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1 Introduction
Fractional calculus (FC) has become an alternative mathematical method to describe
models with nonlocal behavior. In the last decade, considerable interest in fractional dif-
ferential equations has been stimulated due to their numerous applications in the areas of
physics and engineering [–]. Several numerical and analytical methods have been de-
veloped to study the solutions of nonlinear fractional partial differential equations, frac-
tional sub-equation methods [–], the homotopy perturbation methods [–], the
variational iteration methods [–], homotopy perturbation transform methods [,
], Adomian descomposition methods [–], and other analytical approaches that
could be of interest for the reader are presented in [–]. It worth noting that there
exist only two main definitions of the fractional derivative; the first was proposed by Rie-
mann and Liouville and is the derivative of the convolution of a given function and a power
law kernel, the second one was suggested by Caputo and it is the convolution of the local
derivative of a given function with power law function [].

Due to the fact that the power law cannot be used to model all the physical problems,
Caputo and Fabrizio [] have suggested an alternative concept of differentiation using
the exponential decay as kernel instead of the power law. This new differentiation has
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also attracted attention of many scholars but was also disqualified for classification as a
fractional derivative due to the fact that the kernel was not nonlocal; however, it is clear
that many problems in nature also follow the exponential decay law which indeed has
no singularity; therefore this derivative is significantly useful in modeling such real world
problems [–].

The homotopy analysis method (HAM), proposed by Liao, has been successfully applied
to solving many problems in physics and science [–], this method transforms a prob-
lem into an infinite number of linear problems without using the perturbation techniques.
The Laplace homotopy analysis method (LHAM) is a combination of HAM and Laplace
transform [, ]. The homotopy perturbation method is also combined with the well-
known Laplace transformation method and the variational iteration method to produce a
highly effective technique (homotopy perturbation transform method) for handling many
nonlinear problems [].

In this paper, we use the homotopy perturbation transform method (HPTM) to solve
nonlinear fractional partial differential equations using the fractional operator of Caputo-
Fabrizio type. The basic definitions of fractional calculus are given in Section , several
test problems that show the effectiveness of the proposed method are given in Section ,
and finally the conclusion is given in Section .

2 Basic tools
The Liouville-Caputo fractional derivative is defined for (γ > ) as

C
D

μ
t f (t) =


�(n – μ)

∫ t


(t – s)n–μ–f (n)(s) ds, ()

where C
D

μ
t is a Liouville-Caputo fractional derivative with respect to t, f (n) is the derivative

of integer nth order of f , n = , , . . . ∈ N , and n –  < μ ≤ n.
Now, if the kernel (t – s)n–μ– is changed for the function exp(–μ(t – s)/( – μ)), and


�(n–μ) for (–α)M(α)
(–α) in equation (), we can show the new definition of fractional operator

proposed by Caputo and Fabrizio (CF), which is expressed as follows [, ]:

CF
 Dμ

t f (t) =
( – μ)M(μ)

( – μ)

∫ t


exp

(
–μ

 – μ
(t – s)

)
f (n)(s) ds, ()

where M(α) is a normalization function such that M() = M() = . This new definition
does not have singularities at t = s.

If  < μ ≤  and n ∈ N, then we define the Laplace transform for the CF fractional oper-
ator as follows []:

L
[CF

 D(n+μ)
t f (t)

]
(s)

=


 – μ
L

[
f (n+)(t)

]
L

[
exp

(
–

μ

μ – 
t
)]

=
sn+L[f (t)] – snf () – sn–f ′() . . . – f (n)()

s + μ( – s)
. ()
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3 General description of the method using the operator of Caputo-Fabrizio
type

Consider the following nonlinear partial differential equation in the Caputo-Fabrizio
sense:

CF
 D(n+μ)

t u(x, t) + βu(x, t) + ϕu(x, t) = κ(x, t), m –  < μ + n ≤ m, ()

with initial conditions

∂hu(x, )
∂th = fh(x), h = , , . . . , m – . ()

Applying the Laplace transform () in () yields

L
[
u(x, t)

]
= 	(x, s) –

(
s + μ( – s)

sn+

)
L

[
βu(x, t) + ϕu(x, t)

]
, ()

where

	(x, s) =


sn+

[
snf(x) + sn–f(x) + · · · + fn(x)

]
+

s + μ( – s)
sn+ κ̃(x, s). ()

Applying the Laplace inverse operator on both sides of () yields

u(x, t) = 	(x, t) – L–
[(

s + μ( – s)
sn+

)
L

[
βu(x, t) + ϕu(x, t)

]]
, ()

where 	(x, t) represents the term arising from the source term. Now, we apply the HPTM
to obtain the solution of equation () starting by the hypothesis that u(x, t) is a solution of
this equation, which we express as

u(x, t) =
∞∑

n=

znun(x, t), ()

where un(x, t) are known functions, the nonlinear term can be decomposed as

ϕu(x, t) =
∞∑

n=

znHn(x, t), ()

the polynomials Hn(x, t) are given by []

Hn(u, u, . . . , un) =

n!

∂n

∂zn

[
ϕ

( ∞∑
i=

ziui

)]

z=

, n = , , , . . . ; ()

substituting () and () into () we get

∞∑
n=

un(x, t) = 	(x, t) – zL–

[(
s + μ( – s)

sn+

)
L

[
β

∞∑
n=

znun(x, t) +
∞∑
i=

znHn

]]
. ()
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Comparing the coefficients of like powers of z yields

z : u(x, t) = 	(x, t),

z : u(x, t) = –L–
[(

s + μ( – s)
sn+

)
L

[
βu(x, t) + H(u)

]]
,

z : u(x, t) = –L–
[(

s + μ( – s)
sn+

)
L

[
βu(x, t) + H(u)

]]
,

z : u(x, t) = –L–
[(

s + μ( – s)
sn+

)
L

[
βu(x, t) + H(u)

]]
,

...

zn+ : un+(x, t) = –L–
[(

s + μ( – s)
sn+

)
L

[
βun(x, t) + Hn(u)

]]
.

()

4 Applications
We present the solutions obtained by the application of the HPTM with Caputo-Fabrizio
fractional operator for some NFPDEs.

Example 
Regarding the following nonlinear KdV equation in the Caputo-Fabrizio sense:

CF
 Dμ

t u(x, t) = –u
∂u
∂x

– u
∂u
∂x ,  < μ ≤ , ()

with the initial condition

u(x, ) = x, ()

applying the Laplace transform to () and considering the condition (), we have

L
[
u(x, t)

]
=


s

u(x, ) –
(

s + μ( – s)
s

)
L

[
u

∂u
∂x

+ u
∂u
∂x

]
. ()

Applying the inverse of the Laplace transform to () yields

u(x, t) = u(x, ) – L–
[(

s + μ( – s)
s

)
L

[
u

∂u
∂x

+ u
∂u
∂x

]]
. ()

Now, we apply the HPTM

∞∑
n=

un(x, t) = x – zL–

[(
s + μ( – s)

s

)
L

[ ∞∑
n=

znHn(u) +
∞∑
i=

znHn(u)

]]
, ()
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where Hn(u) are the polynomials that represent the nonlinear terms defined in (). The
polynomials Hn(u) are calculated in the following form:

H(u) = u
∂

∂x
(u) + u

∂

∂x (u),

H(u) =
∂

∂z

[
(u + zu)

∂

∂x
(u + zu) + (u + zu)

∂

∂x (u + zu)
]

z=

= u
∂

∂x
(u) + u

∂

∂x
(u) + u

∂

∂x (u) + u
∂

∂x (u),

H(u) =



∂

∂z

[(
u + zu + zu

) ∂

∂x
(
u + zu + zu

)]
z=

+



∂

∂z

[(
u + zu + zu

) ∂

∂x

(
u + zu + zu

)]
z=

= u
∂

∂x
(u) + u

∂

∂x
(u) + u

∂

∂x
(u)

+ u
∂

∂x
(u) + u

∂

∂x (u) + u
∂

∂x (u)

...

()

thus, H(u) = x.
Comparing the coefficients of z in equation (), we have

z : u(x, t) = x,

z : u(x, t) = –L–
[(

s + μ( – s)
s

)
L

[
H(u) + Kn(u)

]]

= –L–
[(

s + μ( – s)
s

)
L[x]

]

= –L–
[(

s + μ( – s)
s

)
x
s

]

= –L–
[

xμ

s +
( – μ)x

s

]

= –xμt – x( – μ),

z : u(x, t) = –L–
[(

s + μ( – s)
s

)
L

[
–μxt – x( – μ)

]]

= –L–
[(

s + μ( – s)
s

)[
–μx

s –
x( – μ)

s

]]

= –μxL–
[

s + μ( – s)
s

]
+ x( – μ)L–

[
s + μ( – s)

s

]

= –μxL–
[

μ

s +
( – μ)

s

]
+ x( – μ)L–

[
μ

s +
( – μ)

s

]

= μxt + μ( – μ)xt + ( – μ)x

...

()
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Figure 1 Numerical evaluation of (21).

so the approximate solution of u(x, t) is given by

u(x, t) =
∞∑

n=

un(x, t)

= x
(
 – μt – ( – μ) + μt + μ( – μ)t + 

(
 – μ) + · · · ). ()

Therefore the analytical solution when μ → , is given by

u(x, t) = x
(
 – t + t – t + · · · )

= x
∞∑

k=

(–)ktk

=
x

 + t
. ()

Figure  shows the numerical evaluation of ().

Example  Next, the following nonlinear KdV equation in the Caputo-Fabrizio sense is
analyzed:

CF
 Dμ

t u(x, t) = –u
∂u
∂x

–
∂u
∂x + x + xt,  < μ ≤ , ()

with the initial condition

u(x, ) = . ()

Applying the Laplace transform to () and considering the condition (), we obtain

L
[
u(x, t)

]
=

(
s + μ( – s)

s

)[
x

s
+

x

s

]
–

(
s + μ( – s)

s

)
L

[
u

∂u
∂x

+
∂u
∂x

]
. ()
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Applying the inverse of the Laplace transform to the above equation yields

u(x, t) = x
(

μt


– μt + t

)
+ x(–μ + μt + )

– L–
[(

s + μ( – s)
s

)
L

[
u

∂u
∂x

+
∂u
∂x

]]
. ()

Now, we apply the HPTM to ()

∞∑
n=

un(x, t) = x
(

μt


– μt + t

)
+ x(–μ + μt + )

– zL–

[(
s + μ( – s)

s

)
L

[ ∞∑
n=

znHn(u) +
(∑

n=

znun(x, t)
)

xxx

]]
, ()

where the polynomials Hn(u) can be expressed in the following form:

H(u) = u
∂

∂x
(u),

H(u) =
∂

∂z

[
(u + zu)

∂

∂x
(u + zu)

]
z=

= u
∂

∂x
(u) + u

∂

∂x
(u),

H(u) =



∂

∂z

[(
u + zu + zu

) ∂

∂x
(
u + zu + zu

)]
z=

= u
∂

∂x
(u) + u

∂

∂x
(u) + u

∂

∂x
(u)

...

()

Comparing the coefficients of z in (), we have

z : u(x, t) = x
(

μt


– μt + t

)
+ x(–μ + μt + ),

z : u(x, t) = –L–
[(

s + μ( – s)
s

)
L

[
H(u) +

∂u

∂x

]]

= –
μtx


– t

(
μx – μx + μx) + 

(
μx – μx + μx – x)

+ t(–μ + μ + μx – μx + μx – x + μx – μx – 
)

+
t


(
μx – μx)

–
t


(
–μ + μ + μx – μx + μx + μx)

+
t


(
–μ + μx – μx + μx – x + μx – μx)

–
t


(
μx – μx + μx + μx),
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z : u(x, t) = –L–
[(

s + μ( – s)
s

)
L

[
H(u) +

∂u

∂x

]]

= –
(

–μ + μ – μ + μ –


μt + 

(
μ – μ)t

– 
(
μ – μ + μ)t + μt – μt + μt – μt – 

)

– x
(

–


μt +




(
μ – μ)t – μt + μt – μt

+ 
(
μ – μ + μ – μ

)
t – 

(
μ – μ + μ – μ + 

)
t

)

– x
(

–



μt +



(
μ – μ)t – μt + μt – μt

+
,


(
μ – μ + μ – μ

)
t

– 
(
μt – μt + μt – μt + t)) ()

– x
(

μ – μ + μ – μ + μ –


μt

+



(
μt – μt) – 

(
μ – μ + μ)t

+ 
(
μ – μ + μ – μ)t – μt + μt

– μt + μt – μt – 
)

– x
(

–



μt + μt – μt –



(
μ – μ + μ)t

+ μt – μt + μt

– μt – 
(
μ – μ + μ – μ + μ

)
t

+ 
(
μ – μ + μ – μ + μ – 

)
t

)

– x
(

–



μt + μt – μt –
,


(
μ – μ + μ)t

+
,


(
μt – μt + μt – μt)

–
,


(
μ – μ + μ – μ + μ

)
t + μt – μt

+ ,μt – ,μt + μt – t
)

– x
(

–



μt +




(
μt – μt) –

,


(μt – μt + μt)

+



(
μt – μt + μt – μt)

–
,


(
μ – μ + μ – μ + μ

)
t + μt – μt
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Figure 2 Numerical evaluation of (30).

+ μt – μt + μt – t
)

...

so the approximate solution of u(x, t) is given by

u(x, t) =
∞∑

n=

un(x, t) = u + u + u + · · · . ()

Therefore the analytical solution when μ →  is given by

u(x, t) = xt. ()

Figure  shows the numerical evaluation of ().

Example  We consider the following nonlinear Burger equation in the Caputo-Fabrizio
sense:

CF
 Dμ

t u(x, t) + u
∂u
∂x

= η
∂u
∂x ,  < μ ≤ , ()

subject to the initial condition

u(x, ) = nx, n ∈N. ()

Applying the Laplace transform to () and considering the condition (), we have

L
[
u(x, t)

]
=


s

u(x, ) –
(

s + μ( – s)
s

)
L

[
u

∂u
∂x

– η
∂u
∂x

]
. ()

Applying the inverse of the Laplace transform to the above equation yields

u(x, t) = u(x, ) – L–
[(

s + μ( – s)
s

)
L

[
u

∂u
∂x

– η
∂u
∂x

]]
. ()
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Now, we apply the HPTM to ()

∞∑
n=

un(x, t) = nx – zL–

[(
s + μ( – s)

s

)
L

[ ∞∑
n=

znHn(u) – η
∂u
∂x

∞∑
i=

znun(x, t)

]]
, ()

where Hn(u) are the polynomials defined in equation (), which represent the nonlinear
terms. The polynomials Hn(u) are calculated in the following form:

H(u) = u
∂

∂x
(u),

H(u) =
∂

∂z

[
(u + zu)

∂

∂x
(u + zu)

]

= u
∂

∂x
(u) + u

∂

∂x
(u),

H(u) =



∂

∂z

[(
u + zu + zu

) ∂

∂x
(
u + zu + zu

)]

= u
∂

∂x
(u) + u

∂

∂x
(u) + u

∂

∂x
(u)

...

()

thus, H(u) = nx and u(x, t) = .
Comparing the coefficients of z in (), we have

z : u(x, t) = nx,

z : u(x, t) = –L–
[(

s + μ( – s)
s

)
L(nx)

]

= –L–
[(

s + μ( – s)
s

)(
nx
s

)]

= –nx( – μ + μt),

()

z : u(x, t) = –L–
[(

s + μ( – s)
s

)
L

[
–nx(–μ + μt + )

]]

= –L–
[(

s + μ( – s)
s

)(
–nx

(
μ

s –
μ

s
+


s

))]

= nx
(

μ – μ +
μt


– 

(
μ – μ

)
t + 

)

...

()

the approximate solution of u(x, t) is given by

u(x, t) =
∞∑

n=

un(x, t)

= u + u + u + · · · . ()
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Figure 3 Numerical evaluation of (40).

Therefore the analytical solution when μ →  is given by

u(x, t) = nx
[
 – nt + nt – nt + · · · ]

= x
∞∑

k=

(–)knk+tk

=
nx

 + nt
. ()

Figure  shows the numerical evaluation of ().

Example  Consider the following nonlinear Klein-Gordon equation in the Caputo-
Fabrizio sense:

CF
 Dμ+

t u(x, t) =
∂u
∂x – u + xt,  < μ ≤ , ()

subject to the initial condition

u(x, ) = ,

ut(x, ) = x.
()

Applying the Laplace transform to () and considering the condition (), we have

L
[
u(x, t)

]
=


s ut(x, ) + 

(
s + μ( – s)

s

)
x +

(
s + μ( – s)

s

)
L

[
∂u
∂x – u

]
. ()

Applying the inverse of the Laplace transform to the above equation yields

u(x, t) = xt +
μtx


+

( – μ)tx


+ L–

[(
s + μ( – s)

s

)
L

[
∂u
∂x – u

]]
. ()
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Now, we apply the HPTM to ()

∞∑
n=

un(x, t) = xt +
μtx


+

( – μ)tx



+ zL–

[(
s + μ( – s)

s

)
L

[
∂u
∂x

∞∑
n=

znun(x, t) –
∞∑
i=

znHn(x, t)

]]
, ()

where Hn(u) are the polynomials defined in equation (), that represent the nonlinear
terms. The polynomial Hn(u) are calculated in the following form:

H(u) = (u),

H(u) =
∂

∂z
[
(u + zu)]

= uu

...

()

thus, H(u) = (xt + μtx

 + (–μ)tx

 ).
Comparing the coefficients of z in (), we have

z : u(x, t) = xt +
μtx


+

( – μ)tx


,

z : u(x, t)

= L–
[(

s + μ( – s)
s

)
L

(
–

x

s +
( – μ)

s –
x( – μ)

s

–
x( – μ)

s +
μ

s –
xμ

s –
x( – μ)μ

s –
xμ

s

)]

= –
txμ


+

t( – μ)μ


–
tx( – μ)μ


–

tx( – μ)μ



+
tμ


–

xμt


–

tx( – μ)μ

,
–

txμ

,

–
tx( – μ)


+

t( – μ)


–

tx( – μ)


–

tx( – μ)



+
tμ( – μ)x


–

txμ( – μ)


–
tx( – μ)μ


–

tx( – μ)μ

,
,

z : u(x, t)

= –L–
[(

s + μ( – s)
s

)[
(u)xx – H(u)

]]

= μ

[
μtx

,,
–

t


(
–μ + μ + μx – x) –

t


(
μ – μ + 

)

+
t(μx – μx + x – μx + μx – μx)

,
()

+
t(μx + μx – μx + μx – x)

,
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Figure 4 Numerical evaluation of (49).

– t(μx – μx + μx – x – μx – μx

+ μx – ,μx + μx)/,

+
t(μx – ,μx + μx – μx + μx – μx)

,

– t(μx – μx + μx – μx

+ μx – μx + x – μx + μx
)
/,

+
t(μx – μx + μx)

,,
–

t(μx – μx)
,

+ t(μx – μx + ,μx – μx + x

– μx + μx + μx – μx)/,,

–
t(μx – ,μx + ,μx – μx – μx)

,,

]

...

and the approximate solution of u(x, t) is

u(x, t) =
∞∑

n=

un(x, t) = u + u + u + u + · · · . ()

Therefore the analytical solution when μ →  is given by

u(x, t) = xt. ()

Figure  shows the numerical evaluation of ().
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Example  Consider the following nonlinear Klein-Gordon equation in the Caputo-
Fabrizio sense:

CF
 Dμ+

t u(x, t) =
∂u
∂x – u + t sin(x) + t sin(x),  < μ ≤ , ()

subject to the initial condition

u(x, ) = ,

ut(x, ) = sin(x).
()

Applying the Laplace transform to () and considering the condition (), we have

L
[
u(x, t)

]
=

sin(x)
s +

(
s + μ( – s)

s

)[
sin(x)

s +
 sin(x)

s

]

+
(

s + μ( – s)
s

)
L

[
∂u
∂x – u

]
. ()

Applying the inverse of the Laplace transform to the above equation yields

u(x, t) = sin(x)t +
μt sin(x)


+

( – μ)t sin(x)


+
μt sin(x)



+
( – μ)t sin(x)


+ L–

[(
s + μ( – s)

s

)
L

[
∂u
∂x – u

]]
. ()

Now, we apply the HPTM to (),

∞∑
n=

un(x, t) = sin(x)t +
μt sin(x)


+

( – μ)t sin(x)


+
μt sin(x)


+

( – μ)t sin(x)


+ zL–

[(
s + μ( – s)

s

)
L

[ ∞∑
n=

znun(x, t) –
∞∑

n=

znHn(x, t)

]]
, ()

where Hn(u) are the polynomials defined in (), which represent the nonlinear terms. The
polynomial Hn(u) are calculated in the following form:

H(u) = (u),

H(u) =
∂

∂z
[
(u + zu)]

= uu

...

()

Comparing the coefficients of the same order in powers of p in (), we have

z : u(x, t) = sin(x)t +
μt sin(x)


+

( – μ)t sin(x)


+
μt sin(x)


+

( – μ)t sin(x)


,

z : u(x, t) = L–
[[

s + μ( – s)
s

]
L

[
∂u

∂x – H(u)
]]
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= –
μt cos(x)


+

μt cos(x)


+
μt cos(x)


–

μt cos(x)


+
t cos(x)



+
μt cos(x)


+

μt sin(x)


–
t sin(x)


+

μt sin(x)


–
t sin(x)



–
μt sin(x)


+

μt sin(x)


–
μt sin(x)


–

μt sin(x)


–
t sin(x)


+

μt sin(x)


–
t sin(x)


+

μt sin(x)


–
t sin(x)



–
μt sin(x)


+

μt sin(x)


–
μt sin(x)


–

μt sin(x)


–
μt sin(x)


–

μt sin(x)


+
μt sin(x)


+

μt sin(x)


()

–
μt sin(x)

,
+

μt sin(x)


–
t sin(x)


+

μt sin(x)


–
t sin(x)



–
μt sin(x)


–

μt sin(x)


+
μt sin(x)


–

μt sin(x)


–
μt sin(x)


–

μt sin(x)


+
μt sin(x)


+

μt sin(x)


–
μt sin(x)

,
+

μt sin(x)


+
μt sin(x)


–

t sin(x)


–
μt sin(x)


+

μt sin(x)


–
μt sin(x)


–

μt sin(x)


–
μt sin(x)

,
+

μt sin(x)


–
μt sin(x)


+

μt sin(x)


...

and the approximate solution of u(x, t) is given by

u(x, t) =
∞∑

n=

un(x, t)

= u + u + u + · · · . ()

Therefore the analytical solution when μ →  is

u(x, t) = sin(x)t. ()

Figure  shows the numerical evaluation of ().

4.1 Convergence and stability analysis
If the series () converges (n = , , , . . . , n), where 	(x, s) is governed by (), it must be
the solution of equation (). Overall, the results show that the proposed approach is un-
conditionally stable and convergent. The method provides a simple way to control the
convergence region of the solution by introducing () and our approximate results agree
well with exact solutions and numerical ones.



Gómez-Aguilar et al. Advances in Difference Equations  (2017) 2017:68 Page 16 of 18

Figure 5 Numerical evaluation of (58).

Madani in [] have compared the approximate solutions obtained by means of HPTM
in a wide range of the problem’s domain with those results obtained from the exact an-
alytical solutions and the HAM. This comparison shows precise agreement between the
HPTM and exact results. The HPTM solution is valid for a wide range of time and this sug-
gests that the HPTM method can solve non-homogeneous equations with a high degree
of accuracy by considering only few terms in the perturbed solution. On the other hand
the relative error for the HAM is dramatically increased as the time value t increases, so
the HAM solution validity range is restricted to a short region.

Therefore the HPTM method is a powerful new method which needs less computa-
tion time and is much easier and more convenient than the HAM, because the Laplace
transform allows one in many situations to overcome the deficiency mainly caused by un-
satisfied boundary or initial conditions that appear in other semi-analytical methods such
as HAM [].

5 Conclusions
In this paper, the HPTM method was developed to solve fractional nonlinear differential
equations using the Caputo-Fabrizio operator. With the polynomials expansion consid-
ered in the HTPM method we obtained an infinite series solution for the fractional partial
differential equations. Based on the HPTM, a general scheme was developed to obtain
approximate solutions of fractional equations and the solutions are given in a series form,
which converges rapidly. The methodology presented has become an important mathe-
matical tool, motivated by the potential use for physicists and engineers working in various
areas of the natural sciences.

This work shows that the HPTM method is an efficient tool for solving nonlinear frac-
tional partial differential equations considering the fractional operator of Caputo-Fabrizio
type. The HPTM yields a rapidly convergent series solution by using a few iterations [,
]. In this paper a Mathematica program has been used for computations and program-
ming.
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