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1 Introduction
A q-analogue of Taylor series was introduced by Jackson []:

f (x) =
∞∑

n=

( – q)n

(q; q)n
Dn

qf (a)[x – a]n, (.)

where  < q < , Dq is the q-derivative, and

[x – a]n := (x – a)(x – qa) · · · (x – qn–a
)
, n ≥ , [x – a] := .

Al-Salam and Verma [] introduced the following q-interpolation series:

f (x) =
∞∑

n=

(–)nq–n(n–)/ ( – q)n

(q; q)n
Dn

qf
(
aq–n)[x – a]n. (.)

Al-Salam and Verma gave only formal proofs for (.); see [, ]. Analytic proofs of (.)
and (.) were given in [].

Results of generalized Taylor formulas involving the classical fractional derivative may
be found in [, ]. In [], a generalized Taylor formula involving the classical Riemann-
Liouville fractional derivative of order α is deduced, whereas the generalized Taylor for-
mula in [] contains Caputo fractional derivative of order α, where  < α ≤ .

In [], a q-Taylor formula in terms of Riemann-Liouville fractional q-derivative Dα
q,a of

order α is obtained. This result can be stated as follows.
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Theorem A ([]) Let f be a function defined on (, b) and α ∈ (, ). Then f can be ex-
panded in the form

f (x) =
n–∑

k=

(Dα+k
q,a f )(c)

�q(α + k + )
(x – c)(α+k)

+


�q(α)

∫ c

a
(x – c)(α–)(Dα

q,af
)
(t) dqt

– K(a)(x – c)(α–) +
(
Iα+n

q,c Dα+n
q,a f

)
(x), (.)

where  < a < c < x < b, and K(a) does not depend on x.

Also, in [], a generalized q-Taylor formula in fractional q-calculus is established and
used in deriving certain q-generating functions for the basic hyper-geometric functions.

In this paper, we give generalized Taylor formulas involving Riemann-Liouville frac-
tional q-derivatives of order α and Caputo fractional q-derivatives of order α; see (.)
and (.). We also give sufficient conditions that guarantee that the remainders of these
formulas vanish to get infinite expansions.

In the following section, we give a brief account of the q-notations and notions that will
be used throughout this paper. In Section , we give q-analogues of mean value theorems
on [, a]. In Section , we give generalized q-Taylor formulas involving both Riemann-
Liouville fractional q-derivative and Caputo fractional q-derivative. Then conditions for
infinite expansion for some functions are given. In the last section, we apply the obtained
results in solving certain q-difference equations.

2 Notation and preliminaries
In the following, q is a positive number, q < . We follow [] for the definition of the
q-shifted factorial, Jackson q-integral, q-derivative, q-gamma function �q(z), and q-beta
function Bq(α,β). Also, we follow [] for the definition of the q-derivative at zero and the
q-regular at zero functions.

The following q-integral is useful and will be used in the sequel:

∫ x


(qt/x; q)β–tα– dqt = xαBq(α,β), α,β , x > ; (.)

it can be proved by setting ξ = t/x.
By L

q(, a), a > , we mean the Banach space of all functions defined on (, a] such that

‖f ‖ :=
∫ a



∣∣f (t)
∣∣dqt < ∞, (.)

where two functions in L
q(, a) are considered to be the same function if they have the

same values at the sequence {aqn}∞n=.
Let L

q(, a) denote the space of all functions f defined on (, a] such that f ∈ L
q(, x) for

all x ∈ (qa, a]. The space ACq[, a] is the space of all functions f defined on [, a] such that
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f is q-regular at zero and

∞∑

j=

∣∣f
(
tqj) – f

(
tqj+)∣∣ < ∞, t ∈ (qa, a]. (.)

A characterization of the space ACq[, a] is given as follows (see []).

Theorem B Let f be a function defined on [, a]. Then f ∈ ACq[, a] if and only if there
exist a constant c and a function φ in L

q[, a] such that

f ∈ACq[, a] ⇐⇒ f (x) = c +
∫ x


φ(u) dqu, x ∈ [, a]. (.)

Moreover, c and φ are uniquely determined by c = f () and φ(x) = Dqf (x) for all x ∈ (, a].

The Riemann-Liouville fractional q-integral operator is introduced in [] by Al-Salam
through

Iα
q f (x) :=

xα–

�q(α)

∫ x


(qt/x; q)α–f (t) dqt, α /∈ {–, –, . . .}. (.)

In [], the generalized Riemann-Liouville fractional q-integral operator for α ∈R
+ is given

as

Iα
q,af (x) :=

xα–

�q(α)

∫ x

a
(qt/x; q)α–f (t) dqt. (.)

Using the definition of the q-integral, (.) reduces to

Iα
q f (x) = xα( – q)α

∞∑

n=

qn (qα ; q)n

(q; q)n
f
(
xqn), (.)

which is valid for all α. For example,

Iα
q xβ– =

�q(β)
�q(β + α)

xα+β–. (.)

This basic Riemann-Liouville fractional q-integral was also given later by Agarwal []. In
the same paper, he introduced the following semigroup property:

Iα
q Iβ

q f (x) = Iβ
q Iα

q f (x) = Iα+β
q f (x), α,β ≥ . (.)

The generalized Riemann-Liouville fractional q-derivative is given in [] by

Dα
q,af (x) = DqI–α

q,a f (x), a ≥ , (.)

and Dα
q,f (x) = Dα

q f (x). The Caputo fractional q-derivative of order α,  < α ≤ , is (see[])

cDα
q f (x) := I–α

q Dqf (x). (.)
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Let AC(k)
q [, a], k ∈ N , be the space of all functions f defined on [, a] such that

f , Dqf , . . . , Dk–
q f are q-regular at zero and Dk–

q f ∈ACq[, a].
For α > , let k = �α�, where �·� is the ceiling function. Then the Riemann-Liouville

fractional derivative Dα
q f (x) exists if (see [])

f ∈L
q[; a], Ik–α

q Dk
qf ∈AC(k)

q [, a],

and cDα
q f (x) exists if f ∈AC(k)

q [, a].
The following results are proved in [] for any α > ; the result for the case  < α <  is

introduced in the following theorems without proof.

Theorem C Assume that f ∈ L
q[; a] and I–α

q f ∈ ACq[, a], where  < α < . Then the
Riemann-Liouville fractional derivative of order α,  < α < , exists, and

Iα
q Dα

q f (x) = f (x) –
I–α

q f ()
�q(α)

xα–. (.)

Theorem D If f ∈ACq[, a], then

Iα
q

cDα
q f (x) = IqDqf (x) = f (x) – f () (.)

for  < α < .

It is worth mentioning that the key point in the proofs of Theorems C and D is the
q-integration by parts formula:

∫ b


f (t)Dqg(t) dqt = (fg)(b) – lim

n→∞(fg)
(
bqn) –

∫ b


Dqf (t)g(qt) dqt.

Hence, if fg is q-regular at zero, then the limit on the right-hand side is nothing but (fg)().

3 Generalized q-mean value theorems on [0, a]
In this section, we introduce two q-analogues of the mean value theorems. The first one
is for q-integrals on an interval of the form [, a], and the second is a mean value theorem
with both of Riemann-Liouville fractional q-derivative and Caputo fractional q-derivative
on [, a]. The first one can be stated as follows.

Theorem . (Mean value theorem for q-integrals) Let g be a continuous function de-
fined on [, a], and h be a nonnegative function defined on [, a] and q-regular at zero.
Then

∫ a


g(t)h(t) dqt = g(ξ )

∫ a


h(t) dqt (.)

for some ξ ∈ [, a].

Proof The proof is similar to the classical case (see [], p.) and is omitted. �

The derivations of the main results of this paper mainly depend on Theorem ..
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Remark .
() We cannot replace the lower end point of the q-integrals in (.) by arbitrary

nonzero number because the inequality

∣∣∣∣
∫ a

c
f (t) dqt

∣∣∣∣ ≤
∫ a

c

∣∣f (t)
∣∣dqt,

holds only for c ∈ {, aqn, n ∈N}. In this case, (.) is also true.
() There are q-analogues of mean value theorems on [a, b] in [], but all these

analogues are valid only for certain values of q. For example, one of the mean value
theorems for q-integrals in [] is the following:

Let f , g be continuous functions on [a, b]. Then there exists q̂ ∈ (, ) such that

(∀q ∈ (̂q, )
) (∃ξ ∈ [a, b]

)
:

∫ b

a
g(t)f (t) dqt = g(ξ )

∫ b

a
f (t) dqt.

The second theorem is a q-analogue of the mean value theorem for derivative on [, a].
Throughout the rest of this article, we assume that  < α < .

Theorem .
() If f ∈L

q[; a], I–α
q f ∈ACq[, a], and x–αDα

q f ∈ C[, a], then

f (x) =
I–α

q f ()
�q(α)

xα– +
�q(α)ξ –αDα

q f (ξ )
�q(α)

xα–. (.)

() If f ∈ACq[, a] and cDα
q f ∈ C[, a], then

f (x) = f () +
cDα

q f (ξ )
�q(α)

xα (.)

for some ξ lying in the interval [, x] and all x ∈ (, a].

Proof We first prove (.). Since (see [], p.)

Bq(α,β) =
�q(α)�q(β)
�q(α + β)

,

from (.), Theorem ., and (.) we get

Iα
q Dα

q f (x) =
xα–

�q(α)

∫ x


(qt/x; q)α–tα–t–αDα

q f (t) dqt

=
xα–

�q(α)
ξ –αDα

q (ξ )
∫ x


(qt/x; q)α–tα– dqt

=
�q(α)ξ –αDα

q f (ξ )
�q(α)

xα–

for  ≤ ξ ≤ x. Hence, (.) follows from (.). Similarly, using (.), we can prove
(.). �
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4 Generalized q-Taylor formula
In this section, we introduce generalized q-Taylor formulas for functions in terms of
the sequential Riemann-Liouville q-derivative and the sequential Caputo fractional q-
derivatives, where the sequential Riemann-Liouville q-derivative Dnα

q and Caputo frac-
tional q-derivative cDnα

q , n ∈N, are

Dnα
q = Dα

q · · ·Dα
q and cDnα

q = cDα
q · · · cDα

q (n times),

respectively. The following lemma is important to get these formulas.

Lemma .
() If Dkα

q f ∈L
q[, a] and I–α

q Dkα
q f ∈ACq[, a], k = , , . . . , n, then

Inα
q Dnα

q f (x) – I(n+)α
q D(n+)α

q f (x) =
I–α

q Dnα
q f ()

�q((n + )α)
x(n+)α–. (.)

() If cDkα
q f ∈ACq[, a], k = , , . . . , n, then

Inα
q

cDnα
q f (x) – I(n+)α

q
cD(n+)α

q f (x) =
cDnα

q f ()
�q(nα + )

xnα . (.)

Proof We give a proof of (.), and the proof of (.) can be obtained similarly. Applying
(.) and (.), we obtain

Inα
q Dnα

q f (x) – I(n+)α
q D(n+)α

q f (x) = Inα
q

(
Dnα

q f (x) – Iα
q Dα

q
(
Dnα

q f (x)
))

= Inα
q

( I–α
q Dnα

q f ()
�q(α)

xα–
)

=
I–α

q Dnα
q f ()

�q(α)
Inα

q
(
xα–)

=
I–α

q Dnα
q f ()

�q((n + )α)
x(n+)α–,

and the lemma follows. �

Theorem . (Generalized q-Taylor formulas)
() Suppose that Dkα

q f ∈L
q[, a], I–α

q Dkα
q f ∈ACq[, a], k = , , . . . , n – , and

x–αDnα
q f ∈ C[, a]. Then

f (x) =
n–∑

k=

I–α
q Dkα

q f ()
�q((k + )α)

x(k+)α– +
�q(α)ξ –αDnα

q f (ξ )
�q((n + )α)

x(n+)α–. (.)

() Suppose that cDkα
q f ∈ACq[, a], k = , , . . . , n – , and cDnα

q f ∈ C[, a]. Thus,

f (x) =
n–∑

k=

cDkα
q f ()

�q(kα + )
xkα +

cDnα
q f (ξ )

�q(nα + )
xnα , (.)

where  ≤ ξ ≤ x.
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Proof For (.), applying (.), we obtain

n–∑

k=

[
Ikα

q Dkα
q f (x) – I(k+)α

q D(k+)α
q f (x)

]

=
n–∑

k=

I–α
q Dkα

q f ()
�q((k + )α)

x(k+)α–, (.)

that is,

f (x) =
n–∑

k=

I–α
q Dkα

q f ()
�q((k + )α)

x(k+)α– + Inα
q Dnα

q f (x). (.)

Applying the q-integral mean value theorem and (.) yield

Inα
q Dnα

q f (x) =
xnα–

�q(nα)

∫ x


(qt/x; q)nα–tα–t–αDnα

q f (t) dqt

=
xnα–

�q(nα)
ξ –αDnα

q f (ξ )
∫ x


(qt/x; q)nα–tα– dqt

=
�q(α)ξ –αDnα

q f (ξ )
�q((n + )α)

x(n+)α– (.)

for some ξ ∈ [, x]. Combining (.) and (.) yields (.).
By using (.), (.) can be treated similarly. �

A natural question arises: can we expand a function f in terms of q-fractional deriva-
tives? That is,

f (x) = xα–
∞∑

k=

ckxkα or f (x) =
∞∑

k=

ckxkα?

The following theorem gives the answer for such expansions with sufficient conditions for
the uniform convergence.

Theorem . Assume that f ∈L
q[, a] and x–αDnα

q f ∈ C[, a] for all n ∈N. If

∣∣x–αDnα
q f (x)

∣∣ ≤ cAnα , ∀x ∈ [, a], n ∈N,

where c is a positive constant, and A is a positive number satisfying A < 
a(–q) , then f has

the expansion

f (x) =
∞∑

k=

I–α
q Dkα

q f ()
�q((k + )α)

x(k+)α–. (.)

Moreover, the series
∑∞

k=
I–α
q Dkα

q f ()
�q((k+)α) xkα converges uniformly to x–αf (x) on [, a].
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Proof Using (.), we obtain

∣∣∣∣∣x
–αf (x) –

n–∑

k=

I–α
q Dkα

q f ()
�q((k + )α)

xkα

∣∣∣∣∣

≤ c�q(α)
(aA)nα

�q((n + )α)

=
c�q(α)(q(n+)α ; q)∞

(q; q)∞
(aA)nα

( – q)–(n+)α

=
c�q(α)(q(n+)α ; q)∞

(q; q)∞( – q)–α

(
aA( – q)

)nα −→  as n → ∞.

Thus, the result follows. �

Theorem . Assume that cDnα
q f ∈ C[, a] for n ∈N. If

∣∣cDnα
q f (x)

∣∣ ≤ cAnα , ∀x ∈ [, a], n ∈N,

where c is a positive constant, and A is a positive number satisfying A < 
a(–q) , then f has

the expansion

f (x) =
∞∑

k=

cDkα
q f ()

�q(kα + )
xkα , (.)

and the series on the right-hand side of (.) converges uniformly to f (x) on [, a].

Proof The proof is similar to the proof of Theorem . and is omitted. �

Remark .
() If a function f has the expansion

f (x) =
∞∑

k=

akx(k+)α–,

then we can deduce that

ak =
I–α

q Dkα
q f ()

�q((k + )α)
.

Also, if a function f has the expansion

f (x) =
∞∑

k=

bkxkα ,

then we can deduce that

bk =
cDkα

q f ()
�q(kα + )

.
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() The results of this paper are valid if f is a function defined on intervals of the form
[–a, a] or [–a, ], where a > . In these two cases, L

q[–a, b], b =  or a, is the space
of all functions defined on [–a, b] such that

∞∑

k=

qk( – q)
∣∣f

(
xqk)∣∣ < ∞ for all x ∈ [–a, b].

The space ACq[–a, b] is the space of all q-regular at zero functions that satisfy
condition (.) for all t ∈ [–a, b].

5 Examples
In this section, we apply the generalized q-Taylor formula to solve fractional q-difference
equations with constant coefficients. A solution to this type of equations is introduced
in [] by using q-Laplace transforms. In the following examples, λ is a real number. We
assume that the conditions of Theorems . and . are satisfied.

Example . Consider the q-initial value problem

cDα
q y(x) = λy(x), y() = y, x > . (.)

We assume that y ∈ C[, a] for some a >  to be determined later. By (.), cDnα
q y(x) =

λny(x). Consequently,

∣∣cDnα
q y(x)

∣∣ ≤ c|λ|n, c := max
x∈[,a]

∣∣y(x)
∣∣.

Hence, if we assume that |λaα( – q)α| < , then y(x) can be written as

y(x) =
∞∑

n=

cDnα
q y()

xnα

�q(nα + )
= yeα,

(
λxα ; q

)
, x ∈ [, a], (.)

where eν,μ(z; q) is one of the q-Mittag-Leffler function defined by

eν,μ(z; q) =
∞∑

k=

zk

�q(νk + μ)
, |z| < ( – q)ν .

Example . Consider the q-initial value problem

cDα
q y(x) = –y(x), y() = , cDα

q y() = . (.)

We assume that y, cDα
q y ∈ C[, a] for some a >  to be determined later. From (.), we

conclude that

cD(n+)α
q y(x) = (–)ncDα

q y(x), cD(n)α
q y(x) = (–)ny(x), n ∈N.

Hence, if c = max {maxx∈[,a] |y(x)|, maxx∈[,a] |cDα
q y(x)|}, then

∣∣cDnα
q y(x)

∣∣ ≤ c, ∀n ∈ N.
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Therefore, by Theorem ., if a is chosen such that a < 
(–q) , then

y(x) =
∞∑

n=

cDnα
q y()

xnα

�q(nα + )

=
∞∑

n=

(–)n x(n+)α

�q((n + )α + )
= xαeα,α+

(
–xα ; q

)
. (.)

It is worth mentioning that if we set α =  in (.), then we get the Jackson q-sine function
introduced in []. Thus, we may consider the function in (.) as a fractional analogue of
the Jackson q-sine function.

Example . Consider the q-initial value problem

Dα
q y(x) = λy(x),

[
x–αy

](
+)

=
y

�q(α)
. (.)

Hence,Dnα
q y(x) = λny(x). We seek a solution y such that x–αy(x) ∈ C[, a] for some a. Then

∣∣x–αDnα
q y(x)

∣∣ ≤ c|λ|n, c := max
x∈[,a]

∣∣x–αy(x)
∣∣.

We can show that

I–α
q Dα

q y() = �q(α)
[
x–αy(x)

](
+)

. (.)

Consequently, I–α
q Dkα

q y() = λny. Therefore,

y(x) =
∞∑

k=

I–α
q Dkα

q y()
�q((k + )α)

x(k+)α–

= yxα–
∞∑

k=

(λxα)k

�q((k + )α)
= yxα–eα,α

(
λxα ; q

)
,

where |λaα( – q)α| < .

Example . Consider the q-initial value problem

Dα
q y(x) = –λy(x),

[
x–αy

](
+)

=
y

�q(α)
,

[
x–αDα

q y
](

+)
=

y

�q(α)
. (.)

Thus,

Dnα
q y(x) = (–λ)ny(x), D(n+)α

q y(x) = (–λ)nDα
q y(x).

For a solution y such that x–αy(x), x–αDα
q y(x) ∈ C[, a] for some a, we have

∣∣x–αDnα
q y(x)

∣∣ ≤ c|λ|n, c := max
{

max
x∈[,a]

∣∣x–αy(x)
∣∣, max

x∈[,a]

∣∣x–αDα
q y(x)

∣∣
}

.



Hassan Advances in Difference Equations  (2016) 2016:162 Page 11 of 12

Also,

I–α
q Dnα

q y() = (–λ)ny, I–α
q D(n+)α

q y() = (–λ)ny.

Consequently,

y(x) = xα–
∞∑

k=

I–α
q Dkα

q y()
�q((k+)α)

xkα + xα–
∞∑

k=

I–α
q D(k+)α

q y()
�q((k + )α)

x(k+)α

= yxα–
∞∑

k=

(–λ)kxkα

�q((k + )α)
+ yxα–

∞∑

k=

(–λ)kx(k+)α

�q((k + )α)

= yxα–eα,α
(
–λxα ; q

)
+ yxα–eα,α

(
–λxα ; q

)
,

where |λaα( – q)α| < .

Example . Consider the initial value problem

Dα
q y(x) = λqα(–α)y

(
qαx

)
,

[
x–αy

](
+)

=


�q(α)
. (.)

Applying

Dα
q,xy(xβ) = β

(
Dα

q y
)
(xβ), (.)

on (.) n –  times, we obtain

Dnα
q y(x) =

(
λqα(–α))nq

n(n–)α
 y

(
xqnα

)
. (.)

For a solution y such that x–αy(x) ∈ C[, a], we have

∣∣x–αDnα
q y(x)

∣∣ ≤ c|λ|nq
n(n–)α

 , c := max
x∈[,a]

∣∣x–αy(x)
∣∣,

and

I–α
q Dnα

q y() = λnq
n(n–)α

 .

Therefore,

y(x) =
∞∑

k=

I–α
q Dkα

q y()
�q((k + )α)

x(k+)α–

= xα–
∞∑

k=

q
n(n–)α


(λxα)k

�q((k + )α)

= xα–Eα,α
(
λxα ; q

)
,

where, in general, Eα,β(z; q) is a second q-analogue of Mittag-Leffler function defined by

Eα,β (z) =
∞∑

n=

q
n(n–)α


zn

�q(nα + β)
, z ∈ R.
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Hence, a can be taken to be any positive value in this example. For some derived properties
for these q-analogues of Mittag-Leffler functions, see [] and the references therein.
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