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Abstract

The expanded mixed covolume Element (EMCVE) method is studied for the
two-dimensional integro-differential equation of Sobolev type. We use a piecewise
constant function space and the lowest order Raviart-Thomas (RT,) space as the trial
function spaces of the scalar unknown v and its gradient o and flux A, respectively.
The semi-discrete and backward Euler fully-discrete EMCVE schemes are constructed,
and the optimal a priori error estimates are derived. Moreover, numerical results are
given to verify the theoretical analysis.
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1 Introduction
We consider the linear integro-differential equation of Sobolev type

t
c(x)Z—IZ - div(a(x)Vu + b(x)VZ;—Z + / k(x,t,T)Vu(x, 1) dr) =f(x,1), (1)
0
for (x,t) € Q2 x J, with boundary and initial conditions

ux, ) =0, (%0 €dQx], )

u(x,0) = up(x), x€,

where € is a convex and bounded polygonal domain in R? with boundary denoted by
9%, J = (0, T] with 0 < T < o0, the initial function u(x), the source function f(x,t), and
coefficients k(x,t,7), a(x), b(x) and c(x) are given bounded and smooth functions, and
there exist some constants ag, a1, bg, b1, ¢y and ¢; such that

O<ag<alx) <a <00, 0<by <bx) <b <00, 0<cy<clx)<c <oo.

Partial integro-differential equations are often used to describe various physical pro-
cesses such as heat conduction behavior in memory material, nuclear reactor dynamics,

compression of viscoelastic media and the propagation of sound in viscous media. Var-
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ious numerical studies have been reported based on the finite element methods [1-3],
finite volume element methods [4, 5], mixed finite element methods [6—-9], discontinu-
ous mixed covolume methods [10] etc. Numerical solutions for the integro-differential
equation of Sobolev type have been given by Cui [11] who constructed a finite element
scheme and obtained optimal error estimate by introducing Sobolev-Volterra projection;
Che et al. [12] who considered H'-Galerkin expanded mixed finite element method; and
Guezane-Lakoud et al. [13] who developed Rothe’s method for one-dimensional problem
with integral conditions.

Mixed covolume element (MCVE) method was first introduced by Russell [14] to solve
the mixed formulation oflinear elliptic problems. Subsequently, Chou et al. [15,16] consid-
ered the MCVE method for the elliptic boundary value problems by using the RT, space
on the triangular grids and rectangular grids, respectively. This method not only can cal-
culate several different physical quantities (such as pressure and Darcy velocity in [15]) but
also maintains the mass local conservation law, and this is very important in fluid numeri-
cal computations. The satisfactory numerical simulation results on different test problems
were obtained in [15-17]. The MCVE methods have been used to solve quasi-linear sec-
ond order elliptic equations [18], parabolic equations [19, 20], and so on.

This article proposes an EMCVE scheme to solve the 2D linear integro-differential
equation of Sobolev type. We introduce the variables o (x,£) = —Vu(x,t) and A(x, ) =
—(a(x)Vu(x,t) + b(x)Vu; + fot k(x, ¢, 7)Vu(x, ) dr) and write problem (1) as the system of
first order PDEs

(@) o) =-Vu(x1),
(b) Alx,t) =alx)o(x,t) + b(x)%—‘:(x, £)+ fot k(x,t, )0 (x,7)dr, 3)
(c) c(x)%—?(x, t) +divA(x, £) = f(x, £).

The EMCVE scheme is obtained by integrating these equations on local covolume di-
rectly and using the Green’s formula when proper. And then, the local conservation law
with the discrete solution holds. This method skillfully combines finite volume element
methods [21, 22] with expanded mixed finite element methods [23, 24], can use the ad-
vantage of finite volume element methods to calculate more different physical quantities
simultaneously. Rui and Lu [25] applied the EMCVE method to solve the elliptic problem
on rectangular grids in the rectangular area. In this article, we propose a semi-discrete and
backward Euler fully-discrete EMCVE scheme based on triangular grids and obtain the
optimal order error estimates by introducing a Volterra-type generalized EMCVE projec-
tion. Moreover, we give numerical results for a model equation to verify the feasibility and
effectiveness of the scheme.

The expanded mixed weak formulation of (3) is to solve (u,0,1) € L2(2) x H(div, ) x
H(div, 2) satisfying

(o,w) — (divw,u) =0, Vw e H(div, 2),

(\,2) = (a0,2) + (bo,2) + ([, ko dt,2), Vz € H(div, ),
(cug,v) + (diva,v) = (f,v), VYvel*(Q),

u(x,0) = up(x), o(x,0)=-Vug(x), Vxeg,

where H(div, Q) = {z € (L*(R))? : divz € L*(Q)}.
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We also use the general notations and definitions of the Sobolev spaces as in [26]. Let (-, -)
be the inner product in L*(Q2) and (L*(2))?, that is, (¥, ¢) = [,, v ¢ dx (if ¥, ¢ € L*(R)) and
(z,w) = [qz-wdx (if z,w € (L*(Q))?), and either || - [|;2(q) or || - | z2(e)2 is denoted as || - ||.
We also use the norm ||z||giv,) = ([1Z]|* + | divz||2)% of the space H(div, ©2). Throughout
this paper, the constant C > 0 does not depend on the spatial and time mesh parameters
hand At.

2 Expanded mixed covolume element formulation

In order to describe the EMCVE scheme for system (1), we construct the partition 7, of
the domain Q. As in [15], let 7}, = {Kg} be a quasi-uniform triangulation partition, where
K3p is the triangle with barycenter point B, and & = max{/;}, /g, stands for the diameter
of triangle K. We define the nodes to be the midpoints on the edges of every triangular el-
ement, where Py, P,,..., Py, stand for interior nodes, and Py, 11, ..., Py stand for boundary
nodes.

We use the RTy space as the trial function space Hj, for variables ¢ and A, where
H), = {zh € H(div, Q) : zj,|x = (a + bx1, ¢ + bx,),VK € 7},}, (5)
and use Ly, as a trial space for variable u, where
Ly = {vh € L*(2) : vi|x is constant, VK € 72} (6)

Now the dual partition 7,* is constructed by a union of interior quadrilaterals and border
triangle. Referring now to Figure 1, and the quadrilateral A; B;A3B; is the dual element K] by
with interior node P3, which contains two elements K}, (the triangle AA;B;1A3) and Ky (the
triangle AA1A3B,); the triangle AA4A5Bs is the dual element K| 1’56 with boundary node P,
which contains one element K (the triangle AAsB3A4).

Integrate (3) on these primal and dual elements to obtain

(a) fKI’;mKi(o' +Vu)dx=0, i=L,Rorl,
(b) fK;mq Adx = fK;ﬂKi(aa +bo;+ fot kodr)dx, i=L,Rorl, )
(©  Ji,(cus +divA)dx = fi fdw.

Figure 1 Primal and dual domains.
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Similar to [15, 27], we define a transfer operator y;, : H, — (L2(R))? by

Nt

YuZn = Z(Zhlzq (Pj)XKj*ﬁKL +Zp| Kz (Pj)XKi*ﬂI(R)
j=1

N
+ Dzl (P)xc 8)
j=Nz+1

where xx means the characteristic function of a set K. Then we choose the range of yj, as

the test function space Yj. By using the transfer operator y;, we can rewrite equations (a)

and (b) in (7) as
(0 +Vu,yywy) =0, VYwy,=Hy, 9)
t
A, Ynzn) = (aa +bo; + f ko dr, yhzh>, Vz, = Hy,. (10)
0

Applying Green’s integral formula, we have

N

(Vi) = Y wili®) [ vindr
joNp+1 A
N
+ Z(wh| . (P) / vpndA +wy| i, (P) vy dx)
1 3K, NK 0Kp,NKg
= b(Vhwhx u):

for Vw;, € Hj, where n stands for the unit out-normal direction.

By calculation, it is easy to get the equality b(y,wn,vi) = —(divwy,vy), Yw, € Hy,
Vv, € L. Then we can obtain the semi-discrete EMCVE scheme to find (u,05,A;) €
L, x H, x Hy, such that

(O'h, thh) - (diVWh, Mh) = 0, th (S Hh,
Mo vuzi) = (a0 1, vuzn) + (b6 e, vizn) + ([ ko dt, yuzs),  Va, € Hy, (11)

(Cuht» Vh) + (le A'h) Vh) = (f’ Vh)) VVh € Lh:
and the initial values #;(0) and o ,(0) will be defined in Theorems 4.1 and 4.2.

3 Some lemmas

For Vz;, = (zi,zﬁ) € Hy, the discrete norms are defined as follows:

2= Y (Ve o+ V22 loi)  zalldy = 2l + 2l
KeTy,

Lemma 3.1 ([15]) The operator yy, is bounded

lynzaull < llzull, Vzn € Hy,
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and satisfies

| = yu)zu|| < Chlizalln,  Vzn € Hy,
(i, I = yi)Wn)| < Chllzulliillwall,  Vzu,wi, € Hy,

|(z. (I = y)wi) | < Chllzll1[lwall, Vze€ (Hl(Q))Z,VWh € H,.
Lemma 3.2 ([20]) The following symmetry relation
(Ynzn W) = (Zn, YiWn), VY2, Wi, € Hy,
holds, and there is a constant o > 0 independent of h such that
(vnzn zn) = wollzall®,  Vzj € Hy,.
For Vx € K, we define a(x) = a(B), b(x) = b(B), k(x,t,7) = k(B, t, 7).
Lemma 3.3 ([20]) The following symmetry relation

(aynzy, wWi) = (azp, yeWn), Vzu, wy, € Hy,

(bynzi,wi) = (bzp, yswn),  Vzi, wy € Hy,
holds, and there are constants py > 0, o > 0 independent of h such that

|(azn, yuwn) — @zn, yuwn)| < Chllzullwal,  Yzu, wy, € Hy,
|\(bzy, yuwi) — (bzg, vewn)| < ChllzillIwall,  Vzi, wy € Hy,
@z, ynzn) > pallzall®, (azp, yuzn) = pallzull®s ¥z, € Hy,

(bzp, yuzn) > pallznll?, bz, yuzn) > pallznll®>,  Vzi € Hy.

Lemma 3.4 ([20]) The following estimates hold:

(azn, (I = yi)wn)| < Chllzullullwill,  Vzu, wi € Hy,

|(az, (I - yw)wi)| < Chllzllswall, Yz e (H'()",Yw, € Hy,
(

(

|
|

The Raviart-Thomas projection I, : H(div, 2) — Hj, is defined in [29] such that

bz, (I - yi)Wi)| < Chlizullinllwall,  Vznwi € Hy,

bz,(I - y)wi)| < Chliz|1llwsl, Vze (Hl(ﬂ)) ,Ywy, € Hy,.

(div(z - Tyz),v4) =0, Vz € H(div, Q),Vv; € Ly,
and the L? projection Ry, : L2(Q) — Ly, is defined by

(x =Rux,vn) =0, Vyx eL*),Yv, €Ly
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Then the properties of I;, and R, are known from [28-30]

lw—Twll < Chllwlli, Yw e (H'(Q))?, (12)
|div(w — TT,w)|| < Chlldivwll;, Vw e H'(div, Q), (13)
llx —Rux|l < Chlixlli, VYxe€H'(S), (14)

where H!(div, Q) = {w € (L%(R))? : divw € H{(Q)).
Lemma 3.5 ([20]) The following estimate holds:
Iz~ Tzl < Chllzlly, vz e (H()".

Lemma 3.6 The following symmetry relation

t t
(/ l_(zh dt,y/hwh> = (/ kynzy, d‘L’,Wh), Ywy,z;, € Hy, (15)
0 0

holds, and we have

t t
‘(/ kz; dr, thh) - (/ kynzy, dt,wh)
0 0

Proof Let K = AA1AyA3, Aj = AA;1BAj., (j=1,2,3), and A4 = A (see Figure 1). Denote
wy, = (wy, wi) and 2, = (2}, 2;), then

t t
(/ kz;, dz, thh) - (/ l}yhzh dr,wh)
0 Aj 0 A

J J

t t
=/ (w;(p,)./ /}z;df-w}q./ /_(z}l(P,)dt) dx
Aj 0 0

]

t t
+ / (WZ(P,») . / kzidt —w} - / kz(P) dr) dx = Mj + M.
A 0 0

]

t
< Ch / 1zl de - wil (16)
0

By applying the numerical quadrature formula, we get

3M—3 1(py L tl}le 2 tl_<1(P»)d
Y= 3 (e | [ Edwar o2 [[Riper]

_ %[W},(B) + 2w, (P)] fo kz,(P;) dr } |13ﬂ

> £ 1 £ K
Xlz{wh(P / kz}l(B) dr - gw,ﬁ(B)/O kz%,(P,') dr}%
= [wh(B)/ kzh(B) dr - wh(B)/ kzh(B) dr} K =0.

Similarly, we get 21.3:1 Mj = 0. Summing over all j and K, then we complete the proof of
(15).
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To prove (16), using (15), we have

t t
(/ kz, dt,)/hwh> - (/ kynzy dt,wh>
0 0

3 ¢ _ t _
=ZZ[</O (k—k)zhdr,thh)ﬂ— </0 (k—k)yhzhdt,wh>A:|.

K j=1 j j

Noting that k(x, ¢, ) is Lipschitz continuous with variable x, we get the desired conclu-
sion. g

Lemma 3.7 For Vz;,,w;, € H;,,Vz € (HY(R))?, we have

t
’(/ kz,dt, (I - yh)wh)
0
t
‘(/ kZd‘L’,([— yh)wh>
0
Proof To prove (17), we obtain
t t
(/ kzpdz,(I - J/h)Wh> = (/ k(I = yn)zp dT;Wh>
0 0
t t
+ I:(/ kyhzh d‘L’,Wh> - (/ kzh dr,thh>:|.
0 0

By using Lemmas 3.1 and 3.6, we complete the proof of (17).

t
< Ch / 1zl de - wil, 17)
0

t
< Chf Izll1dz - [wll. (18)
0

Next we prove (18). Using (12), we have

(/tkzdr,(l— yh)wh> = (/.tk(z— I,z)dz, (I - yh)wh> + (/tkl'lhzdt,wh)
0 0 0

t t
<c / 2= Tzl de - | = yyywa | + Ch / Mzl de - [w]
0 0
t
sChf Izl de - [wl.
0

This ends the proof of Lemma 3.7. d

Now, we introduce the Volterra-type generalized EMCVE projection. Define (ity, 6,
Au):[0,T] — L, x Hy, x Hy, such that

(div(h = X4),v4) =0,  Vvy € Ly, (19a)
(6 = G yawn) — (divwy, u —ity) = —(0, (I — yi)ws),  Vwy € Hy, (19b)

(A =X yuzn) = (alo = 64), vuzn) — (A, (I = yi)zs)

+ (aa, (I- yh)zh) + (/o k(o —a)dr, yhzh)

t
+ (/ ko d‘L’, (1— yh)zh>, Vzh € Hh. (19C)
0
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Theorem 3.1 Suppose (i1, Gh ) satisfies (19a)-(19¢), then there is a constant C > 0 inde-
pendent of h and t such that

1A =Apll < ChIX L, (20)
|div(x = X,) || < ChlldivAls, (21)
t
llo —anl SCh<|IGII1+|IXII1+/ ||a||1dr>, (22)
0
t
lloe — |l < Ch(lldlll + 1A+ flaelly +/ ||0||1dt>. (23)
0

Proof Noting that A = IT;A, we have estimates (20) and (21).
Splitting o — 6, =0 — 1,0 + [140 — 6, in (19¢) yields

(a(Tluo = G1), yuzn) = (A = A, viza) + (A (= vi)z)

- (/tk(a —&h)dt,)/hzh) - </tka dr, (I - yh)zh>
0 0

- (aa, - yh)zh) - (a(a —TI,0), yhzh), vz, € Hy,. (24)
Choose z; = I1,6 — 6, in (24) and use the Cauchy-Schwarz inequality to get
wllTue =6 4l> < C(IA = Xull* + o = o [|?) + CH*(IA] + llo|I7)
+ C/ot(na ~ Mo l? + Bl | + [ Myo —64]) de
+ LMo - 6. (25)

Using (12) and (20), applying Gronwall’s inequality, we obtain estimate (22).
Noting that div(Hj,) = L;, we have (divwy, u — R,u) = 0,Ywy, € Hy, and rewrite (19b) as

(0 = G yaWn) — (divwy, Ryu — i) = (0, (I = yi)wy),  Vwj € Hy,. (26)

Next we introduce an auxiliary elliptic problem. Given ¢ € L2(2), let v satisfy the fol-

lowing elliptic problem:

Ay =¢, xeQ,

(27)
Y=0, xecof.
And we have the following elliptic regularity result:
[¥ll2 < Cllell. (28)

Using the projection ITj, and Ry, and (26)-(28), we have

(Ryue — i, @) = (R — iy, —AY) = —=(div(TTu(V ), Ry — ity )

= —(0, (I = y)(u(VY))) = (6 = 61, v TTW(V))
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—(o, U = y)(TTW(VY))) + (6 =61 (I = yuT11) (V)
(0 -0, VY).

Noting that

(0, = y)(Tu(VY))) = (0 = Mo, (I = i) (T4(VY)))

+ (Mo, (V) = VY ) + (Tho, Vi — yI1(VY)),

using (12), (28) and Lemma 3.5, we have
g (

(0, (= y)(TL(VY)))| < Chlia i ligll,

and
t
(6 =61, V)| < Ch(||<7||1 +[[All +[ ||0||1df>||</7||,
0
t
(o =61 (- yuI1n) (V)| < Ch2(||0||1 + 1Al +/ llolx dT) lell.
0
Using (30)-(32) in (29) yields
t
|Rpu — iy || < Ch(lltflh +[[Alh +/ ||6||1df>-
0

Apply the triangle inequality with (14) and (33) to obtain (23).

Page 9 of 22

(29)

(30)

(33)

O

Differentiating (19a)-(19c) with respect to time variable ¢, we can also obtain the follow-

ing projection estimates.

Theorem 3.2 Suppose (B, 6 1y A) satisfies (19a)-(19c¢), then there is a constant C > 0 in-

dependent of h and t such that

4 The error estimates of semi-discrete expanded mixed covolume element

formulation

(34)

35)

ok _ o
at at at
~ 1 i ;
do  doy, (‘ o ‘Blk ) /t
S E 2 ) [ (ol + ia) de ),
ot ot (20: ot |, 0( )
d ol 0
T <cn ’—” ¥ ( l H : ) (lolh + A1) dr ). (36)
at ot ot |, - =\| oz ot

In this section, we first discuss the existence and uniqueness of solution for the semi-

discrete EMCVE scheme (11).

Theorem 4.1 Set u;(0) = u;,(0), 6,(0) = 6,(0), then there is a unique solution for system

(11).
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Proof Let {X}-}j\fl and {g; fz[l be the basis of L, and Hy, respectively. Then o, 1,6 ,(0) €
Hy,, 1;,(0), uy, € Lj, can be expressed as

N N
oalxt) =Y 0Oy, At =Y Ai(Bex),

j=1 j=1

N N N
Gu(%,0) =Y 6,00¢), w0 =Y Oy,  walxt) =Y ut)x

j=1 j-1 j=1

Substitute the above expressions into system (11) and set wy,,z, = ¢; (i =1,2,...,N), v, =

xi (i=1,2,...,Ny), then we write system (11) as the following matrix form:

(@) AZ(t)-BU(t)=0,

(b) AL(t) = AiZ() + Ay SZ(0) + [ A3(1)Z(7) dx,
(© Clu@) +BTL(E)=F(),

() U=,  Z(0)=Zo,

(37)

where

Z(®) = (61(0),05(8),...,on(0) ", LE) = (M), 2200, ..., An(®) ",
() = (@, w0, .un ) A= (6 7089) ) nyrn
B=(Gpdive),y wonng A= (@8 1089) iy nyr

A = (b 790) oy prne A3 = (i) 0 it o
C= (0 1t mgrny FO= (1)) a0

T ~

&0 = (ﬁ/(o))j=1,2,...,N1’ Zo = (&f(o))121,2,.,.,N1‘

It is easy to see that A and C are symmetric positive definite matrixes, and A; and A,
are invertible matrixes. We rewrite equation (c) in (37) as

(A2 + GHLZM) + A1 Z() + [, AsZ(7) dT = GTATIBCTF(p),
2(0) = Zo,

where G = A7'BC'BTA,
Using quadratic form theory, we can know that (A, + G™) is an invertible matrix, and

problem (38) has a unique solution by the theory of differential equations. Thus, systems
(37) and (11) have a unique solution. O

Now we write the errors as
0—-0,=0—-0,+0,—0,=E+&,

x—)»h:)»—ih‘*'ih—)»hzg'*'(;

u—uhzu—ﬁh+ﬁh—uh=q§+¢,
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where (i, 61, Ay is the Volterra-type generalized EMCVE projection of (#,0,). Using
(11) and (4), we have the error equations

&, yuwn) — (divwy, ¢) =0,  Vw, € Hy, (39a)
(&> vuzn) = (A, yuzn) + (bEs, yuzn) + (BEs, vnzn)
t
+(bo o, (I - yu)z) + (/ k& dr, yhzh>, vz, € Hy, (39b)
0

(Cd)t) Vh) + (le g’ Vh) = _(Cd;t’ Vh)) VVh S Lh~ (39C)

Theorem 4.2 Let (u,0,1), (uy, 01, Ay,) be the solutions of (4) and (11), respectively, and set
that uy(0) = 11,(0), 6 4,(0) = 64(0). Then there is a constant C > 0 independent of h and t

such that
llo —aull < Ch(]l =), (40)
lloe = unll < Ch(llully + 11 % 1)), (41)
|Gt = un)e|| + [0 = on)e]| < Ch(lloelly + IXelly + Nogelly + 1 11), (42)
A =Xull < Ch(lloelly + IAelly + llogelly + 1 11), (43)
A = Alln@ive) < Ch(IdivAlly + lloelly + IAell + ol + 1% 1), (44)
where
oul>  \? o DNafo |2 N ([ aA]?,\?
||*||=||a||1+||x||1+(/ ou dt) +Z((/ , dt) +(/ o dt) )
o |l ot |, o | ot |, o Il ag |,

i=0

Proof Differentiating (39a) with respect to variable ¢, we have
(&, yuwy) — (divwy, @) =0, Vwy, € Hy. (45)
Setting vy, = ¢; in (39¢), Wi, = ¢ in (45), and z;, = & in (39b), we have
(curd0) + (a8, &) + (b i)
= (B0 d) — (B i) — (b (1 7)E) + ( | ke dr, yhst). (46)
Noting that
(at, yi&e) = &, k) + [(ak, i) — (@, )],

and (a&, yu&;) = %%(&5, yi§), using Lemmas 3.3-3.5 and Lemma 3.7, we get

1d
collell? + EE(ﬂS,VhSHMH&HZ

¢ It = t
< B2+ 0P + O + 1B + o 4 151) +C [P
0
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Integrating the above inequality from 0 to ¢, we get

(@, y€) + co /0 o2 de + s /0 & de
t
< (a&(0),y4£(0)) + C /0 (Igell> + 16N> + H*lla 117 + 1€ 11%) de. (47)

Noting that £(0) = 0, (@&, y4&€) > 1€, applying Gronwall’s inequality, we have

t t
a1 o [ de s a [ sl e
0 0
t
SCf (I1pell® + &N + K Nloe1F) d. (48)
0
Now, we set v, = ¢ in (39¢), wy, = ¢ in (39a), and z;, = £ in (39b) to obtain

(cpr, ¢) + (a&, yu€) = —(chr, @) — (D&, i)
(b i) = (b (L= 1)) - ( /O ke dr, yhs). (49)

Using Lemmas 3.3, 3.4 and 3.7, we get

1d

1 t
S leto ]+ mligl? = Shg)? + C(||¢>||2 +/0 ||s||2dr)

+ C(I1gel* + &N + K llo I + &) (50)

Integrating (50) from O to ¢ yields

1 1 t
||07¢||2—||67¢(0)||2+M1/ €2 de
0
t t
< C/o ||¢||2dt+c/0 (16l + 1E N2 + K2llo 12 + P + 1€17) de. (51)

Noting that ¢(0) = 0, and substituting (48) into (51), we get that

t t t
Co||¢||2+M1/ ||§||2dt§C/ ||¢>||2dt+C/ (IBell® + IEN* + KNl II7) de.
0 0 0

Using Gronwall’s inequality yields

t t
colll? +m/ el de < C/ (16l + IEIP + Hllo|2) de. (52)
0 0
Next, using Lemmas 3.3 and 3.4 in (46), we get
2% Co
llgul? + wall&l = CIEN + 21817 + Do

t
+ C(I1ge* + &N + Hlloc117) + C/ €1 de. (53)
0
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Substituting (48) and (52) into (53) yields

collgel® + pall&el® < C(Iel* + 1€ + K lloII7)

t
+C/ (lgell* + 1€ + K [lo117) de. (54)
0

To estimate ||A — A4l and ||A — Ay ||iv,e), We choose z, = ¢ in (39b) to see that

(€, vn8) = (@&, yut) + (b&r, vig) + (bo o, (I = i)t ) + (D&, yui) + (/0 k& dT:)’hC)

Using Lemmas 3.2 and 3.4, we get

t
ol & 11> < CNEN + 1512 + 1NN + HPlloc11F) + C/ €N de + %IICIH (55)
0

Substituting (48), (52) and (54) into (55), we have that

IZ1? < C(Igel* + NN + KNl lF) + C /0 t(||¢3t||2 + &7 + Wl ]1F) de. (56)
Choosing vj, = div ¢ in (39c¢) yields
(dive,dive) = —(chy, dive) — (e, dive).
And we have
Idivel® < C(IBel? + lgell?).

Using (48) and (54), we have

t
Idivel® < C(IEN® + gl + Mo II7) + C/ (NE> + i dell® + Hlloe17) de. (57)
0

Thus, combine (48), (52), (54) and (57), apply the triangle inequality to complete the
proof. O

5 The fully-discrete expanded mixed covolume element formulation

Let At be the time step length, and ¢, = nAt (n = 0,1,2,..., M) for some positive integer M.

go”—go”’l
At

we select the left rectangle quadrature formula

Define ¢" = ¢(¢,) and 9,¢" = for a function ¢. To approximate the integral term,

tn n-1
| e sy o),

0 =0

and the quadrature error £"(¢) = fot" o(s)ds — At Z;’Z_OI ¢(t)) satisfies

@) = Car [ o] s
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Now, we define the backward Euler fully-discrete scheme: find (), 0}, 1}) € L, x H, x

H;,, n=0,1,...,N, such that

(#p,vi) = (o, vi), Yvi € Ly,

(o5, vewn) — (divwy, u)) =0, Vwj, € Hy,

(o7 yawn) = (divw, ) =0, Vwy € Hjn =1,
(A vuzn) = (a0, yuzn) + (D00}, yuzn)

n-1

+ AtZ(k"”aZ, Yuzn), Yz € Hpn=>1,
=0

(catuz,vh) + (divkz,vh) = (f”,vh), Vv, €Lly,n>1,

where k" = k(x, t,,, ).

(58a)
(58b)
(58¢)

(58d)

(58e)

The above calculation of {u},0},A7} (7 =1,2,..., M) only involves the inverse operation

of stiffness matrix with the spaces Hy, and Lj,. ug and 02 are calculated by solving (58a) and
(58b). The calculation proceeds by solving (58c), (58d) and (58e) equations for {o};, A}, u};}
with using already calculated {o/™}, 4!} It is easy to get that there is a unique solution

for the fully-discrete scheme (58a)-(58e).
We now rewrite the errors as

o(t,) - UZ =0 (t,) — 6u(ts) +64(ts) - UZ = én +&",
Atn) = X = Mtu) = An(tn) + Xn(ta) =M = £ + 27,

ulty) =y = u(ty) = Wn(t) + () — uj, = " + ¢",

where (i, 6 1, Ap,) is the Volterra-type generalized EMCVE projection of (1,0,1).

Using (19a)-(19¢), we obtain the following error equations:

(6% +¢%vi) =0, Vv, el
(a(O) -0, thh) - (divwh, u(0) - u2)
=—(0(0),I — yw)wn), Vwy € Hy,
(", vuwn) — (divw,, ¢") =0, Vw,eHpn>1,
(" vuzn) = (a&”, yuzn) + (DIE™, yuzn) + (bOE", yuzn)

+ (ba”, yuzy) + (bo}, (I = yi)zy) + (" (kG 1), yuzn)
n-1

+ AtZ(k”’/éj, yhzh), Vz, e Hy,n>1,
j=0

(cded”,vi) + (dive™,vy) = —(cd @™, vi) = (cB”vn), Vvne€Lpn=>1,
where

a" =0} - 00", B" =u} — o.u”,

n-1

tn o
e"(kéy) = / k(tn, 16 (1) dT = ALY K6,
0

Jj=0

(59a)

(59b)
(59¢)

(59d)

(59¢)
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Theorem 5.1 Let (uj, 07, A};) be the solution of scheme (58a)-(58e), and suppose that the so-
lution (u, o, ) of system (4) has properties that o, . € L°((H*(Q))?), 64, A; € L2 (HY(R))?),
u € L®°(HY ), u, € L2(HY(RQ)), 064,04 € L>(L*(RQ))?), uy € L*(L*(R)), then there is a con-
stant C > 0 independent of h and At such that

mas (Jute) ] + |06 - o7]) = O+ A,

max (”ut(tn) — Ou, || + Hat(tn) - BtoZ”) < C(h+ Ab),

1=n<M
. (106 =2+ [R(0) A g ) = U+ 80)
Proof Using (19a)-(19c), we rewrite (59b) as
(&% vuwn) — (divwy, ¢°) =0, Vw, € Hy. (60)
Then using (59¢) and (60), we have
(0:&", yuwn) — (divwy, 9,90") =0, Vw, €Hj,n>1 (61)

Choosing vy, = 9;¢" in (59¢), wy, = ¢" in (61), and z; = 3,£” in (59d), we have

(03t¢": 8t¢n) + (a%-n, Vhatgn) + (bat%—n’ Vhatgn)
= —(cd,;@", 8:9") — (cB", 8:¢") — (bAE", yud£") — (bo!, (I — yu)E")

n-1

— (b, i) - ALY (KRE, 0iE") - (6" K1), 1ideE”)- (62)
=0
Noting the fact that (a&”,y,,0,£") = (a&", yn0,£") + [(a&”, yn0:£") — (a&", ynd,:£™)], and
(@E", yndE") > 53 [(@E", yu€™) — (@&", yuE™™)], we have
1
2At
=C(IB"1” + 10" |” + [9E" " + o | + o7 })

co|0:d”|” + —[(a&" m&") — (@™, &™) + ma | 0,8" |

n-1
wCary |7+ (&) + e ka)])

J=0

¢ 3
+ D agr |+ L2 o 63

Summing from # = 1 to m and multiplying (63) by 2A¢, we have
(a5", yug™) < &) + cary & |* + caey (o] + [ 6"])
n=0 n=1

N el LA R AT L e e (64)

n=1
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Note that (@&™, y,€™) > u1£™]1?, choose At in (64) to satisfy CAt < £l, and use Gron-

wall’s inequality to get

J&"]" < cle] + CAtXm:(IIOf”H2 +18"[°)

n=1

+CALY (1w of [+ letan] + [ag" | + "),

n=1

Now, by Lemma 3.3, it follows from (62) that
col0” | + ma 05" |”
n-1
<c(J&"]*) + cacy &)’

j=0

gl + 2 o+ cletan

s C o[} + [0 |* + 8717 + 97" + o).

Substituting (65) into (66), we have that

oo+ mal 0 |
=l + e |

+CORaty+ Jad |+ 871" + " " + o)

vCacy (g [P+ |81+ [0 + [ + 2ol + leGan]”).

j=1

To estimate ||A(t,) — Z" || + |A(t,) — Z" | naiv,), We set z, = £” in (59d) and get that

nolle"|* < c(lad”|” + oI + illolf) + C(l&"]” + |ag”|)

n-1
+ ALY & + Clerkan]” + B

j=1
Substituting (65) and (67) into (68), we have

[e"I” < &l + o [” + 8% + cacy_(le/[* + 1£]°)

j=1

+ (2" " + 0" |" + 1oy |} + e ko)

+CALY (W ]or]l; + [k "+ o | + [ ]).

j-1

Choose v, = divZ” in (59e) to obtain

ldive”|* < c(|ace”|” + | a:d” | + | 87])-

(65)

(66)

(67)

(69)

(70)
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Substituting (67) into (70), we get

Jdiver|* < c(&]" + oI + [87]) + cacy_(le/]* + []7)

j=1
+C([a"[*+ [0 [* + o] + e"®an)])

+CAYy (ot + [/ ken[ + o + [a]). (71)

j=1

Finally, we estimate ||u(¢,,) — U™ ||. Setting vj, = ¢" in (59¢), wy, = ¢" in (59¢), and z;, = §"
in (59d), we get

(", 0") + (a&”, yut") + (bB,E", yut™)
=—(cd:0",¢") = (cB",8") — (bE", yu&") — (bal, (I - yu)E")

n-1

— (b, yut") - ALY (KE, ") — (6" (kG p), vuE"). (72)

Jj=0

Noting that (cd,¢", ¢") > %At(llc%ci)"ﬂz — lle2¢™1||?), and using Lemmas 3.3 and 3.4, we
obtain
1
2At
=C(le" P+ lae*) + o |* + 1817 + [9:&" " + | |* + [ 07}

(leze"[* = 2™ ) + ma ")

n-1
ey |8+ clentan |+ B (73)

Jj=0

Summing from #z = 1 to m, multiplying (73) by 2A¢, and using (67), we get
2 2 2 ¢ 2 2 . 2
col@™|” = C(lo° "+ [£°17) + cae 3 (le” "+ [877) + cae _Jo"|
n=1 n=1

+Caey (2 oy |+ e kan” + ag"|” + [a2"]7). (74)

n=1

Choose At in (74) to satisfy CAt < 3, and use Gronwall’s inequality to get
2 2 2 . 2 2
[¢™ 1" = c(le® I+ [&°17) + cae 3 (e[ + 18"])
n=1

m
+CAY (W ot + e ke [+ Jag" | + [ ["). (75)

n=1

Now, we note that

ty N 1 tn "
|o"||* < cAt f loxl?ds,  |8."| =Cy / llpe1” d, (76)
tp-1

th-1
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ty " 1 tn "
18"]% < cat f lual?de, 3| < C /t 1EIP de. 77)
n-1

th1

Using (19a)-(19c), we have

t
I6511% < C(Ilffll2 + I +/ ||U||2dt>,
0

= 2 1 d'o o x| ' 2 7229312

l6ml*<C ZO o g [ 1 +/0 (lo 1+ HA07) de ),

and we have
2 8‘1 2
2 —_—
”8 koh < CAt Z/ ( a7 Py 1) de. (78)
Further, using (59a) and (59b), we get

& < cr (o @]} + M), (79)

[#°1 = [8°] = Ch([uw@]; + o @], + [2(O]],)- (80)
Finally, apply the triangle inequality to obtain the error estimates. O

6 Numerical example

For confirming the above theoretical analysis, we give a numerical example and consider

the spatial and temporal domain Q = (0,1) x (0,1), J = (0,1], the coefficients a(x) =1 +

2x7 + x5, b(x) =1 +x7 +2x3, c(x) = 1, k(x,2,7) = (1 + 7 + x5 + £2)7, and the initial function
u(x,0) = x1(x1 — Dxa(x2 — 1).

The exact solution is

u(x,t) = e ‘o (1 — Do (%2 — 1),

and the source function f(x, t), auxiliary variables o (x,¢) = —Vu(x,t) and A(x,t) =
—(ax)Vu(x, t) + b(x)Vu(x, t fo (o0, t, T)Vu(x, ) dr) are determined by the above func-
tions.

We use the fifth order Gauss quadrature rule to calculate the errors ||z — up || oo (12(q))s
llo =0 il Loo(2()y2ys 1M = Al rr(aiv, )y and [|A = Ap |l oo 22()2)- The simulation results for the
backward Euler fully-discrete scheme are given in Table 1 by using RT'y space with different
mesh sizes /1 = v/2At = ‘SF, ‘lg, \sg’ % Based on the error results and convergence rates,
we can verify the theoretical analysis.

The graphs of exact solutions for u, 0 and A at £ = 1 are drawn on Figures 2, 3 and 4,
respectively. The graphs of the corresponding discrete solutions for u}, o7 and A} with
the mesh /1 = ‘F and At = 35 are drawn on Figures 5, 6 and 7, respectively. The numerical

results and ﬁgures show that the EMCVE scheme is feasible and efficient.
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Table 1 Error estimates and convergence rates

h, At llu-up “L°°(L2(Q)) Rate llo-on "LOO((LZ(Q))Z) Rate

(%5, %) 3.8464e-003 1.6043e-002

(}/—g, %) 2.0591e-003 0.90 8.6877e-003 0.88

(£, 1.0637e-003 095  45181e-003 094

(L2, 4)  54043e-004 098  23037e-003 097

h, At "A. -An "LOO((LZ(Q))Z) Rate "A. -A "L°°(H(div,SZ)) Rate

(L,1)  1.5432e-002 5.1929-002

(‘1/—65/ %) 8.3902e-003 0.88 2.7873e-002 0.90

(g, ;—2) 4.3491e-003 0.95 1.4411e-002 0.95

(g, 6174) 2.2108e-003 0.98 7.3231e-003 0.98

Figure 2 The exact solution of u. The exact solution u at t=1
OO R
NN
A"’A"@‘@{H‘i
The exact solution of o, The exact solution of o,

7
i,
AN
vz e,
A
s
ALY

AV

X

)
A
Ay

VAV
2%
SAVAYZ

SAY:
K2

Figure 3 The exact solution of o = (04, 03).

7 Conclusions

We present the EMCVE method for the 2D linear integro-differential equation of Sobolev
type. We introduce the transfer operator y;, and construct the semi-discrete, backward
Euler fully-discrete EMCVE schemes. We obtain the optimal order error estimates for the
scalar unknown u (in L2(2)-norm), gradient o (in (L2(£2))?-norm) and flux A (in (L2(R2))2-
norm and H(div, 2)-norm) by introducing the Volterra-type generalized EMCVE projec-
tion. Moreover, we give the numerical experiment to verify the theoretical analysis.
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The numerical solution of 7»1h The numerical solution of th

00

Figure 7 The numerical solution of Ay, = (A1, A2p).
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