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Abstract
In this work, we study the inverse problem for difference equations which are
constructed by the Sturm-Liouville equations with generalized function potential
from the generalized spectral function (GSF). Some formulas are given in order to
obtain the matrix J, which need not be symmetric, by using the GSF and the structure
of the GSF is studied.
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1 Introduction
In this paper we deal with the N × N tridiagonal matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b a  · · ·   · · ·   
a b a · · ·   · · ·   
 a b · · ·   · · ·   
...

...
...

. . .
...

...
. . .

...
...

...
   · · · bM aM · · ·   
   · · · cM dM+ · · ·   
...

...
...

. . .
...

...
. . .

...
...

...
   · · ·   · · · dN– cN– 
   · · ·   · · · cN– dN– cN–

   · · ·   · · ·  cN– dN–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (.)

where an, bn ∈ C, an �=  and

cn = an/α, n ∈ {M, M + , . . . , N – },
dn = bn/α, n ∈ {M + , M + , . . . , N – },

and α �=  is a positive real number.
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The definitions and some properties of GSF are given in [–]. The inverse problem
for the infinite Jacobi matrices from the GSF was investigated in [–], see also []. The
inverse spectral problem for N × N tridiagonal symmetric matrix has been studied in []
and the inverse spectral problem with spectral parameter in the initial conditions has been
studied in []. The goal of this paper is to study the almost symmetric matrix J of the form
(.). Almost symmetric here means that the entries above and below the main diagonal
are the same except the entries aM and cM .

The eigenvalue problem we consider in this paper is Jy = λy, where y = {yn}N–
n= is a col-

umn vector. There exists a relation between this matrix eigenvalue problem and the second
order linear difference equation

an–yn– + bnyn + anyn+ = λρnyn, n ∈ {, , . . . , M, . . . , N – },
a– = cN– = ,

(.)

for {yn}N
n=–, with the boundary conditions

y– = yN = , (.)

where ρn is a constant defined by

ρn =

{
,  ≤ n ≤ M,
α, M < n ≤ N – ,

 �= α > . (.)

These expressions are equivalent. The problem (.), (.) is a discrete form of the Sturm-
Liouville operator with discontinuous coefficients

d
dx

[
p(x)

d
dx

y(x)
]

+ q(x)y(x) = λρ(x)y(x), x ∈ [a, b], (.)

y(a) = y(b) = , (.)

where ρ(x) is a piecewise function defined by

ρ(x) =

{
, a ≤ x ≤ c,
α, c < x ≤ b,

α �= ,

[a, b] is a finite interval, α is a real number, and c is a discontinuity point in [a, b]. On
eigenvalues and eigenfunctions of such an equation, see [], and the inverse problem for
this kind equation has been investigated in [].

2 Generalized spectral function
In this section, we find the characteristic polynomial for the matrix J and then give the
existence of linear functional which is defined from the ring of all polynomials in λ of
degree ≤N with the complex coefficients to C. Let us denote by {Pn(λ)}N

n=–, the solution
of equation (.) together with the initial data

y– = , y = . (.)
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By starting with (.), we can derive from equation (.) iteratively the polynomials Pn(λ) of
order n, for n = , N . In this way we obtain the unique solution {Pn(λ)}N

n= of the following
recurrence relations:

bP(λ) + aP(λ) = λP(λ), cN– = ,

an–Pn–(λ) + bnPn(λ) + anPn+(λ) = λPn(λ), n ∈ {, , . . . , M},
cn–Pn–(λ) + dnPn(λ) + cnPn+(λ) = λPn(λ), n ∈ {M + , . . . , N – },

(.)

subject to the initial condition

P(λ) = . (.)

Lemma  The following equality holds:

det(J – λI) = (–)N aa · · ·aMcM+ · · · cN–PN (λ). (.)

Therefore, the roots of the polynomial PN (λ) and the eigenvalues of the matrix J are coin-
cident.

Proof We will consider the proof in three cases. For each n = , M, let us define the deter-
minant �n(λ) as follows:

�n(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b – λ a  · · ·   
a b – λ a · · ·   
 a b – λ · · ·   
...

...
...

. . .
...

...
...

   · · · bn– – λ an– 
   · · · an– bn– – λ an–

   · · ·  an– bn– – λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then expanding �n(λ) by adding a row and column and finding the determinant of �n+(λ)
by the elements of the last row, we obtain

�n+(λ) = (bn – λ) �n (λ) – a
n– �n– (λ), n = , M,�(λ) = . (.)

Now for n = M + , N , let us define �n(λ) as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b – λ a  · · ·   · · ·   
a b – λ a · · ·   · · ·   
 a b – λ · · ·   · · ·   
...

...
...

. . .
...

...
. . .

...
...

...
   · · · bM – λ aM · · ·   
   · · · cM dM+ – λ · · ·   
...

...
...

. . .
...

...
. . .

...
...

...
   · · ·   · · · dn– – λ cn– 
   · · ·   · · · cn– dn– – λ cn–
   · · ·   · · ·  cn– dn– – λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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By using the same method, we get

�n+(λ) = (dn – λ) �n (λ) – c
n– �n– (λ), (.)

and finally, for n = M + , we find

�M+(λ) = (dM+ – λ) �M+ (λ) – aMcM �M (λ). (.)

Dividing (.) and (.) by the product a · · ·an–, (.) by the product a · · ·an–cn–, we
can easily show that the sequence

h– = , h = , hn = (–)n(a · · ·an–)– �n (λ), n = , M + ,

hn = (–)n(a · · · cM+ · · · cn–)– �n (λ), n = M + , N ,

satisfies (.), (.). Then hn is solution of (.), (.). We can show it by Pn(λ) for n = , N .
Since �N (λ) is also equal to det(J – λI) if we combine (.), (.) and (.), we obtain (.),
for all n ∈ {, , . . . , M, M + , . . . , N}. �

Theorem  There exists a unique linear functional � : CN [λ] →C such that the following
relations hold:

�
(
Pm(λ)Pn(λ)

)
=

δmn

η
, m, n ∈ {, , . . . , M, . . . , N – }, (.)

�
(
Pm(λ)PN (λ)

)
= , m ∈ {, , . . . , M, . . . , N}, (.)

where δmn is the Kronecker delta, η is defined by

η =

{
, m, n ≤ M,
α, m, n > M,

(.)

and �(P(λ)) shows the value of � on any polynomial P(λ).

Proof In order to show the uniqueness of � we assume that there exists such a linear
functional �, satisfying (.) and (.). Let us define the N +  polynomials as follows:

Pn(λ) (n = , N – ), Pm(λ)PN (λ) (m = , N). (.)

It is clear that this polynomial set is a basis for the linear space CN [λ]. Indeed the polyno-
mials defined by (.) are linearly independent and their number is equal to dimension
of CN [λ]. On the other hand, by using (.) and (.), the quantities of the polynomials
given in (.) under the functional � can be found as finite values:

�
(
Pn(λ)

)
=

δn

η
, n ∈ {, , . . . , M, . . . , N – }, (.)

�
(
Pm(λ)PN (λ)

)
= , m ∈ {, , . . . , N}. (.)

Therefore, by linearity, the functional � defined on CN [λ] is unique.



Bala et al. Advances in Difference Equations  (2016) 2016:172 Page 5 of 13

To show the existence of �, let us define it on the polynomials (.) by (.), (.) and
then we expand � to over the whole space CN [λ] by using the linearity of �. It can be
shown that the functional � satisfies (.), (.). Denote

�
(
Pm(λ)Pn(λ)

)
= Bmn, m, n ∈ {, , . . . , M, . . . , N}. (.)

It is clear that Bmn = Bnm, for m, n ∈ {, , . . . , N}. From (.) and (.), we get

Bm = Bm = δm, m ∈ {, , . . . , M}, (.)

Bm = Bm =
δm

α
, m ∈ {M + , . . . , N}, (.)

BmN = BNm = , m ∈ {, , . . . , N}. (.)

Since {Pn(λ)}N
 is the solution of (.), we derive from the first equation of (.), using (.),

λ = b + aP(λ).

Inserting this into the remaining equations in (.), we get

an–Pn–(λ) + bnPn(λ) + anPn+(λ) = bPn(λ) + aP(λ)Pn(λ), n ∈ {, , . . . , M},
cn–Pn–(λ) + dnPn(λ) + cnPn+(λ) = bPn(λ) + aP(λ)Pn(λ), n ∈ {M + , . . . , N – }.

If we apply the linear functional � to both sides of the last two equations, by taking into
account (.), (.), and (.), we get

Bn = Bn = δn, n ∈ {, , . . . , M}, (.)

Bn = Bn =
δn

α
, n ∈ {M + , . . . , N}. (.)

Further, recalling the definition of ρn in (.), we write

am–Pm–(λ) + bmPm(λ) + amPm+(λ) = λρmPm(λ), m ∈ {, , . . . , M, . . . , N – },
an–Pn–(λ) + bnPn(λ) + anPn+(λ) = λρnPn(λ), n ∈ {, , . . . , M, . . . , N – }.

If the first equality is multiplied by Pn(λ) and the second equality is multiplied by Pm(λ),
then the second result is subtracted from the first, we obtain:

for m, n ∈ {, , . . . , M},

am–Pm–(λ)Pn(λ) + bmPm(λ)Pn(λ) + amPm+(λ)Pn(λ)

= an–Pn–(λ)Pm(λ) + bnPn(λ)Pm(λ) + anPn+(λ)Pm(λ),

for m ∈ {, , . . . , M}, n ∈ {M + , . . . , N – },

am–Pm–(λ)Pn(λ) + bmPm(λ)Pn(λ) + amPm+(λ)Pn(λ)

= cn–Pn–(λ)Pm(λ) + dnPn(λ)Pm(λ) + cnPn+(λ)Pm(λ),
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for m ∈ {M + , . . . , N – }, n ∈ {, , . . . , M},

cm–Pm–(λ)Pn(λ) + dmPm(λ)Pn(λ) + cmPm+(λ)Pn(λ)

= an–Pn–(λ)Pm(λ) + bnPn(λ)Pm(λ) + anPn+(λ)Pm(λ),

for m, n ∈ {M + , . . . , N – },

cm–Pm–(λ)Pn(λ) + dmPm(λ)Pn(λ) + cmPm+(λ)Pn(λ)

= cn–Pn–(λ)Pm(λ) + dnPn(λ)Pm(λ) + cnPn+(λ)Pm(λ).

If the functional � is applied to both sides of these equations, and using (.)-(.),
we obtain for Bmn the following boundary value problems:

for m, n ∈ {, , . . . , M},

am–Bm–,n + bmBmn + amBm+,n = an–Bn–,m + bnBnm + anBn+,m, (.)

for m ∈ {, , . . . , M}, n ∈ {M + , . . . , N – },

am–Bm–,n + bmBmn + amBm+,n = cn–Bn–,m + dnBnm + cnBn+,m, (.)

for m ∈ {M + , . . . , N – }, n ∈ {, , . . . , M},

cm–Bm–,n + dmBmn + cmBm+,n = an–Bn–,m + bnBnm + anBn+,m, (.)

for m, n ∈ {M + , . . . , N – },

cm–Bm–,n + dmBmn + cmBm+,n = cn–Bn–,m + dnBnm + cnBn+,m, (.)

for n ∈ {, , . . . , M},

Bn = Bn = δn, Bn = Bn = δn, BNn = BnN = , (.)

for n ∈ {M + , . . . , N},

Bn = Bn =
δn

α
, Bn = Bn =

δn

α
, BNn = BnN = . (.)

After starting with boundary values (.), (.) and using equations (.)-(.), we
can find all Bmn uniquely as follows:

Bmn = δmn, m, n ∈ {, , . . . , M},

Bmn =
δmn

α
, m, n ∈ {M + , . . . , N – },

BmN = , m ∈ {, , . . . , M, M + , . . . , N}. �

Definition  The linear functional � defined by Theorem  is called the GSF of the ma-
trix J given in (.).
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3 Inverse problem from the generalized spectral function
In this section, we solve the inverse spectral problem of reconstructing the matrix J by
its GSF and we give the structure of GSF. The inverse spectral problem may be stated as
follows: determine the reconstruction procedure to construct the matrix J from a given
GSF and find the necessary and sufficient conditions for a linear functional � on CN [λ],
to be the GSF for some matrix J of the form (.). For the investigation of necessary and
sufficient conditions for a given linear functional to be the GSF, we will refer to Theorems
 and  in []. In this paper, we only find the formulas to construct the matrix J .

Recall that Pn(λ) is a polynomial of degree n, so it can be expressed as

Pn(λ) = γn

(
λn +

n–∑
k=

χnkλ
k

)
, n ∈ {, , . . . , M, . . . , N}. (.)

where γn and χnk are constants. Inserting (.) in (.) and using the equality of the poly-
nomials, we can find the following equalities between the coefficients an, bn, cn, dn and
the quantities γn, χnk :

an =
γn

γn+
( ≤ n ≤ M),γ = ,

cn =
γn

γn+
(M < n ≤ N – ), cM =

γM

αγM+
,

(.)

bn = χn,n– – χn+,n ( ≤ n ≤ M),χ,– = ,

dn = χn,n– – χn+,n (M < n ≤ N – ).
(.)

It is easily shown that there exists an equivalence between (.), (.), and

�
(
λmPn(λ)

)
=

δmn

ηγn
, m = , n, n ∈ {, , . . . , M, . . . , N – }, (.)

�
(
λmPN (λ)

)
= , m = , N , (.)

respectively. Indeed, from (.), we can write

�
(
Pm(λ)Pn(λ)

)
= γm�

(
λmPn(λ)

)
+ γm

m–∑
j=

χmj�
(
λjPn(λ)

)
. (.)

Then, since

λj =
j∑

i=

c(j)
i Pi(λ), j ∈ {, , . . . , N},

it follows from (.) that (.), (.) hold if we have (.), (.) and conversely if (.), (.)
hold, then (.), (.) can be obtained from (.) and (.).

Now, let us introduce

tl = �
(
λl), l ∈ {, , . . . , N}, (.)

which are called ‘power moments’ of the functional �.
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Writing the expansion (.) in (.) and (.) instead of Pn(λ) and PN (λ), respectively,
and using the notation in (.), we get

tn+m +
n–∑
k=

χnktk+m = , m = , n – , n ∈ {, , . . . , N}, (.)

tN +
N–∑
k=

χNktk+N = , (.)

tn +
n–∑
k=

χnktk+n =


ηγ 
n

, n ∈ {, , . . . , N – }, (.)

where η is defined in (.).
As a result of all discussions above, we write the procedure to construct the matrix in

(.). In turn, in order to find the entries an, bn, cn, dn of the required matrix J , it suffices
to know only the quantities γn, χnk . Given the linear functional � which satisfies the con-
ditions of Theorem  in [] on CN [λ], we can use (.) to find the quantities tl and write
down the inhomogeneous system of linear algebraic equations (.) with the unknowns
χn,χn, . . . ,χn,n–, for every fixed n ∈ {, , . . . , N}. After solving this system uniquely and
using (.), we find the quantities γn and so we obtain an, bn, cn, dn, recalling (.), (.).
Therefore, we can construct the matrix J .

Using the numbers tl defined in (.), let us present the determinants

Dn =

∣∣∣∣∣∣∣∣∣∣

t t · · · tn

t t · · · tn+
...

...
. . .

...
tn tn+ · · · tn

∣∣∣∣∣∣∣∣∣∣
, n = , N . (.)

From the definition of determinants in (.), it can be shown that the determinant of
system (.) is Dn–. Then, solving system (.) by using Cramer’s rule, we obtain

χnk = –
D(k)

n–
Dn–

, k = , n – , (.)

where D(k)
m (k = , m) is the determinant formed by exchanging in Dm the (k + )th column

by the vector (tm+, tm+, . . . , tm+)T . Next, substituting equation (.) of χnk into the left-
hand side of (.), we find

γ –
n =

ηDn

Dn–
, (.)

where η is defined in (.). Now if we set D(m)
m = �m, then we obtain from (.), (.), by

using (.), (.),

an = ±
√

Dn–Dn+

Dn
( ≤ n ≤ M – ), D– = , (.)

aM = ±
√

αDM–DM+

DM
, cM = ±

√
DM–DM+√

αDM
, (.)
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cn = ±
√

Dn–Dn+

Dn
(M < n ≤ N – ), (.)

bn =
�n

Dn
–

�n–

Dn–
( ≤ n ≤ M),�– = , (.)

dn =
�n

Dn
–

�n–

Dn–
(M < n ≤ N – ),� = t. (.)

Hence , if � which satisfies the conditions of Theorem  in [] is given, then the values an,
bn, cn, dn of the matrix J are obtained by equations (.)-(.), where Dn is defined by
(.) and (.).

In the following theorem, we will show that the GSF of Jhas a special form and we will
give a structure of the GSF. Let J be a matrix which has the form (.) and � be the GSF
of J . Here we characterize the structure of �.

Theorem  Let λ, . . . ,λp be all the eigenvalues with the multiplicities m, . . . , mp, respec-
tively, of the matrix J . These are also the roots of the polynomial (.). Then there exist
numbers βkj (j = , mk , k = , p) uniquely determined by the matrix J such that for any poly-
nomial P(λ) ∈ CN [λ] the following formula holds:

�
(
P(λ)

)
=

p∑
k=

mk∑
j=

βkj

(j – )!
P(j–)(λk), (.)

where P(j–)(λ) denotes the (j – )th derivative of P(λ) with respect to λ.

Proof Let J be a matrix which has the form (.). Take into consideration the difference
equation (.)

an–yn– + bnyn + anyn+ = λρnyn, n ∈ {, , . . . , N – }, a– = cN– = , (.)

where {yn}N
n=– is desired solution and

ρn =

{
,  ≤ n ≤ M,
α, M < n ≤ N – .

Denote by {Pn(λ)}N
n=– and {Qn(λ)}N

n=– the solutions of (.) satisfying the initial condi-
tions

P–(λ) = , P(λ) = , (.)

Q–(λ) = –, Q(λ) = . (.)

For each n ≥ , the degree of polynomial Pn(λ) is n and the degree of polynomial Qn(λ) is
n – . It is clear that the entries Rnm(λ) of the resolvent matrix R(λ) = (J – λI)– are of the
form

Rnm(λ) =

{
ρnPn(λ)[Qm(λ) + M(λ)Pm(λ)],  ≤ n ≤ m ≤ N – ,
ρnPm(λ)[Qn(λ) + M(λ)Pn(λ)],  ≤ m ≤ n ≤ N – ,

(.)
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where

M(λ) = –
QN (λ)
PN (λ)

, (.)

and ρn is defined in (.). Let f = (f, f, . . . , fN–)T ∈ C
N be an arbitrary vector. Since

R(λ)f = –
f
λ

+ O
(


λ

)
,

as |λ| → ∞, we get for each n ∈ {, , . . . , N –} and for a sufficiently large positive number r

fn = –


π i

∫
�r

{N–∑
m=

Rnm(λ)fm

}
dλ +

∫
�r

O
(


λ

)
dλ, (.)

where �r is the circle in the λ-plane of radius r centered at the origin.
Let all the distinct zeros of PN (λ) in (.) be λ, . . . ,λp with multiplicities m, . . . , mp,

respectively. Then

PN (λ) = c(λ – λ)m · · · (λ – λN )mp , (.)

where c is a constant. We have  ≤ p ≤ N and m + · · · + mp = N . By (.), we can write
QN (λ)
PN (λ) as the sum of partial fractions:

QN (λ)
PN (λ)

=
p∑

k=

mk∑
j=

βkj

(λ – λk)j , (.)

where βkj are some uniquely determined complex numbers which depend on the matrix J .
Inserting (.) in (.) and using (.), (.) we get, by the residue theorem and pass-
ing then to the limit r → ∞,

fn =
p∑

k=

mk∑
j=

βkj

(j – )!

{
dj–

dλj–

[
ρnF(λ)Pn(λ)

]}

λ=λk

, n ∈ {, , . . . , N – }, (.)

where

F(λ) =
N–∑
m=

fmPm(λ). (.)

Now define the functional � on CN [λ] by the formula

�
(
P(λ)

)
=

p∑
k=

mk∑
j=

βkj

(j – )!
P(j–)(λk), P(λ) ∈CN [λ]. (.)

Thus, (.) can be written as follows:

fn

ρn
= �

(
F(λ)Pn(λ)

)
, n ∈ {, , . . . , N – }. (.)
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Now by using (.) in (.) and the arbitrariness of {fm}N–
m=, we see that the first relation

in Theorem ,

�
(
Pm(λ)Pn(λ)

)
= δmn, m, n ∈ {, , . . . , M}, (.)

�
(
Pm(λ)Pn(λ)

)
=

δmn

α
, m, n ∈ {M + , . . . , N – }, (.)

holds. Moreover, from (.) and (.), we have also the second relation in Theorem ,

�
(
Pm(λ)PN (λ)

)
= , m ∈ {, , . . . , N}. (.)

These mean that the GSF of the matrix J has the form (.). �

Now, we shall work out two examples to illustrate our formulas. In the first example, in
order to determine χn,k and γn, we will use (.)-(.).

Example  Take into consideration the case N = , M = , and the functional � described
by the formula

�
(
P(λ)

)
=



(
P() + P() + P()

)
.

It is clear that the functional defined above has the structure given in Theorem  and
satisfies the conditions of Theorem  in []. So it can be chosen as a GSF. From (.) we
calculate all tl as follows:

t = , t = , t =



,

t = , t =



, t = , t =



.
(.)

Then solving the system of equation (.) by using the values in (.), we get

χ, = –, χ, =



, χ, = –,

χ, = , χ, = , χ, = –.
(.)

Now inserting the quantities in (.) and (.) into equation (.), we obtain

γ = , γ = ±
√




, γ = ± √
α

. (.)

Now it follows from (.) and (.) that

a = ±
√




, a = ±
√

α


, c = ±

√


α
,

b = , b = , d = ,
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where (.) and (.) are used. Consequently, we find the four matrices J± for � as
follows:

J± =

⎡
⎢⎣

b a 
a b a

 c d

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

 ±
√


 

±
√


  ±√

α


 ±
√


α



⎤
⎥⎥⎥⎦ .

The characteristic polynomials which are determined by the matrices J± are obtained:

det(J± – λI) = λ(λ – )(λ – ).

In the following example, by using Theorem  in [], it can be shown that the necessary
and sufficient conditions for a given linear functional � to be the GSF hold and the matrix J
can be constructed from (.)-(.).

Example  Let us consider the functional � defined by the formula for N =  and M = 

�
(
P(μ)

)
= P(μ) + P′(μ) + P′′(μ),

where μ is any number. From (.), we obtain

t = , tl = �
(
μl) = μl + lμl– + l(l – )μl–, (.)

and from (.), we get numbers tl for l = ,  as follows:

t = μ + , t = μ + μ + ,

t = μ + μ + μ, t = μ + μ + μ,

t = μ + μ + μ, t = μ + μ + μ.

(.)

By using (.) and recalling (.), we find

D– = , D = t = , (.)

D =

∣∣∣∣∣
t t

t t

∣∣∣∣∣ =

∣∣∣∣∣
 μ + 

μ +  μ + μ + 

∣∣∣∣∣ = –, (.)

D =

∣∣∣∣∣∣∣

 μ +  μ + μ + 
μ +  μ + μ +  μ + μ + μ

μ + μ +  μ + μ + μ μ + μ + μ

∣∣∣∣∣∣∣
= –, (.)

and similarly, after some basic operations, we get D = . From the equality D(m)
m = �m, we

determine

�– = , � = t = μ + , (.)

� =

∣∣∣∣∣
 μ + μ + 

μ +  μ + μ + μ

∣∣∣∣∣ = –μ – , (.)
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� =

∣∣∣∣∣∣∣

 μ +  μ + μ + μ

μ +  μ + μ +  μ + μ + μ

μ + μ +  μ + μ + μ μ + μ + μ

∣∣∣∣∣∣∣
= –μ. (.)

Now, it follows from (.), (.), and (.) that

a = ±i, a = ±i
√

α, c = ±i
√

√
α

,

and from (.), (.) that

b = μ + , b = μ + , d = μ – ,

where (.)-(.) are used. Consequently, we find the four matrices J± for � as follows:

J± =

⎡
⎢⎣

b a 
a b a

 c d

⎤
⎥⎦ =

⎡
⎢⎣

μ +  ±i 
±i μ +  ±i

√
α

 ± i
√

√
α

μ – 

⎤
⎥⎦ .

The characteristic polynomials which are determined by the matrices J± are obtained:

det(J± – λI) = (μ – λ).
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