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Abstract
In this paper, a Lyapunov-type inequality is obtained for a fractional differential
equation under fractional boundary conditions. We then use this inequality to obtain
an interval where a certain Mittag-Leffler function has no real zeros.
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1 Introduction
The Lyapunov inequality [] has proved to be very useful in various problems related with
differential equations; for example, see [, ] and the references therein. The Lyapunov
inequality states that a necessary condition for the boundary value problem

{
y′′(t) + q(t)y(t) = , a < t < b,
y(a) =  = y(b)

(.)

to have nontrivial solutions is that

∫ b

a

∣∣q(s)
∣∣ds >


b – a

, (.)

where q : [a, b] → R is a continuous function, and the zeros a and b of every solution
y(t) are consecutive. Since then, many generalizations of the Lyapunov inequality have
appeared in the literature (see [–] and the references therein).

Recently, the research of Lyapunov-type inequalities for fractional boundary value prob-
lem has begun. In [], Ferreira investigated a Lyapunov-type inequality for the Caputo
fractional boundary value problem

{
C
a Dαy(t) + q(t)y(t) = , a < t < b,
y(a) =  = y(b),

(.)

where C
a Dα is the Caputo fractional derivative of order α,  < α ≤ , the zeros a and b

are consecutive, and q is a real and continuous function. It was proved that if (.) has a
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nontrivial solution, then

∫ b

a

∣∣q(t)
∣∣ds ≥ �(α)αα

[(α – )(b – a)]α– . (.)

Obviously, if we set α =  in (.), one can obtain the Lyapunov classical inequality (.).
In [], the same author studied a differential equation that depends on the Riemann-
Liouville fractional derivative and gave a Lyapunov-type inequality. In both works [, ],
some interesting applications to the localization of real zeros of certain Mittag-Leffler
functions were presented.

In [], Jleli and Samet considered the fractional differential equation

C
a Dαy(t) + q(t)y(t) = , a < t < b,  < α ≤ ,

with the mixed boundary conditions

y(a) =  = y′(b) (.)

or

y′(a) =  = y(b). (.)

For boundary conditions (.) and (.), two Lyapunov-type inequalities were established
respectively as follows:

∫ b

a
(b – s)α–∣∣q(s)

∣∣ds ≥ �(α)
max{α – ,  – α}(b – a)

(.)

and

∫ b

a
(b – s)α–∣∣q(s)

∣∣ds ≥ �(α). (.)

Motivated by the above works, we consider in this paper a Caputo fractional differen-
tial equation under boundary condition involving the Caputo fractional derivative. More
precisely, we consider the boundary value problem

{
C
a Dαy(t) + q(t)y(t) = , a < t < b,
y(a) = , C

a Dβy(b) = ,
(.)

where  < α ≤ ,  < β ≤ , and q : [a, b] → R is a continuous function. We write (.) as
an equivalent integral equation and then, by using some properties of its Green function,
we are able to get a corresponding Lyapunov-type inequality. After that, we show that this
inequality can be used to obtain a real interval where a certain Mittag-Leffler function has
no real zeros. Our results generalize the main results of Jleli and Samet [].

2 Preliminaries
In this section, we introduce the definitions of the Riemann-Liouville fractional integral
and the Caputo fractional derivative and give some lemmas which are used in this article.
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Definition . Let α ≥  and f be a real function defined on [a, b]. The Riemann-Liouville
fractional integral of order α is defined by aIf ≡ f and

(
aIαf

)
(t) =


�(α)

∫ t

a
(t – s)α–f (s) ds, α > , t ∈ [a, b].

Definition . The Caputo derivative of fractional order α ≥  is defined by C
a Df ≡ f

and

(C
a Dαf

)
(t) =


�(n – α)

∫ t

a
(t – s)n–α–f (n)(s) ds, α > , t ∈ [a, b],

where n is the smallest integer greater or equal to α.

The following results are standard within the fractional calculus theory involving the
Caputo differential operator.

Lemma . ([], Chapter ) Let γ > α > , f ∈ C[a, b], then

C
a Dα

(
aIγ f (t)

)
= aIγ –αf (t), t ∈ [a, b].

Lemma . ([], Section ) Let y ∈ C[a, b] and  < α ≤ , then

aIα
(C

a Dαy
)
(t) = y(t) + c + c(t – a)

for some real constants c and c.

3 Main results
We begin by writing problem (.) in its equivalent integral form.

Lemma . y ∈ C[a, b] is a solution of the boundary value problem (.) if and only if y
satisfies the integral equation

y =
∫ b

a
G(t, s)q(s)y(s) ds,

where

G(t, s) = H(t, s)(b – s)α–β–

and

H(t, s) =

{
�(–β)(t–a)

�(α–β)(b–a)–β – 
�(α) (t – s)α–(b – s)+β–α , a ≤ s ≤ t ≤ b,

�(–β)(t–a)
�(α–β)(b–a)–β , a ≤ t ≤ s ≤ b.

(.)

Proof From (.) and Lemma ., we obtain

y(t) = c + c(t – a) –


�(α)

∫ t

a
(t – s)α–q(s)y(s) ds,
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where c and c are some real constants. By the boundary condition y(a) = , we can obtain
that c = . Thus, we have

y(t) = c(t – a) –
(

aIαqy
)
(t). (.)

By (.), we get

C
a Dβy(t) =

c

�( – β)
(t – a)–β –


�(α – β)

∫ b

a
(t – s)α–β–q(s)y(s) ds. (.)

Since C
a Dβy(b) = , we have from (.) that

c =
�( – β)

�(α – β)(b – a)–β

∫ b

a
(b – s)α–β–q(s)y(s) ds. (.)

Substitute (.) into (.), we obtain

y(t) =
�( – β)

�(α – β)(b – a)–β

∫ b

a
(b – s)α–β–(t – a)q(s)y(s) ds –


�(α)

∫ t

a
(t – s)α–q(s)y(s) ds,

which concludes the proof. �

Lemma . If  < α <  and  < β < , then

�(α) <
�(α – β)
�( – β)

< �(α – ). (.)

Proof Consider the logarithmic derivative of the gamma function

ψ(x) =
d

dx
ln�(x) =

�′(x)
�(x)

. (.)

We have by [], p., that

ψ(x) = –γ –
∞∑

k=

(


x + k
–


k + 

)
, (.)

where γ is an Euler constant. From (.) we obtain

dψ(x)
dx

=
∞∑

k=


(x + k) > . (.)

Since α < , we get by (.) and (.) that ψ(α – x) < ψ( – x), that is,

�′(α – x)
�(α – x)

<
�′( – x)
�( – x)

. (.)

Let

f (x) =
�(α – x)
�( – x)

,  < x < α.
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Then we have by (.) that

f ′(x) =
–�′(α – x)�( – x) + �(α – x)�′( – x)

(�( – x)) > .

Thus, f () < f (β) < f () ( < β < ), which implies that (.) holds. �

Lemma . Assume that  < β ≤  and  < α ≤  + β hold. Then

∣∣H(t, s)
∣∣ ≤

{
�(–β)
�(α–β) (b – a)β , a ≤ t ≤ s ≤ b,
max{ 

�(α) – �(–β)
�(α–β) , �(–β)

�(α–β) , –α
α– · �(–β)

�(α–β) }(b – a)β , a ≤ s ≤ t ≤ b.
(.)

Proof Throughout the proof we consider β <  since when β =  our study is reduced to
the case in []. For a ≤ t ≤ s ≤ b, we easily know that

∣∣H(t, s)
∣∣ ≤ �( – β)(s – a)

�(α – β)(b – a)–β
≤ �( – β)(b – a)

�(α – β)(b – a)–β
=

�( – β)(b – a)β

�(α – β)
.

For convenience, let

ψ(t, s) =
�( – β)(t – a)

�(α – β)(b – a)–β
–


�(α)

(t – s)α–(b – s)+β–α , a ≤ s ≤ t ≤ b.

Fixing arbitrary s ∈ [a, b) and differentiating ψ(t, s) with respect to t, we obtain

ψt(t, s) =
�( – β)

�(α – β)(b – a)–β
–


�(α – )

(t – s)α–(b – s)+β–α , s < t. (.)

From (.) we easily know that ψt(t∗, s) =  if and only if

t∗ = s +
[

�( – β)�(α – )
�(α – β)

· (b – s)α–β–

(b – a)–β

] 
α–

(.)

provided t∗ ≤ b, i.e., as long as s ≤ b – l, where

l =
[

�(α – β)
�( – β)�(α – )

] 
–β

(b – a) < b – a (by (.)).

Hence, if s > b – l, then

ψt(t, s) < , t ∈ (s, b). (.)

On the other hand, we have

lim
t→s+

ψ(t, s) =
�( – β)(s – a)

�(α – β)(b – a)–β
and ψ(b, s) =

�( – β)
�(α – β)

(b – a)β –


�(α)
(b – s)β .

Thus, we obtain

∣∣ψ(s, s)
∣∣ ≤ �( – β)

�(α – β)
(b – a)β (.)
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and

∣∣ψ(b, s)
∣∣ =

∣∣∣∣
(

�( – β)
�(α – β)

–


�(α)

)
(b – s)β +

�( – β)
�(α – β)

(
(b – a)β – (b – s)β

)∣∣∣∣
≤ max

{(


�(α)
–

�( – β)
�(α – β)

)
(b – s)β ,

�( – β)
�(α – β)

(s – a)β
}

(.)

by (s – a)β + (b – s)β ≥ (b – a)β and (.). Thus, we have by (.)-(.) that

∣∣ψ(t, s)
∣∣ ≤ max

{∣∣ψ(s, s)
∣∣, ∣∣ψ(b, s)

∣∣}
≤ max

{(


�(α)
–

�( – β)
�(α – β)

)
,
�( – β)
�(α – β)

}
(b – a)β ,

a < b – l < s < t ≤ b. (.)

It remains to verify the result when s ≤ b – l, i.e., when t∗ ≤ b. It is easy to check that

ψt(t, s) <  for t < t∗ and ψt(t, s) ≥  for t ≥ t∗.

Hence, we have

∣∣ψ(t, s)
∣∣ ≤ max

{∣∣ψ(
t∗, s

)∣∣, ∣∣ψ(b, s)
∣∣, ∣∣ψ(s, s)

∣∣}, a < s ≤ b – l, s ≤ t ≤ b. (.)

By (.) we have

∣∣ψ(
t∗, s

)∣∣ =
∣∣∣∣ �( – β)
�(α – β)(b – a)–β

[
s +

(
�( – β)�(α – )

�(α – β)
· (b – s)α–β–

(b – a)–β

) 
α–

– a
]

–


�(α)

(
�( – β)�(α – )

�(α – β)
· (b – s)α–β–

(b – a)–β

) α–
α–

(b – s)+β–α

∣∣∣∣
=

∣∣∣∣ �( – β)
�(α – β)(b – a)–β

(s – a) +
(

�( – β)
�(α – β)(b – a)–β

) α–
α–

· (�(α – )
) 

α– (b – s)
α–β–
α–

–


�(α)
·
(

�( – β)
�(α – β)(b – a)–β

) α–
α– · (�(α – )

) α–
α– (b – s)

α–β–
α–

∣∣∣∣
=

∣∣∣∣ �( – β)
�(α – β)(b – a)–β

(s – a) +
α – 
α – 

(
�( – β)

�(α – β)(b – a)–β

) α–
α–

· (�(α – )
) 

α– (b – s)
α–β–
α–

∣∣∣∣
≤ max

{
�( – β)

�(α – β)(b – a)–β
(s – a),

 – α

α – 

(
�( – β)

�(α – β)(b – a)–β

) α–
α–

· (�(α – )
) 

α– (b – s)
α–β–
α–

}
. (.)

Obviously, we have

�( – β)
�(α – β)(b – a)–β

(s – a) ≤ �( – β)
�(α – β)

(b – a)β , (.)
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and we obtain from Lemma . and condition α – β –  ≤  that

 – α

α – 

(
�( – β)

�(α – β)(b – a)–β

) α–
α– · (�(α – )

) 
α– (b – s)

α–β–
α–

≤  – α

α – 

(
�( – β)

�(α – β)(b – a)–β

) α–
α– · (�(α – )

) 
α– (b – a)

α–β–
α–

=
 – α

α – 
· �( – β)
�(α – β)

·
(

�( – β)�(α – )
�(α – β)

) 
α– · (b – a)β

<
 – α

α – 
· �( – β)
�(α – β)

(b – a)β . (.)

Thus, from (.)-(.) we conclude that

∣∣ψ(
t∗, s

)∣∣ ≤ max

{
,

 – α

α – 

}
�( – β)
�(α – β)

(b – a)β , s ∈ [a, b – l] (.)

holds. From (.), (.), (.) and (.), we know that inequality (.) is true. The
proof is complete. �

Theorem . Let  < β ≤  and  < α ≤  + β . If a nontrivial continuous solution of the
fractional boundary value problem (.) exists, then

∫ b

a
(b – s)α–β–∣∣q(s)

∣∣ds ≥ (b – a)–β

max{ 
�(α) – �(–β)

�(α–β) , �(–β)
�(α–β) , –α

α– · �(–β)
�(α–β) }

. (.)

Proof Let B = C[a, b] be the Banach space endowed with the norm ‖y‖∞ = supt∈[a,b] |y(t)|.
According to Lemma ., the solution of (.) can be written as

y(t) =
∫ b

a
(b – s)α–β–H(t, s)q(s)y(s) ds.

Now, an application of Lemma . yields

‖y‖∞ ≤ max

{


�(α)
–

�( – β)
�(α – β)

,
�( – β)
�(α – β)

,
 – α

α – 
· �( – β)
�(α – β)

}

· (b – a)β‖y‖∞
∫ b

a
(b – s)α–β–∣∣q(s)

∣∣ds,

which implies that (.) holds. �

Remark . If β = , then (.) reduces to the following Lyapunov-type inequality []:

∫ b

a
(b – s)α–∣∣q(s)

∣∣ds ≥ �(α)
max{α – ,  – α}(b – a)

.

Remark . If α =  and  < β < , then we have by Lemma . that

G(t, s) =

{
(t – a)( b–s

b–a )–β – (t – s), a ≤ s ≤ t ≤ b,

(t – a)( b–s
b–a )–β , a ≤ t ≤ s ≤ b.
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Similar to the proof of Theorem ., it is easy to obtain that the following Lyapunov-type
inequality holds:

∫ b

a

∣∣q(s)
∣∣ds ≥ 

(b – a)β
.

In the following, we will use Lyapunov-type inequalities (.) to obtain intervals where
certain Mittag-Leffler functions have no real zeros. Let z ∈ R and consider the real zeros
of the Mittag-Leffler functions Eα,γ (z), where

Eα,γ (z) =
∞∑

k=

zk

�(kα + γ )
, α > ,γ >  and z ∈C.

Obviously, Eα,γ (z) >  for all z ≥ . Hence, the real zeros of Eα,γ (z), if they exist, must be
negative real numbers.

Theorem . Assume that  < β ≤  and  < α ≤  + β hold. Then the Mittag-Leffler func-
tion Eα,–β(x) has no real zeros for

x ∈
(

–
α – β

max{ 
�(α) – �(–β)

�(α–β) , �(–β)
�(α–β) , –α

α– · �(–β)
�(α–β) }

, 
]

.

Proof Let a =  and b = . Consider the following fractional Sturm-Liouville eigenvalue
problem:

C
 Dαy(t) + λy(t) = , t ∈ (, ), (.)

y() = C
 Dβy() = . (.)

By the Laplace transform method as in [, , ], the general solution of the fractional
differential equation (.) can be given as follows:

y(t) = AEα,
(
–λtα

)
+ BtEα,

(
–λtα

)
. (.)

In the following discussion we will use the general solution (.) and its fractional
Caputo derivative

C
 Dβy(t) = At–βEα,–β

(
–λtα

)
+ Bt–βEα,–β

(
–λtα

)
. (.)

By (.), (.) and the boundary conditions (.), we obtain that

A = , BEα,–β (–λ) = .

Thus, the eigenvalues λ ∈R of (.) and (.) are the solutions of

Eα,–β (–λ) = , (.)
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and the corresponding eigenfunctions are given by

y(t) = tEα,–β

(
–λtα

)
, t ∈ [, ].

By Theorem ., if a real eigenvalue λ of (.) and (.) exists, i.e., –λ is a zero of (.),
then

λ

∫ 


( – s)α–β– ds ≥ 

max{ 
�(α) – �(–β)

�(α–β) , �(–β)
�(α–β) , –α

α– · �(–β)
�(α–β) }

,

that is,

λ ≥ α – β

max{ 
�(α) – �(–β)

�(α–β) , �(–β)
�(α–β) , –α

α– · �(–β)
�(α–β) }

,

which concludes the proof. �

Remark . If β = , then Theorem . reduces to Theorem  in [].
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