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Abstract
In this paper, we propose an impulsive mathematical model of bone formation and
resorption accounting for the number of active osteoclastic cells, bone resorbing
cells, and the number of active osteoblastic cells, bone forming cells, based on the
effects of parathyroid hormone and calcitonin with impulsive estrogen supplement.
The model is then analyzed theoretically in terms of its stability, permanence and
oscillatory behavior. The conditions on the model parameters, for which the desirable
behaviors of the solution of the system can be expected, are derived. Numerical
simulations are also carried out in order to support our theoretical predictions. The
results indicate that the frequency and dosage of the estrogen supplements are
important since the behavior of the solution of the system depends on the frequency
and dosage of the estrogen supplements.
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1 Introduction
Bone is a highly organized tissue. Apart from attending to its own structural integrity, the
skeleton must also respond to systemic needs for adequate amounts of calcium in the ex-
tracellular fluid. In order to maintain normal functions of bone and calcium homeostasis,
bone remodeling process is needed to be taken into account. In bone remodeling process,
osteoclasts act as bone resorbing cells, while osteoblasts act as bone forming cells. The
process begins with the appearance of active osteoclasts on a previously inactive surface
of bone, after which a lacuna will be excavated. Subsequently, osteoblasts then refill the
resorption cavity and become inactive osteoblasts [–]. Serious health conditions such
as osteoporosis may occur when the bone remodeling process is imbalanced (e.g. there is
excessively deep resorption space produced by osteoclasts, or the replenishment of the re-
sorption space by the activation of osteoblasts is incomplete). For a better understanding
of bone remodeling process, the basic knowledge about osteoblasts, osteoclasts and the
involving hormones such as parathyroid hormone (PTH) and calcitonin (CT) is necessary.

Osteoblasts derived from mesenchymal cells are responsible for bone formation. The
stromal stem cells proliferate preosteoblast precursors, and then preosteoblasts precur-
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sors proliferate preosteoblasts. After that, preosteoblasts differentiate into osteoblasts,
and then osteoblasts become osteocytes or resting osteoblasts []. Note that the differen-
tiation and activation of osteoclasts require direct physical contact with osteoblasts that
produce at least two indispensable cytokines []. On the other hand, osteoclasts derived
from the hemopoietic cells are responsible for bone resorption. The hemopoietic stem
cells proliferate preosteoclast precursor cells, and then preosteoclasts precursors differ-
entiate into preosteoclasts. After that, preosteoclasts differentiate into osteoclasts [].

PTH and CT are principal hormones involved in bone formation and resorption. PTH
is secreted from the parathyroid glands in response to the low calcium level in blood. It
increases calcium concentration in blood by various direct and indirect actions on bone,
kidney and intestine []. On bone, PTH enhances bone resorption by stimulating the acti-
vation of osteoclasts indirectly through osteoblasts since osteoclasts do not possess PTH
receptors while osteoblast precursors possess them. Moreover, PTH has both stimulating
and inhibiting effects on the differentiation and activation of osteoblasts []. PTH stim-
ulates the differentiation of mesenchymal stem cells to preosteoblasts, but it inhibits the
differentiation of osteoblasts in mature cells through the process of down-regulation of
PTH receptors on osteoblasts [–]. In contrast to PTH, CT produced by the parafollic-
ular cells of the thyroid gland inhibits bone resorption by acting on osteoclasts resulting
in the decrease of calcium level in blood [, ].

As discussed above, an excessively deep resorption space produced by osteoclasts or an
incomplete replenishment of the resorption space by the activation of osteoblasts can re-
sult in bone remodeling imbalance. If remodeling imbalance exists after the completion
of a remodeling cycle, the degree of bone loss will be exacerbated and that leads to os-
teoporosis []. Osteoporosis is a bone metabolic disease which is characterized by low
bone mass, the structural deterioration of bone and an increased risk of fracture. It occurs
most frequently in postmenopausal women []. An increase in the activation frequency
of new bone remodeling units and an increase in remodeling imbalance, especially result-
ing from the increase of osteoclastic formation, are observed when estrogen is deficient
[–]. In osteoporosis patients, estrogen replacement therapy has been widely used to
prevent menopausal bone loss and reduce the risk of fracture [–]. Kanatani et al. []
and Riggs et al. [] reported that the presence of estrogen results in the decrease of bone
resorption by inhibiting the activity of osteoclasts. The works of Prestwood et al. [] and
Albright et al. [] indicated the decrease in the values of biochemical markers of bone
turnover due to the short-term estrogen treatment. However, there are some serious risks
and side effects from the estrogen replacement therapy such as breast cancer and heart
disease [, ]. High doses of estrogen results in weight loss in rats, and an increase in
tumor formation was observed in aging rats with long-term treatment of estrogen [].
Hence, the appropriate dose and duration of estrogen treatment are necessary and need
to be investigated in details.

Mathematical models of bone remodeling process were proposed and analyzed theoret-
ically and numerically [–]. However, the model that incorporates the effects of PTH,
CT and the impulsive treatments of estrogen has not been proposed and analyzed yet. In
the next section, we will develop a system of impulsive differential equations to study the
effects of PTH, CT and the impulsive estrogen replacement therapy on bone remodeling
process.
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2 Model development
In bone remodeling process, estrogen is responsible for many osteoclast suppressing ac-
tivities both directly and indirectly. Estrogen limits the size of preosteoclast and osteoclast
populations, and it also limits the production of osteoclasts by restraining the production
and secretion of cytokine that stimulate a stimulator of osteoclast development [–].
Moreover, in the presence of estrogen, osteoblastic stromal cells synthesize more anti-
osteoclast OPG than osteoclast-stimulating receptor activator RANKL. Since OPG is a
soluble decoy RANK-like receptor that binds to and covers up RANKL molecules stick-
ing out of the surfaces of osteoblastic stromal cells, then the more OPG means the less
RANKL available on the osteoblastic stromal cells’ surfaces for binding to their real RANK
receptors, and that reduces the RANK signals needed to drive differentiation of the osteo-
clast progenitors into mature osteoclasts. Hence, the increase in the level of estrogen re-
sults in the decrease in the number of osteoclasts [–]. On the other hand, it has been
reported that estrogen also has stimulating effects on osteoblasts as well by attenuating
PTH-induced inhibition of osteoblast proliferation [, ]. Estrogen also directly modu-
lates differentiation of bipotential stromal cells into the osteoblast and adipocyte lineages,
causing a lineage shift toward the osteoblast, which leads to direct stimulation of bone
formation []. We then propose an impulsive model to investigate the effects of PTH,
CT and impulsive estrogen treatments on bone remodeling process as follows:

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dx
dt

=
a

k + z
– bx (a)

dy
dt

=
az

k + x
– by (b)

t �= nTdz
dt

=
axzw

(k + x)(k + y)
– bz (c)

dw
dt

=
ax

k + x
–

axw
k + x

– bw (d)

with

}
�z(t) = –ρz(t) (e)

�w(t) = μ (f)
t = nT ,

where x(t) denotes the concentration of PTH above the basal level in blood at time t, y(t)
denotes the concentration of CT above the basal level in blood at time t, z(t) denotes the
number of active osteoclasts at time t, w(t) denotes the number of active osteoblasts at
time t and all parameters in the model are positive constant. �z(t) = z(t+) – z(t),�w(t) =
w(t+) – w(t), T represents the period of impulsive treatment of estrogen, n ∈ Z+, Z+ =
{, , , . . .}, ρ represents the inhibiting effect of estrogen supplement on osteoclasts,  <
ρ < , and μ represents the stimulating effect of estrogen supplement on osteoblasts, μ > .

Here, the rate of change of PTH concentration in blood is represented by (a). The first
term on the right-hand side accounts for the secretion rate of PTH from the parathyroid
glands which is inhibited by the increase in the calcium levels indicated by the increase in
the number of active osteoclasts [].

The rate of change of CT concentration in blood is represented by (b). The elevation
of calcium levels indicated by the increase in the number of active osteoclasts stimulates
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the secretion of CT from the thyroid gland, whereas the increase in the level of PTH sup-
presses the secretion of CT as reported in []. Hence, the secretion rate of CT is then
assumed to be represented by the first term on the right-hand side of (b).

The rate of change of the number of active osteoclasts is represented by (c). The first
term on the right-hand side accounts for the stimulating effect of PTH and the inhibit-
ing effect of CT on the reproduction of active osteoclasts which requires the cell to cell
interaction of osteoclasts and osteoblasts as indicated in [].

The rate of change of the number of active osteoblasts is represented by (d). The first
and the second terms on the right-hand side account for the stimulating effect and the
inhibiting effect of PTH on the reproduction and differentiation of active osteoblasts as
mentioned in [], respectively.

The last terms of (a)-(d) account for the removal rates of PTH, CT, active osteoclasts
and active osteoblasts, respectively.

The inhibition effect of estrogen treatment on the number of active osteoclasts is repre-
sented by (e), while the stimulating effect of estrogen treatment on the number of active
osteoblasts is represented by (f).

As it has been observed clinically in [, , ], the dynamics of PTH and CT are very
fast compared to the changes in the number of active osteoclasts and active osteoblasts.
We then assume in what follows that PTH and CT equilibrate quickly to the level at which
dx
dt =  and dy

dt = , respectively. That is,

x =
a

b(k + z)
≡ f(z) ()

and

y =
a

b

(
z

k + f(z)

)

=
abz(k + z)

b[a + bk(k + z)]
≡ f(z). ()

Hence, system (a)-(f) can be reduced to the system of (a)-(d) as follows:

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dz
dt

=
af(z)zw

(k + f 
 (z))(k + f(z))

– bz (a)

t �= nT
dw
dt

=
af(z)

k + f(z)
–

af(z)w
k + f(z)

– bw (b)

with
}

�z(t) = –ρz(t) (c)

�w(t) = μ (d)
t = nT .

3 Preliminaries
Let

V : R+ × R
+ → R+,

where R+ = [,∞), R
+ = {S ∈ R : S = (z, w), z ≥ , w ≥ }. The map defined by the right-

hand side of (a)-(b) is denoted by F = (F, F).
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Definition  The function V defined in (a) is said to belong to class V if
(a) V is continuous in (nT , (n + )T] × R

+ → R+ and for each S ∈ R
+, n ∈ Z+,

lim(t,Y )→(nT+,S) V (t, Y ) = V (nT+, S) exists, and
(b) V is locally Lipschitzian in S.

Definition  Suppose V ∈ V. For (t, S) ∈ (nT , (n + )T] × R
+, the upper right derivative

of V (t, S) with respect to (a)-(d) is defined by

D+V (t, S) = lim sup
h→+


h
[
V

(
t + h, S + hF(t, S)

)
– V (t, S)

]
,

where F = (F, F).

In what follows, we assume that the solution of (a)-(d), S(t) = (z(t), w(t)), is a piecewise
continuous function. That is, S(t) : R+ → R

+, S(t) is continuous on (nT , (n + )T], n ∈ Z+

and limt→nT+ S(t) = S(nT+) exists. Then the global existence and uniqueness of solution to
(a)-(d) is guaranteed by the smoothness properties of F (see [] for more details).

Since dz
dt =  whenever z(t) = , t �= nT , dw

dt >  whenever w(t) = , t �= nT and z(nT+) =
( – ρ)z(nT),  < ρ < , w(nT+) = w(nT) + μ,μ > , we have the following lemma.

Lemma  Suppose S(t) = (z(t), w(t)) is a solution of (a)-(d) with S(+) ≥ . Then S(t) ≥ 
for all t ≥ .

Lemma  There exists a constant M >  such that, for sufficiently large t, z(t) ≤ M and
w(t) ≤ M provided that

b >
aa

bkk
, ()

where (z(t), w(t)) is a solution of (a)-(d).

Proof We let v(t) = z(t) + w(t), M = sup zf(z) = a
b

and M = sup f(z) = a
bk

.
For t �= nT , we choose a positive constant c for which

c = min

{

b, b –
aM

kk

}

.

Then

D+v + cv =
dz
dt

+
dw
dt

+ cz + cw

=
af(z)zw

(k + f 
 (z))(k + f(z))

– bz +
af(z)

k + f(z)
–

af(z)w
k + f(z)

– bw

+ cz + cw

≤ (c – b)z +
(

aM

kk
– b + c

)

w +
aM

k

≤ aM

k
≡ M.

Hence D+v ≤ –cv + M.
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For t = nT ,

v
(
nT+)

= z
(
nT+)

+ w
(
nT+)

= ( – ρ)z(nT) + w(nT) + μ

= z(nT) + w(nT) + μ – ρz(nT)

≤ v(nT) + μ.

Therefore, Lemma . of Liu et al. [] implies that, for t ∈ (nT , (n + )T],

v(t) ≤ v()e–ct +
∫ t


Me–c(t–s) ds +

∑

<tn<t

μe–c(t–tn)

≤ v()e–ct + M

(

c

–
e–ct

c

)

+ μ

(
e–c(t–T) – e–c(t–tn+)

 – ecT

)

<
M

c
+ μ

(
ecT

ecT – 

)

≡ M as t → ∞.

Thus, v(t) is uniformly ultimately bounded, and hence there exists a constant M >  such
that z(t) ≤ M and w(t) ≤ M for sufficiently large t. �

4 Stability when there is no active osteoclast
Now, let us consider the reduced impulsive system (a)-(d) when there is no active os-
teoclast (z = ):

dw
dt

= A – Bw, t �= nT , ()

w
(
nT+)

= w(nT) + μ, t = nT , ()

w
(
+)

= w, ()

where A ≡ aa
bkk+a

and B ≡ aa
bkk+a

+ b. Note that A >  and B > . We can see that

w̃(t) =
μe–B(t–nT)

 – e–BT +
A
B

, t ∈ (
nT , (n + )T

]
()

is a periodic solution of ()-() with w̃(+) = μ

–e–BT + A
B > .

Hence, the positive solution of ()-() is

w(t) =
(

w –
A
B

–
μ

 – e–BT

)

e–Bt + w̃(t), t ∈ (
nT , (n + )T

]
.

This leads to the following result.

Lemma  System ()-() has a positive periodic solution w̃(t), and for every solution w(t)
of ()-(), we have w(t) → w̃(t) as t → ∞.
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Therefore, system (a)-(d) has a periodic solution at the vanishing level of active os-
teoclasts

(
, w̃(t)

)
=

(

,
μe–B(t–nT)

 – e–BT +
A
B

)

for t ∈ (nT , (n + )T] and w̃(nT+) = w̃(+) = μ

–e–BT + A
B , n ∈ Z+.

Theorem  The solution (, w̃(t)) of (a)-(d) is locally asymptotically stable provided
that

 < T < Tmax, ()

b <
AD
B

, ()

Dμ

B
< ln

(


 – ρ

)

, ()

where Tmax ≡ 
( AD

B –b)
[ln( 

–ρ
) – Dμ

B ] and D ≡ aabk
k(a+bkk) .

Proof Consider a small perturbation from the point (, w̃(t))

z(t) = u(t),

w(t) = w̃(t) + u(t).

Then we may write

(
u(t)
u(t)

)

= �(t)

(
u()
u()

)

,  < t < T ,

where �(t) satisfies

d�(t)
dt

=

(
Dw̃(t) – b 

∗ –B

)

�(t)

and �() = I , the identity matrix. Hence, the fundamental solution matrix is

�(t) =

(
exp

∫ t
 (Dw̃(s) – b) ds 

∗ exp
∫ t

 (–B) ds

)

.

Since the term (∗) is not required in further analysis, it is not necessary to find the exact
expression for (∗).

Linearization of (c)-(d) yields

(
u(nT+)
u(nT+)

)

=

(
 – ρ 

 

)(
u(nT)
u(nT)

)

.
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According to Floquet theory, the solution (, w̃(t)) of (a)-(d) is locally stable if |λi| < ,
i = , , where λi is an eigenvalue of

M =

(
 – ρ 

 

)

�(T).

Note that the eigenvalues of M are

λ = ( – ρ) exp
∫ T



(
Dw̃(s) – b

)
ds = ( – ρ) exp

(
Dμ

B
+

ADT
B

– bT
)

,

λ = exp
∫ T


(–B) ds = exp(–BT).

Since  < ρ < , B >  and ()-() hold, then

(
AD
B

– b

)

T < ln

(


 – ρ

)

–
Dμ

B
.

Hence,

|λ| = ( – ρ) exp

(
Dμ

B
+

ADT
B

– bT
)

< 

and

|λ| = exp(–BT) < .

Therefore, Floquet theory implies that the solution (, w̃(t)) of (a)-(d) is locally stable
and the proof is complete. �

5 Permanence of the system
Definition  The reduced impulsive system (a)-(d) is said to be permanent if there are
constants m, M >  (independent of the initial values) and a finite time t such that for all
solutions with initial values z(+) > , and w(+) > ,

m ≤ z(t) ≤ M, ()

m ≤ w(t) ≤ M, ()

for all t > t. Note that t may depend on the initial values.

Theorem  Suppose that

b <
DE
B

, ()

T > T∗. ()

System (a)-(d) is permanent if () holds where E ≡ abk(a + bkk) and T∗ ≡
B
E ln( 

–ρ
).
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Proof Suppose that S(t) = (z(t), w(t)) is a solution of system (a)-(d) with z(+) >  and
w(+) > . Since () holds, Lemma  implies that there is a constant M >  such that, for
sufficiently large t, z(t) ≤ M and w(t) ≤ M.

Since af(z)
k+f(z) >  and ( af(z)

k+f(z) + b) is a decreasing function when z > , (b) implies that

dw
dt

≥ –Bw, t �= nT ,

w
(
nT+)

= w(nT) + μ, t = nT

and then we have

w(t) > w̃(t) –
A
B

– ε

for some ε >  and for sufficiently large t.
Hence,

w(t) >
μe–BT

 – e–BT – ε ≡ m

for sufficiently large t.
Therefore, we only need to show that there exists a constant m >  such that z(t) > m.

In order to do so, for some m > , we first let

M̂ = a
 + b

 k(k + m),

M̂ = bk
(
a + bk(k + m)

)
+ abm(k + m),

M̂ =
aabbk(a + bkk)

M̂M̂
,

M̂ =
aa

B(a + bk(k + m))
.

Next, we do the two steps as follows.
Step . We will prove by contradiction that there exists t such that z(t) ≥ m.
Suppose that z(t) < m for all positive t. We observe from (b) and (d) that

dw
dt

=
af(z)

k + f(z)
–

af(z)w
k + f(z)

– bw, t �= nT

≥ aa

a + bk(k + z)
– Bw

≥ aa

a + bk(k + m)
– Bw,

w
(
t+)

= w(t) + μ, t = nT .

Consider the comparison system

dP
dt

=
aa

a + bk(k + m)
– BP, t �= nT , ()

P
(
t+)

= P(t) + μ, t = nT , ()
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P
(
+)

= w
(
+)

. ()

Hence,

P̃(t) ≡ μe–B(t–nT)

 – e–BT +
aa

B(a + bk(k + m))
, t ∈ (

nT , (n + )T
]

()

is a periodic solution of ()-() with P̃(+) ≡ μ

–e–BT + A
B > . The positive solution of

()-() is

P(t) =
(

P
(
+)

–
aa

B(a + bk(k + m))
–

μ

 – e–BT

)

e–Bt + P̃(t) ()

for t ∈ (nT , (n + )T] and P(t) → P̃(t) = μe–B(t–nT)

–e–BT + aa
B(a+bk(k+m)) as t → ∞.

The comparison theorem [] then implies that w(t) ≥ P(t).
Next, let us consider (a)

dz
dt

=
af(z)zw

(k + f 
 (z))(k + f(z))

– bz

=
aabb(k + z)(a + bk(k + z))zw

(a
 + b

 k(k + z))(bk(a + bk(k + z)) + abz(k + z))
– bz

≥
(

aabbk(a + bkk)w
M̂M̂

– b

)

z.

Since w(t) ≥ P(t), there is T >  such that

P̃(t) – ε < P(t) ≤ w(t), t �= nT , t ≥ T

for a sufficiently small ε > .
Therefore,

dz
dt

≥ (
M̂

(
P̃(t) – ε

)
– b

)
z, t �= nT , t ≥ T,

z
(
t+)

= ( – ρ)z(t), t = nT , t ≥ T.

Letting N ∈ Z+ and NT ≥ T, and integrating over (nT , (n + )T], n ≥ N , then we obtain

z
(
(n + )T

) ≥ z(nT)( – ρ) exp

(∫ (n+)T

nT

(
M̂

(
P̃(t) – ε

)
– b

)
dt

)

= z(nT)( – ρ) exp

(

(M̂M̂ – εM̂ – b)T +
M̂μ

B

)

= z(nT)η,

where η ≡ ( – ρ) exp((M̂M̂ – εM̂ – b)T + M̂μ

B ).
Consider

lnη = ln( – ρ) + (M̂M̂ – εM̂ – b)T +
M̂μ

B
.
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For sufficiently small ε > ,

lnη ≈ ln( – ρ) + (M̂M̂ – b)T +
M̂μ

B

> ln( – ρ) + (M̂M̂ – b)T .

Since () and () hold, we can choose a small m >  such that lnη > , and hence

η ≡ ( – ρ) exp

(

(M̂M̂ – εM̂ – b)T +
M̂μ

B

)

> . ()

Then z((n+k)T) ≥ z(nT)ηk → ∞ as k → ∞. It contradicts the boundedness of z(t). Hence,
there is t >  such that z(t) ≥ m.

Step . If z(t) ≥ m for all t > t, then the proof is complete. Otherwise, z(t) < m for
some t > t. Letting t∗ = inft>t{z(t) < m}. There are two possible subcases.

Case : t∗ = nT for some n ∈ Z+. This means z(t) ≥ m for t ∈ (t, t∗] and, by the conti-
nuity of z(t), we have z(t∗) = m.

Since there are M >  and m >  such that z(t) < M, and m < w(t) < M for sufficiently
large t, we choose M′ >  and m′

 >  such that

z(t) < M′ and m′
 < w(t) < M′

and

m′
 <

b

M̂
()

such that
∣
∣
∣
∣w

(
t∗+)

–
aa

B(a + bk(k + m))
–

μ

 – e–BT

∣
∣
∣
∣ – μ < M′. ()

Then choose n, n ∈ Z+ such that

nT >

B

ln

(
M′ + μ

ε

)

()

and

( – ρ)n exp
(
(n + )ηT

)
ηn > , ()

where

η ≡ M̂m′
 – b < .

Let T ′ = nT + nT . We claim that there is t ∈ (t∗, t∗ + T ′] such that z(t) > m. Otherwise,
considering () with P(t∗+) = w(t∗+), we have

P(t) =
(

P
(
t∗+)

–
aa

B(a + bk(k + m))
–

μ

 – e–BT

)

e–B(t–t∗) + P̃(t)

for t ∈ (nT , (n + )T] and n ≤ n ≤ n + n + n.
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For nT ≤ t – t∗ ≤ T ′, we have

∣
∣P(t) – P̃(t)

∣
∣ =

∣
∣
∣
∣P

(
t∗+)

–
aa

B(a + bk(k + m))
–

μ

 – e–BT

∣
∣
∣
∣e

–B(t–t∗)

=
∣
∣
∣
∣w

(
t∗+)

–
aa

B(a + bk(k + m))
–

μ

 – e–BT

∣
∣
∣
∣e

–B(t–t∗)

<
(
M′ + μ

)
e–B(t–t∗)

<
(
M′ + μ

)
e–BnT

< ε.

Then

P̃(t) – ε < P(t) < w(t).

As in Step , we have

z
(
t∗ + T ′) = z(nT + nT + nT)

≥ z
(
t∗ + nT

)
ηn .

From (a), we have

dz
dt

=
af(z)zw

(k + f 
 (z))(k + f(z))

– bz, t �= nT

≥ (M̂w – b)z

≥ (
M̂m′

 – b
)
z ()

= ηz,

z
(
t+)

= ( – ρ)z(t), t = nT .

Integrating the above over [t∗, t∗ + nT], we obtain

z
(
t∗ + nT

) ≥ z
(
t∗)( – ρ)n exp

(∫ nT+nT

nT
η dt

)

≥ m( – ρ)n exp(nηT)

≥ m( – ρ)n exp
(
(n + )ηT

)
,

and hence

z
(
t∗ + T ′) ≥ z

(
t∗ + nT

)
ηn

≥ m( – ρ)n exp
(
(n + )ηT

)
ηn

> m,

which contradicts the definition of m. Hence, there is t ∈ (t∗, t∗ + T ′] such that z(t) > m.
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Now, let t̃ = inft>t∗{z(t) > m}. Then z(t) < m for t ∈ (t∗, t̃), and by the continuity of z(t),
we have z(t̃) = m. We choose l ∈ Z+ such that l ≤ n + n and t∗ + lT ≥ t̃, and suppose
t ∈ (t∗ + (l – )T , t∗ + lT]. From (), we have

z(t) ≥ z
(
t∗+)

( – ρ)l– exp
(
(l – )ηT

)
exp

(
η

(
t –

(
t∗ + (l – )T

)))

= z
(
t∗)( – ρ)l exp

(
(l – )ηT

)
exp

(
η

(
t –

(
t∗ + (l – )T

)))

= m( – ρ)l exp
(
η

(
t – t∗))

≥ m( – ρ)n+n exp(ηlT)

≥ m( – ρ)n+n exp
(
(n + n)ηT

)
.

Since η <  and l ≤ n + n, letting

m̄ = m( – ρ)n+n exp
(
(n + n)ηT

)
,

we have z(t) ≥ m̄ for t ∈ (t∗, t̃). We can continue in the same way by using t̃ instead of t∗.
Then we shall have z(t) ≥ m̄ for all t large enough.

Case : t∗ �= nT for all n ∈ Z+. This means z(t) ≥ m for t ∈ [t, t∗) and z(t∗) = m. Suppose
t∗ ∈ (n′

T , (n′
 + )T) for some n′

 ∈ Z+. There are two possible subcases.
Case .: z(t) ≤ m for all t ∈ (t∗, (n′

 + )T]. We claim that there is t′
 ∈ [(n′

 + )T , (n′
 +

)T + T ′] such that z(t′
) > m. Otherwise, considering () with P((n′

 + )T+) = w((n′
 +

)T+). For t ∈ (nT , (n + )T], n′
 +  ≤ n ≤ n′

 +  + n + n, we obtain

P(t) =
(

P
((

n′
 + 

)
T+)

–
aa

B(a + bk(k + m))
–

μ

 – e–BT

)

e–B(t–(n′
+)T) + P̃(t).

Similarly to Case , for nT ≤ t – t∗, we obtain

∣
∣P(t) – P̃(t)

∣
∣ < ε.

Then

P̃(t) – ε < P(t) ≤ w(t).

Since nT ≤ (n′
 +  + n)T – t∗, we have

z
((

n′
 +  + n

)
T

) ≥ z
(
t∗)( – ρ)n exp

(
η

((
n′

 +  + n
)
T – t∗))

≥ m( – ρ)n exp
(
η

((
n′

 +  + n
)
T – n′

T
))

≥ m( – ρ)n exp
(
(n + )ηT

)
.

Then

z
((

n′
 +  + n + n

)
T

) ≥ z
((

n′
 +  + n

)
T

)
ηn

≥ m( – ρ)n exp
(
(n + )ηT

)
ηn

> m,
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which contradicts the definition of m. Hence, there is t′
 ∈ [(n′

 + )T , (n′
 + )T + T ′] such

that z(t′
) > m.

Now, let t̄ = inft>t∗{z(t) > m}. Then z(t) ≤ m for t ∈ [t∗, t̄), and z(t̄) = m. We choose
l′ ∈ Z+ such that l′ ≤ n + n +  and suppose t ∈ (n′

T + (l′ – )T , n′
T + l′T]. From (), we

have

z(t) ≥ z
((

n′
T +

(
l′ – 

)
T

)+)
exp

(
η

(
t –

(
n′

T +
(
l′ – 

)
T

)))

= z
(
n′

T +
(
l′ – 

)
T

)
( – ρ) exp

(
η

(
t –

(
n′

T +
(
l′ – 

)
T

)))

≥ z
(
t∗)( – ρ)l– exp

(
η

(
t – t∗))

≥ m( – ρ)l′– exp
(
η

(
t – t∗)).

Since η <  and t – t∗ ≤ l′T , hence

z(t) ≥ m( – ρ)n+n exp
(
(n + n + )ηT

)
.

Letting

m = m( – ρ)n+n exp
(
(n + n + )ηT

)
,

we have z(t) ≥ m for t ∈ (t∗, t̄). We can continue in the same way by using t̄ instead of t∗.
Then we shall have z(t) ≥ m for all t large enough.

Case .: There is t′′ ∈ (t∗, (n′
 +)T] such that z(t′′) > m. Let t = inft>t∗{z(t) > m}. Hence,

z(t) < m for t ∈ [t∗, t), and z(t) = m. For t ∈ [t∗, t), () holds, we have

z(t) ≥ z
(
t∗) exp

(∫ t

t∗
η dt

)

= m exp
(
η

(
t – t∗))

≥ m exp(ηT)

> m

since t < n′
T + T < t∗ + T .

For t > t, we can continue in the same way since z(t) ≥ m. Since m < m̄ < m, we have
z(t) ≥ m for t ≥ t. The proof is complete. �

6 Existence and stability of positive periodic solution
We now investigate the possibility of bifurcation of positive periodic solution to system
(a)-(d) near (, w̃(t)). In order to do so, it is more convenient to exchange the state vari-
ables and consider the following system instead:

dz
dt

=
af(w)

k + f(w)
–

af(w)z
k + f(w)

– bz, t �= nT , ()

dw
dt

=
af(w)zw

(k + f 
 (w))(k + f(w))

– bw, t �= nT ()
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with

�z(t) = μ, t = nT , ()

�w(t) = –ρw(t), t = nT . ()

Let

F(z, w) ≡ af(w)
k + f(w)

–
af(w)z

k + f(w)
– bz,

F(z, w) ≡ af(w)zw
(k + f 

 (w))(k + f(w))
– bw.

According to Lakmeche and Arino [],

�(z, w) = z + μ, �(z, w) = ( – ρ)w, ς (t) =
(
w̃(t), 

)T ,

S =
(
w̃(τ), 

)T , τ = Tmax

and

∂�(τ, S)
∂τ

=
∂w̃(τ, S)

∂t
=

–Bμ exp(–Bτ)
 – exp(–Bτ)

< ,

∂�(τ, S)
∂z

= exp

(∫ τ



∂F(ς (r))
∂z

dr
)

= exp(–Bτ),

∂�(τ, S)
∂w

=
∫ τ


exp

(∫ τ

υ

∂Fς (r)
∂z

dr
)

∂F(ς (υ))
∂w

exp

(∫ υ



∂F(ς (r))
∂w

dr
)

dυ

=
∫ τ


exp

(
–B(τ – υ)

)
f ′
 ()

(
ak

(k + f()) –
akw̃(υ)

(k + f())

)

× exp

(∫ υ



(
Dw̃(r) – b

)
dr

)

dυ,

∂�(τ, S)
∂w

= exp

(∫ τ



∂F(ς (r))
∂w

dr
)

= exp

(∫ τ



(
Dw̃(r) – b

)
dr

)

,

∂�(τ, S)
∂z ∂w

=
∫ τ


exp

(∫ τ

υ

∂F(ς (r))
∂w

dr
)

∂F(ς (υ))
∂z ∂w

exp

(∫ υ



∂F(ς (r))
∂w

dr
)

dυ

=
Dτ

 – ρ
> ,

∂�(τ, S)
∂w =

∫ τ


exp

(∫ τ

υ

∂F(ς (r))
∂w

dr
)

∂F(ς (υ))
∂w exp

(∫ υ



∂F(ς (r))
∂w

dr
)

dυ

+
∫ τ



[

exp

(∫ τ

υ

∂F(ς (r))
∂w

dr
)

∂F(ς (υ))
∂z ∂w

]

×
[∫ υ


exp

(∫ υ

θ

∂F(ς (r))
∂z

dr
)

∂F(ς (θ ))
∂w

× exp

(∫ θ



∂F(ς (r))
∂w

dr
)

dθ

]

dυ

=
∫ τ



aw̃(υ)
 – ρ

(
kf ′

 ()(k – f 
 ()) – f()f ′

()(k + f 
 ())

k
(k + f 

 ())

)

dυ
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+ Df ′
 ()

∫ τ



[

exp

(∫ τ

υ

(
Dw̃(r) – b

)
dr

)]

×
[∫ υ



(
ak

(k + f()) –
akw̃(θ )

(k + f())

)

× exp

(∫ θ



(
Dw̃(r) – b

)
dr – B(υ – θ )

)

dθ

]

dυ,

∂�(τ, S)
∂w ∂τ

=
∂F(ς (τ))

∂w
exp

(∫ τ



∂F(ς (r))
∂w

dr
)

=
(
Dw̃(τ) – b

)
exp

(∫ τ



(
Dw̃(r) – b

)
dr

)

=


 – ρ

[
Dμ exp(–Bτ)
 – exp(–Bτ)

+
AD
B

– b

]

.

Now, we can compute

d′
 =  –

(
∂�

∂w
∂�

∂w

)

(τ,S)
=  – ( – ρ) exp

(∫ τ



(
Dw̃(r) – b

)
dr

)

,

where τ is the root of d′
 = . Note that d′

 >  if T < Tmax and d′
 <  if T > Tmax. We can

also compute

a′
 =  –

(
∂�

∂z
∂�

∂z

)

(τ,S)
=  – exp(–Bτ) > ,

b′
 = –

(
∂�

∂z
∂�

∂w
+

∂�

∂w
∂�

∂w

)

(τ,S)

= –
∂�(τ, S)

∂w

= –
∫ τ


exp

(
–B(τ – υ)

)
f ′
 ()

(
ak

(k + f()) –
akw̃(υ)

(k + f())

)

× exp

(∫ υ



(
Dw̃(r) – b

)
dr

)

dυ,

B∗ = –
[(

Dμ exp(–Bτ)
 – exp(–Bτ)

)(

 –
Bτ

 – exp(–Bτ)

)

+
AD
B

– b

]

,

C∗ = ( – ρ)
b′


a′



∂�

∂z∂w
– ( – ρ)

∂�

∂w .

Note that C∗ >  and B∗ <  if

kf ′
 ()

(
k – f 

 ()
)

< f()f ′
()

(
k + f 

 ()
)
, ()

ak

(k + f()) >
ak

(k + f())

[
μ

 – exp(–Bτ)
+

A
B

]

()

and

AD
B

– b – Dμ > . ()

Hence, the following result is obtained according to Lakmeche and Arino [].



Chaiya and Rattanakul Advances in Difference Equations  (2017) 2017:153 Page 17 of 20

Figure 1 Numerical simulation of equations (4a)-(4d). The solution trajectory approaches oscillatory
solution (0, w̃(t)) as time passes. Here, all parameters are chosen to satisfy the conditions in Theorem 1, i.e.,
a1 = 0.65, a2 = 0.3, a3 = 0.3, a4 = 0.9, a5 = 0.1, b1 = 0.5, b2 = 0.2, b3 = 0.425, b4 = 0.5, k1 = 0.1, k2 = 0.5, k3 = 0.1,
k4 = 0.5, k5 = 0.01, k6 = 0.75, μ = 0.1, ρ = 0.1, T = 1, z(0) = 0.0001, and w(0) = 0.0001. (a) The solution trajectory
projected on (z,w)-plane. (b) The corresponding time course of the number of active osteoclasts (z) tending
towards zero. (c) The corresponding time course of the number of active osteoblasts (w) exhibiting positive
oscillation.

Theorem  System ()-() has a positive periodic solution which is supercritical pro-
vided

T > Tmax ()

and (), ()-(), ()-() hold.

7 Numerical simulations
In this section, numerical simulations are carried out in order to support our theoretical
predictions.

Firstly, all parameters are chosen to satisfy all conditions in Theorem . In Figure , we
can see that the solution of system (a)-(d) converges asymptotically to the oscillatory so-
lution (, w̃(t)) as time passes conforming with our theoretical prediction. Figure  shows
that the solution of system (a)-(d) is bounded within a positive range as time passes
when all parameters are chosen to satisfy all conditions in Theorem . Here, the simula-
tion result also agrees with our theoretical prediction. Finally, the solution trajectory of
system (a)-(d) shown in Figure  exhibits the sustained oscillations as time passes when
all parameters are chosen to satisfy all conditions in Theorem . A limit cycle occurs as
theoretically predicted.

8 Conclusion
We have developed an impulsive system of bone remodeling process in order to investi-
gate the effect of estrogen supplements. The model is then analyzed theoretically so that
the conditions on the system parameters, for which the desirable behaviors of the solu-
tion of the system can be expected, are derived. We can see that the frequency of estrogen
treatments 

T , the dosages of estrogen supplements indicated by μ and ρ play important
roles in controlling the number of active osteoclasts and active osteoblasts, the different
frequencies and dosages of estrogen supplements might lead to the undesirable behavior
of the system. For example, the solution of the system might be unbounded, which means
that the number of active osteoclasts, bone resorbing cells, might increase to very high
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Figure 2 Numerical simulation of equations (4a)-(4d). The solution trajectory is bounded within a positive
range as time passes. Here, all parameters are chosen to satisfy the conditions in Theorem 2, a1 = 0.2, a2 = 0.3,
a3 = 0.21, a4 = 0.9, a5 = 0.4, b1 = 0.7, b2 = 0.5, b3 = 0.1, b4 = 0.3, k1 = 0.5, k2 = 1.9, k3 = 0.9, k4 = 0.9, k5 = 0.01,
k6 = 0.75, μ = 0.5, ρ = 0.5, T = 10, z(0) = 0.7, and w(0) = 3. (a) The solution trajectory projected on (z,w)-plane.
(b) The corresponding time course of the number of active osteoclasts (z) and (c) The corresponding time
course of the number of active osteoblasts (w).

Figure 3 Numerical simulation of equations (4a)-(4d). The solution trajectory approaches a limit cycle as
time passes. Here, all parameters are chosen to satisfy the conditions in Theorem 3, a1 = 0.75, a2 = 0.3,
a3 = 0.35, a4 = 0.9, a5 = 0.4, b1 = 0.7, b2 = 0.5, b3 = 0.1, b4 = 0.6, k1 = 0.5, k2 = 2.9, k3 = 0.9, k4 = 0.95, k5 = 0.21,
k6 = 0.7, μ = 0.2, ρ = 0.5, T = 20, z(0) = 0.13, and w(0) = 5. (a) The solution trajectory projected on (z,w)-plane.
(b) The corresponding time course of the number of active osteoclasts (z). (c) The corresponding time course
of the number of active osteoblasts (w).

levels or the number of active osteoblasts, bone forming cells, decreases to very low lev-
els resulting in the net bone resorption instead of bone formation, which is the expected
outcome of the estrogen supplements.

Moreover, a condition needed to guarantee the existence of positive oscillation in the
number of active osteoblasts and active osteoclasts resembling clinical observation stated
in Theorem  is T > Tmax, where Tmax depends on μ and ρ . Hence, if the dosage of es-
trogen supplement reflected by μ and ρ is fixed, an appropriate frequency of estrogen
supplement 

T can be chosen so that T > Tmax as required by Theorem  to guarantee the
desirable levels of active osteoblasts and active osteoclasts. Therefore, the dosage and the
frequency of estrogen supplement are the keys to the effectiveness of estrogen supplement
in osteoporosis patients.
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