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1 Introduction
In recent years, a lot of works have been devoted to the solvability of boundary value prob-
lems for linear functional differential equations (see, for example, [–]). We consider the
Cauchy problem for equations with a singularity at the initial point. The main results are
Theorems  and , where we obtain sharp conditions for the solvability.

Similar existence results for other boundary value problems and other functional equa-
tions are established in [, –]. In the Volterra case, the Cauchy problem is considered in
[–] for some classes of nonlinear singular functional differential equations. Solvability
conditions for boundary value problems with weighted initial conditions are established
in [–].

We do not impose any restrictions on the growth or the sign of the singular coefficient.
Our constants in the solvability conditions are the best ones in the considered classes
of functional operators. These best conditions cannot be derived from the contraction
mapping principle.

In the next section we formulate main results and give an example for a singular differ-
ential equation with deviating argument. Further, in Section , the Fredholm property of
the considered singular problems is proved. In Section , the existence results are proved.

We use the following standard notation:
R = (–∞,∞);
L is the Banach space of measurable functions z : [, ] →R such that

‖z‖L =
∫ 



∣∣z(s)
∣∣ds < +∞;

C is the Banach space of continuous functions x : [, ] →R with the norm

‖x‖C = max
t∈[,]

∣∣x(t)
∣∣;

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1149-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1149-7&domain=pdf
mailto:bravyi@perm.ru


Bravyi and Plaksina Advances in Difference Equations  (2017) 2017:91 Page 2 of 14

AC is the Banach space of absolutely continuous functions x : [, ] →R with any of
two equivalent norms

‖x‖AC =
∣∣x()

∣∣ +
∫ 



∣∣ẋ(s)
∣∣ds or ‖x‖AC =

∣∣x()
∣∣ +

∫ 



∣∣ẋ(s)
∣∣ds.

Definition  An operator T : C → L is called positive if it maps nonnegative functions
from the space C into a.e. nonnegative functions from L.

Definition  We will say that a boundary value problem has the Fredholm property if the
corresponding operator of this problem is a Noether operator with index zero.

2 Main results
Let p : (, ] →R be a positive measurable function such that

∫ 

ε

p(s) ds < +∞ for every ε ∈ (, ), lim
ε→+

∫ 

ε

p(t) dt = ∞. (.)

We consider the singular ordinary differential equation

(Lkx)(t) ≡ ẋ(t) + kp(t)x(t) = f (t), t ∈ (, ], k �= , (.)

and the functional differential equation

(Lkx)(t) = (Tx)(t) + f (t), t ∈ [, ], (.)

where T : C → L is a linear bounded operator.

Definition  A function x ∈ AC is called a solution of (.) if x satisfies equality (.) for
a.a. t ∈ [, ].

Let T+ : C → L, T– : C → L be positive linear operators with the norms

∥∥T+∥∥
C→L = T +,

∥∥T–∥∥
C→L = T –. (.)

Theorem  Let k > . Then the Cauchy problem
⎧⎨
⎩

(Lkx)(t) = (T+x)(t) – (T–x)(t) + f (t), t ∈ [, ],

x() = ,
(.)

has a unique solution for all f ∈ L if

T + ≤ , T – ≤ 
√

 – T +. (.)

Theorem  Let k < . Then the Cauchy problem with the additional boundary value con-
dition

⎧⎨
⎩

(Lkx)(t) = (T+x)(t) – (T–x)(t) + f (t), t ∈ [, ],

x() = , x() = c,
(.)
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has a unique solution for all f ∈ L, c ∈R if

T – ≤ , T + ≤ 
√

 – T –. (.)

The nonsingular case k =  was considered in [].

Theorem  ([]) The Cauchy problem

⎧⎨
⎩

ẋ(t) = (T+x)(t) – (T–x)(t) + f (t), t ∈ [, ],

x() = c,

has a unique solution for all f ∈ L, c ∈R if

T + < , T – <  + 
√

 – T +.

Remark  From the proofs of Theorems , , it will follow that inequalities (.) and (.)
are unimprovable in the following sense. If at least one of them is not fulfilled, there exist
positive operators T+, T– such that equalities (.) hold and problem (.) or (.) has no
unique solution.

Remark  We do not impose any restrictions on the growth order of the coefficient p at
the singular point.

Example  Suppose that p : (, ] → (, +∞) satisfies conditions (.).
By Theorems ,  and Remark , we get the following solvability condition.
If q ∈ L is a nonnegative function such that

∫ 


q(s) ds ≤ ,

then
(i) the Cauchy problem

⎧⎨
⎩

ẋ(t) + p(t)x(t) = –q(t)x(h(t)) + f (t), t ∈ [, ],

x() = ,
(.)

has a unique absolutely continuous solution for every measurable function
h : [, ] → [, ] and for every f ∈ L;

(ii) the Cauchy problem with additional boundary condition

⎧⎨
⎩

ẋ(t) – p(t)x(t) = q(t)x(h(t)) + f (t), t ∈ [, ],

x() = , x() = c,
(.)

has a unique absolutely continuous solution for every measurable function
h : [, ] → [, ] and for every f ∈ L, c ∈R.
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For every Q > , there exist a nonnegative function q ∈ L,

∫ 


q(s) ds = Q,

and a measurable function h : [, ] × [, ] such that problem (.) (or problem (.)) has
no unique solution.

3 Fredholm boundary value problems
Definition  A locally absolutely continuous function x : (, ] →R is called a solution of
equation (.) if x satisfies (.) almost everywhere.

Every solution to (.) has a representation

x(t) = x(t)
(

x() –
∫ 

t

f (s)
x(s)

ds
)

, t ∈ (, ], (.)

where

x(t) = ek
∫ 

t p(s) ds, t ∈ (, ].

It is obvious that for k >  the function x decreases on (, ] and limt→+ x(t) = ∞; for
k <  the function x increases on (, ], limt→+ x(t) = .

Definition  For k < , denote by Dk the set of all solutions to (.) for all f ∈ L[, ].

Lemma  Dk , k < , is a Banach space with respect to the norm

‖x‖Dk =
∣∣x()

∣∣ +
∫ 



∣∣(Lkx)(s)
∣∣ds.

Proof Equality (.) gives a one-to-one correspondence J between Dk and L ×R:

(
J {f , c})(t) = x(t)

(
c –

∫ 

t

f (s)
x(s)

ds
)

, t ∈ (, ], f ∈ L, c ∈R,

J –x =
{

x(),Lkx
}

, x ∈ Dk .

The space L ×R is a Banach space with respect to the norm

∥∥{f , c}∥∥L×R
= |c| +

∫ 



∣∣f (s)
∣∣ds.

From this the lemma follows. �

Lemma  If k < , for every x ∈ Dk , there exists a finite limit x(+) = .

Extend all elements of Dk , k < , at t =  continuously.

Lemma  If k < , the embedding x → x from Dk into AC is bounded.
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Proofs of Lemmas ,  Let x ∈ Dk , k < , be a solution to (.). Then

‖x‖Dk =
∣∣x()

∣∣ +
∫ 



∣∣f (s)
∣∣ds,

‖x‖AC =
∣∣x()

∣∣ +
∫ 



∣∣ẋ(s)
∣∣ds =

∣∣x()
∣∣ +

∫ 



∣∣f (s) – kp(s)x(s)
∣∣ds

≤ ∣∣x()
∣∣ +

∫ 



∣∣f (s)
∣∣ds +

∫ 


|k|p(s)

∣∣x(s)
∣∣ds

≤ ∣∣x()
∣∣ +

∫ 



∣∣f (s)
∣∣ds +

∫ 


|k|p(s)x(s) ds

∣∣x()
∣∣ + |k|

∫ 


p(t)x(t)

∫ 

t

|f (s)|
x(s)

ds dt

=
∣∣x()

∣∣ +
∫ 



∣∣f (s)
∣∣ds +

∣∣x()
∣∣ + |k|

∫ 


p(t)x(t)

∫ 

t

|f (s)|
x(s)

ds dt.

Changing the order of integration in the last integral (it is possible by the Fubini theorem
since all integrands are nonnegative), we get

|k|
∫ 


p(t)x(t)

∫ 

t

|f (s)|
x(s)

ds dt

=
∫ 



∫ s


|k|p(t)x(t) dt

|f (s)|
x(s)

ds =
∫ 



(
x(s) – x(+)

) |f (s)|
x(s)

ds =
∫ 



∣∣f (s)
∣∣ds.

Therefore,

‖x‖AC ≤ 
∣∣x()

∣∣ + 
∫ 



∣∣f (s)
∣∣ds ≤ ‖x‖Dk , (.)

and for every x ∈ Dk , we have ẋ ∈ L. So, there exists a finite limit x(+). Extend elements
of Dk at t =  continuously. For every x ∈ Dk , there exists f ∈ L such that

kp(t)x(t) = f (t) – ẋ(t), t ∈ [, ],

where the right-hand side is integrable on [, ]. So,

∫ 


p(s)

∣∣x(t)
∣∣dt < +∞,

which implies for the continuous function x that x() = . Therefore,

lim
t→

x(t) =  for all x ∈ Dk .

Inequality (.) means that the space Dk is continuously embedded into AC. �

Let k > . From (.) it follows that a solution of (.) can have a finite limit at t = +
only if

x() =
∫ 



f (s)
x(s)

ds. (.)
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In this case a solution has the representation

x(t) =
∫ t



x(t)
x(s)

f (s) ds, t ∈ (, ], (.)

and, obviously, has the zero limit at t = +. Indeed, it follows from (.) that

∣∣x(t)
∣∣ ≤

∫ t



x(t)
x(s)

∣∣f (s)
∣∣ds ≤

∫ t



∣∣f (s)
∣∣ds, t ∈ (, ].

Hence, limt→+ x(t) =  by the absolute continuousness of the Lebesgue integral.

Definition  For k > , denote by Dk the space of all solutions of (.) satisfying condition
(.) for all f ∈ L and extended by zero at t = .

Lemma  The space Dk , k > , is a Banach space with respect to the norm

‖x‖Dk =
∫ 



∣∣(Lkx)(s)
∣∣ds.

Proof Equality (.) gives a one-to-one correspondence J : Dk → L:

(J f )(t) = x(t)
∫ t



f (s)
x(s)

ds, t ∈ (, ], f ∈ L,

J –x = Lkx, x ∈ Dk .
(.)

Since the space L is a Banach space, the lemma is proved. �

Lemma  If k > , the space Dk is continuously embedded in AC.

Proof We will show that the embedding x → x : Dk → AC is bounded. If f ∈ L and x =
J f ∈ Dk is defined by (.), then

‖x‖Dk =
∫ 



∣∣f (s)
∣∣ds,

‖x‖AC =
∣∣x()

∣∣ +
∫ 



∣∣ẋ(s)
∣∣ds ≤

∫ 



∣∣f (s)
∣∣ds +

∫ 



(
–ẋ(t)

)∫ t



|f (s)|
x(s)

ds dt.

Changing the integration order in the last integral, we have

∫ 



(
–ẋ(t)

)∫ t



|f (s)|
x(s)

ds dt =
∫ 



∫ 

s

(
–ẋ(t)

)
dt

|f (s)|
x(s)

ds

=
∫ 



x(s) – 
x(s)

∣∣f (s)
∣∣ds ≤

∫ 



∣∣f (s)
∣∣ds.

Therefore, the space Dk is continuously embedded into AC:

‖x‖AC ≤ ∣∣x()
∣∣ + 

∫ 



∣∣f (s)
∣∣ds ≤ ‖x‖Dk . �
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Remark  For every k �= , the sets Dk and

ÃC ≡ {
y ∈ AC : y() = , py ∈ L

}

coincide.

Proof If x ∈ Dk , then x() = , x ∈ AC, and for some f ∈ L the equality

p(t)x(t) =

k
(
f (t) – ẋ(t)

)
, t ∈ (, ],

holds. This implies that x ∈ ÃC. Conversely, if x ∈ ÃC, then for all k the function

f (t) = ẋ(t) + kp(t)x(t), t ∈ (, ],

is integrable; therefore, x belongs to Dk . �

So, we proved the following assertion.

Lemma  For every k �= , the space Dk is the Banach space of all absolutely continuous
solutions to equation (.) for all f ∈ L. The space Dk is embedded into the space AC con-
tinuously. Every solution to functional differential equation (.) belongs to the space Dk .

Now, for k < , consider the boundary value problem in the space Dk

⎧⎨
⎩

(Lkx)(t) = (Tx)(t) + f (t), t ∈ [, ],

x() = , x() = c,
(.)

where f ∈ L, c ∈ R.

Lemma  The boundary value problem (.) has the Fredholm property.

Proof Let k < . The space Dk is continuously embedded into AC by Lemma .
From (.) it follows that (.) is equivalent to the equation in the space Dk :

x(t) = x(t)c –
∫ 

t

x(t)((Tx)(s) + f (s))
x(s)

ds, t ∈ (, ],

which can be rewritten as

x(t) = (�Tx)(t) + g, (.)

where

(�z)(t) = –
∫ 

t

x(t)
x(s)

z(s) ds, t ∈ [, ], z ∈ L,

g(t) = cx(t) – (�f )(t), t ∈ [, ],

� : L → Dk is a linear bounded operator, g ∈ Dk .
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Since the space Dk is continuously embedded in AC, which is continuously embedded
in C, then we have that the linear operator � acts from L into C and is bounded. So, we
can consider (.) in the space C: every solution from C is a solution from Dk and vice
versa.

From Lemma  in [], the operator I – �T : C → C (I : C → C is the identity op-
erator) has the Fredholm property. We can prove this here. Every linear bounded op-
erator T : C → L is weakly completely continuous [], VI... Therefore, the operator
�T : C → C is weakly completely continuous, and the product of such operators, the op-
erator (�T) : C → C, is completely continuous [], VI... By Nikolsky’s theorem [],
p., the operator I – �T has the Fredholm property. Thus, problem (.) has the Fred-
holm property. �

Corollary  If k < , problem (.) has a unique solution x ∈ Dk for every f ∈ L, c ∈ R if
and only if the homogeneous problem

⎧⎨
⎩

(Lkx)(t) = (Tx)(t), t ∈ [, ],

x() = , x() = ,

has only the trivial solution in the space Dk .

Similarly, for k > , using the continuity of embedding the space Dk into AC, we prove
the following assertions.

Lemma  Let k > . The Cauchy problem

⎧⎨
⎩

(Lkx)(t) = (Tx)(t) + f (t), t ∈ [, ],

x() = ,
(.)

in the space Dk has the Fredholm property.

Corollary  Let k > . The Cauchy problem (.) has a unique solution x ∈ Dk for every
f ∈ L if and only if the homogenous Cauchy problem

⎧⎨
⎩

(Lkx)(t) = (Tx)(t), t ∈ [, ],

x() = ,

has only the trivial solution in the space Dk .

4 Proofs of main results
By Lemma , we can consider problems (.) and (.) in the spaces Dk . By Corollaries 
and , to prove Theorems , , it is sufficient to prove that homogeneous problems (.)
and (.) (for f = , c = ) have only the trivial solution.

To prove Theorem , we need the following lemma, which can be proved similarly to
the analogous assertions from [–].

Lemma  Suppose that nonnegative numbers T + ≥ , T – ≥  are given. Let k > .
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Problem (.) in the space Dk has a unique solution for all linear positive operators T+,
T– : C → L satisfying (.) if and only if the Cauchy problem

⎧⎨
⎩

(Lkx)(t) = p(t)x(t) + p(t)x(t), t ∈ [, ],

x() = ,
(.)

has only the trivial solution for all  ≤ t < t ≤  and for all functions p, p ∈ L such that
the conditions

p + p = p+ – p–, –p–(t) ≤ pi(t) ≤ p+(t), t ∈ [, ], i = , , (.)

are fulfilled for some nonnegative functions p+, p– ∈ L with the norm

∥∥p+∥∥
L = T +,

∥∥p–∥∥
L = T –. (.)

Proof of Theorem  Solve problem (.), which is equivalent to the equation

x(t) =
∫ t



x(t)
x(s)

(
p(s)x(t) + p(s)x(t)

)
ds, t ∈ [, ],

in the space C. This equation has only the trivial solution if and only if

� =

∣∣∣∣∣
 –

∫ t


x(t)
x(s) p(s) ds –

∫ t


x(t)
x(s) p(s) ds

–
∫ t


x(t)
x(s) p(s) ds  –

∫ t


x(t)
x(s) p(s) ds

∣∣∣∣∣ �= .

For all p, p satisfying (.), (.), we have

� =

∣∣∣∣∣
 –

∫ t


x(t)
x(s) p(s) ds  –

∫ t


x(t)
x(s) (p+(s) – p–(s)) ds

–
∫ t


x(t)
x(s) p(s) ds  –

∫ t


x(t)
x(s) (p+(s) – p–(s)) ds

∣∣∣∣∣ .

Our aim is to determine for which T +, T – the inequality � >  is fulfilled for all  ≤ t <
t ≤  and for all p, p+, p– such that (.), (.) hold.

For p = , we have

� =  –
∫ t



x(t)
x(s)

(
p+(s) – p–(s)

)
ds.

Now, for sufficiently small t >  and fixed p+, p–, we have � > . Therefore, the inequal-
ity � �=  is fulfilled for all admissible parameters if and only if � >  for all admissible
parameters.

For p =  and for fixed t, � is minimal if the function p+ ∈ L is ‘concentrated’ at the
point s = t, and the function p– ∈ L is ‘concentrated’ at the point s = . Therefore, the
inequality

∥∥p+∥∥ = T + ≤  (.)

is necessary for the inequality � >  for all possible parameters.
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We have

� = α +
∫ t



(
β

x(t)
x(s)

– α
x(t)
x(s)

)
p(s) ds + β

∫ t

t

x(t)
x(s)

p(s) ds,

where α =  –
∫ t


x(t)
x(s) (p+(s) – p–(s)) ds > , β =  –

∫ t


x(t)
x(s) (p+(s) – p–(s)) ds > , since in-

equality (.) holds. So, for fixed t < t, p+, p– ∈ L, the functional � takes its minimum
if

p(t) = –p–(t), t ∈ [t, t],

and

p(t) = p+(t), t ∈ [, t), or p(t) = –p–(t), t ∈ [, t).

If

p(t) = –p–(t), t ∈ [, t],

it is easy to see that � >  for any other parameters.
Consider the case

p(t) =

⎧⎨
⎩

p+(t), t ∈ [, t],

–p–(t), t ∈ (t, t].

Then

� =
(

 –
∫ t

t

x(t)
x(s)

p+(s) ds
)(

 –
∫ t



x(t)
x(s)

p+(s) ds
)

+
∫ t



x(t)
x(s)

p–(s) ds
(

x(t)
x(t)

–
∫ t

t

x(t)
x(s)

p–(s) ds
)

.

Now, � takes its minimal nonpositive value if the functions p+ and p– are ‘concentrated’
at s = t on the interval [, t] and at s = t on the interval [t, t].

Using notation

T +
 =

∫ t


p+(s) ds, T –

 =
∫ t


p–(s) ds,

T +
 =

∫ t

t

p+(s) ds, T –
 =

∫ t

t

p–(s) ds,

T +
 + T +

 ≤ T +, T –
 + T –

 ≤ T –,

we get

� > � ≡ (
 – T +


)(

 – T +


)
+ T –



(
x(t)
x(t)

– T –


)
.
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It is easy to see that � takes its minimal value in the case of

T +
 = , T +

 = T +, T –
 = T –

 = T –/,
x(t)
x(t)

= .

Then

� =  – T + –
(
T –)/.

Therefore, � >  for all possible parameters if and only if inequalities (.) are fulfilled.
Note, that if the non-strict inequalities (.) are fulfilled, then � >  for all admissible
integrable p, p+, p– and all a ≤ t ≤ t ≤ b. �

Now consider problem (.) for k < .
To prove Theorem , we need an analog of Lemma  (it can be proved similarly to

appropriate statements from [, ]).

Lemma  Suppose nonnegative numbers T + ≥ , T – ≥  are given. Let k < .
Problem (.) in the space Dk has a unique solution for all linear positive operators T+,

T– : C → L satisfying (.) if and only if the boundary value problem

⎧⎨
⎩

(Lkx)(t) = p(t)x(t) + p(t)x(t), t ∈ [, ],

x() = , x() = ,
(.)

has in the space Dk only the trivial solution for all  ≤ t < t ≤  and for all functions p,
p ∈ L such that the conditions

p + p = p+ – p–, –p–(t) ≤ pi(t) ≤ p+(t), t ∈ [, ], i = , , (.)

are fulfilled for some nonnegative functions p+, p– ∈ L with the norm

∥∥p+∥∥
L = T +,

∥∥p–∥∥
L = T –. (.)

Proof of Theorem  Problem (.) is equivalent to the equation

x(t) = –
∫ 

t

x(t)
x(s)

(
p(s)x(t) + p(s)x(t)

)
ds, t ∈ (, ],

in the space C. This equation has only the trivial solution if and only if

� =

∣∣∣∣∣
 +

∫ 
t

x(t)
x(s) p(s) ds

∫ 
t

x(t)
x(s) p(s) ds∫ 

t
x(t)
x(s) p(s) ds  +

∫ 
t

x(t)
x(s) p(s) ds

∣∣∣∣∣ �= . (.)

For all p, p satisfying (.), (.), we have

� =

∣∣∣∣∣
 +

∫ 
t

x(t)
x(s) p(s) ds  +

∫ 
t

x(t)
x(s) (p+(s) – p–(s)) ds∫ 

t
x(t)
x(s) p(s) ds  +

∫ 
t

x(t)
x(s) (p+(s) – p–(s)) ds

∣∣∣∣∣ .
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Now we have to determine for which T +, T – the inequality � >  is fulfilled for all func-
tions p, p+, p– satisfying (.), (.) and for all  ≤ t < t ≤ .

If p = , then

� =  +
∫ 

t

x(t)
x(s)

(
p+(s) – p–(s)

)
ds.

For sufficiently small  – t > , all values � are positive. Therefore, the condition � �=  in
(.) can be replaced by � > .

For fixed t, the value of � is minimal if the function p+ ∈ L is ‘concentrated’ at s = ,
and the function p– ∈ L is ‘concentrated’ at s = t. Therefore, the condition

∥∥p–∥∥
L = T – ≤  (.)

is necessary to provide � >  for all possible parameters.
We have

� = α +
∫ 

t

(
α

x(t)
x(s)

– β
x(t)
x(s)

)
p(s) ds + α

∫ t

t

x(t)
x(s)

p(s) ds,

where

α ≡  +
∫ 

t

x(t)
x(s)

(
p+(s) – p–(s)

)
ds > ,

β ≡  +
∫ 

t

x(t)
x(s)

(
p+(s) – p–(s)

)
ds > ,

if inequality (.) holds. Hence, for fixed t < t, p+, p–, the functional � takes its minimal
value if

p(t) = –p–(t), t ∈ [t, t],

and

p(t) = p+(t), t ∈ [t, ] or p(t) = –p–(t), t ∈ [t, ].

If

p(t) = –p–(t), t ∈ [t, ],

then it is easy to see that � >  for any other parameters. Consider the case

p(t) =

⎧⎨
⎩

–p–(t), t ∈ [t, t],

p+(t), t ∈ (t, ].
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Then

� =
(

 –
∫ t

t

x(t)
x(s)

p–(s) ds
)(

 –
∫ 

t

x(t)
x(s)

p–(s) ds
)

+
∫ 

t

x(t)
x(s)

p+(s) ds
(

x(t)
x(t)

–
∫ t

t

x(t)
x(s)

p+(s) ds
)

.

Now � takes its nonpositive minimum if the functions p+ and p– are ‘concentrated’ at
s = t on the interval [t, t] and at the points s = t on the interval [t, ].

Using the notation

T +
 =

∫ t

t

p+(s) ds, T –
 =

∫ t

t

p–(s) ds,

T +
 =

∫ 

t

p+(s) ds, T –
 =

∫ 

t

p–(s) ds,

we get

� > � ≡ (
 – T –


)(

 – T –


)
+ T +



(
x(t)
x(t)

– T +


)
.

It is easy to see that � takes its minimal value if, for example,

T –
 = , T –

 = T +, T +
 = T +

 = T +/,
x(t)
x(t)

= .

Then

� =  – T – –
(
T +)/.

Hence, � >  for all possible parameters if and only if inequalities (.) are fulfilled. �
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