
Tikjha et al. Advances in Difference Equations  (2017) 2017:67 
DOI 10.1186/s13662-017-1117-2

R E S E A R C H Open Access

The stable equilibrium of a system of
piecewise linear difference equations
Wirot Tikjha1,2*, Evelina Lapierre3 and Thanin Sitthiwirattham4

*Correspondence:
wirottik@psru.ac.th
1Faculty of Science and Technology,
Pibulsongkram Rajabhat University,
Phitsanulok, Thailand
2Centre of Excellence in
Mathematics, PERDO, CHE,
Phitsanulok, Thailand
Full list of author information is
available at the end of the article

Abstract
In this article we consider the global behavior of the system of first order piecewise
linear difference equations: xn+1 = |xn| – yn + b and yn+1 = xn – |yn| – d where the
parameters b and d are any positive real numbers. We show that for any initial
condition in R2 the solution to the system is eventually the equilibrium, (2b + d,b).
Moreover, the solutions of the system will reach the equilibrium within six iterations.
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1 Introduction
In applications, difference equations usually describe the evolution of a certain phe-
nomenon over the course of time. In mathematics, a difference equation produces a se-
quence of numbers where each term of the sequence is defined as a function of the pre-
ceding terms. For the convenience of the reader we supply the following definitions. See
[, ]. A system of difference equations of the first order is a system of the form

⎧
⎨

⎩

xn+ = f (xn, yn),

yn+ = g(xn, yn),
n = , , . . . , ()

where f and g are continuous functions which map R into R.
A solution of the system of difference equations () is a sequence {(xn, yn)}∞n= which sat-

isfies the system for all n ≥ . If we prescribe an initial condition

(x, y) ∈ R

then
⎧
⎨

⎩

x = f (x, y),

y = g(x, y),
⎧
⎨

⎩

x = f (x, y),

y = g(x, y),

...
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and so the solution {(xn, yn)}∞n= of the system of difference equations () exists for all n ≥ 
and is uniquely determined by the initial condition (x, y).

A solution of the system of difference equations () which is constant for all n ≥  is
called an equilibrium solution. If

(xn, yn) = (x̄, ȳ) for all n ≥ 

is an equilibrium solution of the system of difference equations (), then (x̄, ȳ) is called an
equilibrium point, or simply an equilibrium of the system of difference equations ().

Known methods to determine the local asymptotic stability and global stability are not
easily applied to piecewise systems. This is why two of the most famous and enigmatic
systems of difference equations are piecewise: the Lozi Map

⎧
⎨

⎩

xn+ = –a|xn| + yn + ,

yn+ = bxn,
n = , , . . . ,

where the initial condition (x, y) ∈ R and the parameters a, b ∈ R, and the Gingerbread-
man map

⎧
⎨

⎩

xn+ = |xn| – yn + ,

yn+ = xn,
n = , , . . . ,

where the initial condition (x, y) ∈ R. See [–] for more information regarding the Lozi
map and Gingerbreadman map. In the last  years there has been progress in determining
the local behavior of such systems but only limited progress in determining the global
behavior. See [, ].

Ladas and Grove developed the following family of  piecewise linear systems:

⎧
⎨

⎩

xn+ = |xn| + ayn + b,

yn+ = xn + c|yn| + d,
n = , , . . . , ()

where the initial condition (x, y) ∈ R and the parameters a, b, c, and d ∈ {–, , }, in
the hope of creating prototypes that will help us understand the global behavior of more
complicated systems such as the Lozi map and the Gingerbreadman map. See ([–]).

In , Lapierre found in [] that the solutions of the following system of piecewise
linear difference equations:

⎧
⎨

⎩

xn+ = |xn| – yn + ,

yn+ = xn – |yn| – ,
n = , , . . . , ()

are eventually the unique equilibrium for every initial condition (x, y) ∈ R. In this paper
we extend the results by examining a generalization of System (), that is,

⎧
⎨

⎩

xn+ = |xn| – yn + b,

yn+ = xn – |yn| – d,
n = , , . . . , ()
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where the initial condition (x, y) ∈ R and the parameters b and d are any positive real
numbers.

2 Main results
Set

Condition () =
{

(x, y) : |x| – x + |y| – y + b – d ≥ ∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣
}

,

Condition () =
{

(x, y) : x + |x| ≥ y + |y| – b + d
}

,

Condition () =
{

(x, y) : x ≥ |y| + d
}

,

Condition () =
{

(x, y) : x ≥ , y ≥  and x ≥ |y| + d
}

,

Condition () =
{

(x, y) : x ≥ , y ≥  and x = y + b + d
}

.

The proof of the theorem below uses the result from the four lemmas that follow. They
show that if (x, y) ∈ R then (x, y) is an element of Condition ().

Theorem  Let {(xn, yn)}∞n= be the solution of System ().

⎧
⎨

⎩

xn+ = |xn| – yn + b,

yn+ = xn – |yn| – d,
n = , , . . . ,

with (x, y) ∈ R and b, d ∈ (,∞). Then {(xn, yn)}∞n= is the equilibrium (b + d, d).

Proof Suppose (x, y) ∈ R. First we will show that (x, y) is an element of Condition (),
that is,

x + |x| ≥ y + |y| – b + d.

By Lemmas  through  we know that (x, y) is an element of Condition (), so we have

|x| – x + |y| – y + b – d ≥ ∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣.

Then

|x| – y + b +
∣
∣|x| – y + b

∣
∣ ≥ x – |y| – d +

∣
∣x – |y| – d

∣
∣ – b + d.

Therefore (x, y) is an element of Condition (), as required.
Next, we will show that (x, y) is an element of Condition (), that is

x ≥ |y| + d.

Since (x, y) is an element of Condition (), we have

x – |y| – d ≥ –|x| + y – b + d



Tikjha et al. Advances in Difference Equations  (2017) 2017:67 Page 4 of 10

and we have

x – |y| – d ≤ |x| – y + b – d.

Then

∣
∣x – |y| – d

∣
∣ ≤ |x| – y + b – d.

Therefore (x, y) is an element of Condition (), as required.
Next, we will show that (x, y) is an element of Condition (), that is

x ≥ , y ≥  and x ≥ |y| + d.

Since (x, y) is an element of Condition () and x = |x| – y + b and y = x –
|y| – d, we see that x ≥  and y ≥ . Also since (x, y) is an element of Condition
(), we have

|x| + x ≥ y + |y| – b + d,

and so

x – |y| – d ≥ –|x| + y – b + d.

Note that

x – |y| – d ≤ |x| – y + b – d.

Then

∣
∣x – |y| – d

∣
∣ ≤ |x| – y + b – d.

Therefore (x, y) is an element of Condition (), as required.
Next, we will show that (x, y) is an element of Condition (), that is

x ≥ , y ≥  and x = y + b + d.

Since (x, y) is an element of Condition () and x = |x| – y + b and y = x – |y| – d, we
see that x ≥  and y ≥ . Consider

x – y = |x| – y + b – x + |y| + d = b + d and so x = y + b + d.

Therefore (x, y) is an element of Condition (), as required.
Finally, it is easy to show by direct computations that (x, y) = (b+d, b). This completes

the proof of the theorem. �
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The following four lemmas will show that if (x, y) ∈ R then (x, y) is an element of
Condition (). Set

Q =
{

(x, y)|x ≥  and y ≥ 
}

,

Q =
{

(x, y)|x ≤  and y ≥ 
}

,

Q =
{

(x, y)|x ≤  and y ≤ 
}

,

Q =
{

(x, y)|x ≥  and y ≤ 
}

,

and recall that

Condition () =
{

(x, y) : |x| – x + |y| – y + b – d ≥ ∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣
}

.

Lemma  Let {(xn, yn)}∞n= be a solution of System () with (x, y) in Q. Then (x, y) is an
element of Condition ().

Proof Suppose (x, y) ∈Q then x ≥  and y ≥ . Thus

⎧
⎨

⎩

x = |x| – y + b = x – y + b,

y = x – |y| – d = x – y – d.

Case  Suppose further x ≥ y + d. We have x = x – y + b >  and y = x – y – d ≥ .
Note that

|x| – x + |y| – y + b – d = b – d

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = –b – d.

Hence (x, y) is an element of Condition () and Case  is complete.

Case  Suppose x < y + d but x + b ≥ y. We have x = x – yo + b ≥  and y = x –
y – d < . Note that

|x| – x + |y| – y + b – d = –x + y + b + d

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = |x – y + b – d| – b – d.

Case A Suppose further x – y + b – d ≥ . Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = x – y – d – b – d.
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Since y = x – y – d < , we have x – y – d – b < . Also note that |y| – y + b > ,
so

|x| – x + |y| – y + b – d = |y| – y + b – d

> x – y – d – b – d

=
∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣.

Case A is complete.

Case B Suppose x – y + b – d < . Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = –x + y – b + d

< –x + y + b + d

= |x| – x + |y| – y + b – d.

Hence (x, y) is an element of Condition () and Case  is complete.

Case  Finally suppose x < y + d and x + b < y. We have x = x – yo + b <  and y =
x – y – d < . Note that

|x| – x + |y| – y + b – d = –x + y + d

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = d – b.

Since x + b < y, we have y > x. Thus y – x > . We note that –b < . Then

|x| – x + |y| – y + b – d = –x + y + d

> d – b

=
∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣.

Hence (x, y) is an element of Condition () and Case  is complete. �

Lemma  Let {(xn, yn)}∞n= be a solution of System () with (x, y) in Q. Then (x, y) is an
element of Condition ().

Proof Suppose (x, y) ∈Q then x ≤  and y ≥ . Thus

⎧
⎨

⎩

x = |x| – y + b = –x – y + b,

y = x – |y| – d = x – y – d < .
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Case  Suppose further –x + b < y. We have x = –x – y + b <  and y = x – y – d < .
Note that

|x| – x + |y| – y + b – d = –x – y + b – d = y + d

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = d – b.

Since y ≥  and –b < , we see that (x, y) is an element of Condition () and so Case  is
complete.

Case  Suppose –x + b ≥ y. We have x = –x – y + b ≥  and y = x – y – d < . Note
that

|x| – x + |y| – y + b – d = –x + y + b + d > 

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = |–y + b – d| + x – b – d.

Case A Suppose further b ≥ y + d. Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = x – y – b – d.

Since y = x – y – d < , we have x – y – b – d < . Hence (x, y) is an element of
Condition (). Case A is complete.

Case B Finally suppose b < y + d. Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = x + y – b + d.

Since x = –x – y + b ≥ , we have x + y – b < . Hence (x, y) is an element of
Condition () and the proof to Lemma  is complete. �

Lemma  Let {(xn, yn)}∞n= be a solution of System () with (x, y) in Q. Then (x, y) is an
element of Condition ().

Proof Suppose (x, y) ∈Q then x ≤  and y ≤ . Thus

⎧
⎨

⎩

x = |x| – y + b = –x – y + b > ,

y = x – |y| – d = x + y – d < .

Then

|x| – x + |y| – y + b – d = –x – y + b + d > 
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and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = |b – d| – (–x – y + b + d).

Case  Suppose b – d ≥ . Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = x + y – b – d < .

Hence (x, y) is an element of Condition () and Case  is complete.

Case  Suppose further b – d < . Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = –b + d + x + y – b – d = x + y – b + d.

Since –x – y + b > , we have x + y – b < . Hence (x, y) is an element of Con-
dition () and the proof to Lemma  is complete.

�

Lemma  Let {(xn, yn)}∞n= be a solution of System () with (x, y) in Q. Then (x, y) is an
element of Condition ().

Proof Suppose (x, y) ∈Q then x ≥  and y ≤ . Thus

⎧
⎨

⎩

x = |x| – y + b = x – y + b > ,

y = x – |y| – d = x + y – d.

Case  Suppose further y = x + y – d ≥ . Then

|x| – x + |y| – y + b – d = b – d

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = –b – d.

Hence (x, y) is an element of Condition () and Case  is complete.

Case  Suppose y = x + y – d < . Then

|x| – x + |y| – y + b – d = –y + b – d = –x – y + b + d

and

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = |x + b – d| + y – b – d.

Case A Suppose further x + b – d ≥ . Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = x + b – d + y – b – d = x + y – d – b.
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Since x + b – d ≥ , b > –x. Thus –x – y + b + d > . Since y = x + y – d < ,
we have x + y – d – b < . Hence (x, y) is an element of Condition () and Case A
is complete.

Case B Now suppose x + b – d < . Then

∣
∣x – |y| – d

∣
∣ –

∣
∣|x| – y + b

∣
∣ = –x – b + d + y – b – d = –x + y – b + d.

Since y ≤  and b > , we see that (x, y) is an element of Condition () and the proof of
Lemma  is complete. �

3 Discussion and conclusion
In this paper we showed that for any initial value (x, y) ∈ R we have the following se-
quence:

(x, y) ∈ {
(x, y) : |x| – x + |y| – y + b – d ≥ ∣

∣x – |y| – d
∣
∣ –

∣
∣|x| – y + b

∣
∣
}

,

(x, y) ∈ {
(x, y) : x + |x| ≥ y + |y| – b + d

}
,

(x, y) ∈ {
(x, y) : x ≥ |y| + d

}
,

(x, y) ∈ {
(x, y) : x ≥ , y ≥  and x ≥ |y| + d

}
,

(x, y) ∈ {
(x, y) : x ≥ , y ≥  and x = y + b + d

}
,

(x, y) = (x̄, ȳ) = (b + d, b).

In addition, if we begin with an initial condition that is an element of Condition (N ) for
N ∈ {, , , , }, then it requires  – N iterations to reach the equilibrium point.

The generalized system of piecewise linear difference equations examined in this paper
was created as a prototype to understand the global behavior of more complicated systems.
We believe that this paper contributes broadly to the overall understanding of systems
whose global behavior still remains unknown.
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