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Therefore, H is a strictly contractive mapping on S with Lipschitz constant L. By (.),

∥
∥(Hf )(x) – f (x)

∥
∥ =

∥
∥s–f (sx) – f (x)

∥
∥ = |s|–∥∥f (sx) – sf (x)

∥
∥ ≤ |s|–�(x).

This means that d(H(f ), f ) ≤ /|s|. By Theorem ., H has a unique fixed point h : A→A
in the set

U =
{

u ∈ S : d
(
u, H(f )

)
< ∞}

.

We see that for each x ∈A

h(x) = lim
m→∞ Hm(

f (x)
)

= lim
m→∞ s–mf

(
smx

)
. (.)

We can see that h is a C-linear map on A similar to the proof of Theorem .. Now we are
going to prove the C∗-ternary derivation property of h.

∥∥h
(
[x, y, z]

)
–

[
h(x), y, z

]
–

[
x, h(y), z

]
–

[
x, y, h(z)

]∥∥

= lim
n→∞|s|–n∥∥f

(
sn[x, y, z]

)
– sn[f

(
snx

)
, y, z

]
– sn[x, f

(
sny

)
, z

]
– sn[x, y, f

(
snz

)]∥∥

≤ lim
n→∞|s|–nψ

(
snx, sny, snz

)

≤ lim
n→∞ Lnψ(x, y, z) = .

Hence we have

h
(
[x, y, z]

)
=

[
h(x), y, z

]
+

[
x, h(y), z

]
+

[
x, y, h(z)

]
(.)

for all x, y, z ∈A. For the involution of h, we can have

∥∥h
(
[e, x, e]

)
–

[
e, h(x), e

]∥∥

= lim
n→∞|s|–n∥∥f

(
sn[e, x, e]

)
– sn[e, f

(
snx

)
, e

]∥∥

≤ lim
n→∞|s|–nψ

(
sne, snx, sne

)

≤ lim
n→∞ Lnψ(e, x, e) = .

So h is an involutive C∗-ternary derivation on A.
Replacing y by sny and z by snz in (.), dividing by sn, and letting n go to the infinity,

we get

lim
n→∞

∥∥s–n(f
([

x, sny, snz
])

–
[
f (x), sny, snz

]
– sn[x, f

(
sny

)
, z

]
– sn[x, y, f

(
snz

)])∥∥

= lim
n→∞|s|–n(∥∥f

(
sn[x, y, z]

)
– sn[f (x), y, z

]
– sn[x, f

(
sny

)
, z

]
– sn[x, y, f

(
snz

)]∥∥)

≤ lim
n→∞|s|–nψ

(
x, sny, snz

)

≤ lim
n→∞ Lnψ(x, y, z) = .
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So we have

h
(
[x, y, z]

)
=

[
f (x), y, z

]
+

[
x, h(y), z

]
+

[
x, y, h(z)

]
(.)

for all x, y, z ∈ A. In (.) and (.) we put f (x) – h(x) instead of y and z, then we can get
‖h(x) – f (x)‖ = . So f is an exactly involutive C∗-ternary derivation on A. �
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