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Abstract
In this paper, some easily verifiable conditions are derived for the existence of almost
periodic solution of an impulsive multispecies logarithmic population model in terms
of the continuous theorem of coincidence degree theory, which is rarely applied to
studying the existence of almost periodic solution of an impulsive differential
equation. Our results generalize previous results by Alzabut, Stamov and Sermutlu.
Besides, our technique used in this paper can be applied to study the existence of
almost periodic solution of an impulsive differential equation with linear impulsive
perturbations.
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1 Introduction
Many evolutionary processes in nature are characterized by the fact that their states are
subject to sudden changes at certain moments and therefore can be described by an im-
pulsive system. Basic theory of impulsive differential equations can be found in the mono-
graphs [–]. Gopalsamy [] proposed the following single species logarithmic population
model:

N ′(t) = N(t)
(
a(t) – b(t) ln N(t) – c(t) ln N

(
t – τ (t)

))
.

By utilizing the continuous theorem of coincidence degree theory, the existence of pe-
riodic solution and almost periodic solution of this model is investigated in papers []
and [], respectively. In paper [], Alzabut and Abdeljawad consider the existence of pe-
riodic solution of the impulsive differential equation

⎧
⎨

⎩
N ′(t) = N ′(t)(a(t) – b(t) ln N(t) – c(t) ln N(t – τ (t))), t �= tk ,

�N(t+
k ) = N(tk)+γk eδk , k = , , . . . .

By employing the contraction mapping principle and Gronwall-Bellman inequality, the
existence and exponential stability of positive almost periodic solution of this model are
obtained in paper []. Using the same method as [], Yang and Li [] deal with the ex-
istence of almost periodic solution of an impulsive two-species logarithmic population
model with time-varying delay. By means of the Cauchy matrix, Wang [] gives sufficient
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conditions for the existence and exponential stability of periodic and almost periodic so-
lution for the delay impulsive logarithmic population:

⎧
⎨

⎩
N ′(t) = N ′(t)(a(t) – b(t) ln N(t) – c(t) ln N(t – τ (t))), t �= tk ,

eN(t+
k ) = e(+pk )N(tk )+ck , k = , , . . . .

Some scholars are interested in impulsive differential equations or the existence of (al-
most) periodic solution. Related results can be found in the literature [–]. By using
fixed point theory and constructing a suitable Lyapunov function, Chen [] studies the
existence, uniqueness and global attractivity of positive periodic solution and almost pe-
riodic solution of the delay multispecies logarithmic population model

N ′
i (t) = Ni(t)

[

ri(t) –
n∑

j=

aij(t) ln Nj(t) –
n∑

j=

bij(t) ln Nj
(
t – τij(t)

)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s) ln Nj(s) ds

]

, i = , , . . . , n.

In this paper, we consider the impulsive multispecies logarithmic population model

N ′
i (t) = Ni(t)

[

ri(t) –
n∑

j=

aij(t) ln Nj(t) –
n∑

j=

bij(t) ln Nj
(
t – τij(t)

)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s) ln Nj(s) ds

]

, t �= tk , (.)

Ni
(
t+
k
)

= ( + dik)Ni(tk), i = , , . . . , n, k = , , . . . ,

where ri(·), aij(·), bij(·), cij(·), τij(·) are nonnegative almost periodic functions in sense of
Bohr, kij(t – s) ≥  and

∫ t
–∞ kij(t – s) ds < +∞, {dik} is an almost periodic sequence, {tk} is

an equipotentially almost periodic sequence, r = supt∈R,i,j=,...,n |τi,j(t)|, i, j = , . . . , n.
By utilizing the continuous theorem of coincidence degree theory, we obtain some suf-

ficient conditions for the existence of almost periodic solution of Eq. (.). Our results
generalize previous results obtained in [] and are easier to verify than the conditions
obtained in paper [].

The continuous theorem of coincidence degree theory has been extensively used to
study the existence of periodic solution of a differential equation, regardless of the equa-
tion being with impulse or without. Using this theorem, papers [] and [] investigate the
existence of almost periodic solution of a population model without impulse. To our best
knowledge, the continuous theorem has not been used to prove the existence of almost
periodic solution of an impulsive multispecies logarithmic population model. Besides, our
technique used in this paper can be applied to study the existence of almost periodic so-
lution of an impulsive differential equation with linear impulsive perturbations.

The remaining part of this paper is organized as follows. We present some preliminaries
in the next section. In Section , by employing the continuous theorem of coincidence
degree theory, we establish a criterion for the existence of almost periodic solution of
system (.).
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2 Preliminaries
In this section, some lemmas and definitions, which are of importance in proving our main
result in Section , will be presented.

Definition . ([]) ϕ(·) ∈ C(R, Rn) is said to be almost periodic in sense of Bohr if ∀ε > ,
there exists a relatively dense set T(ϕ, ε) such that if τ ∈ T(ϕ, ε), then |ϕ(t) – ϕ(t + τ )| < ε

for all t ∈ R. Denote by ap(R, Rn) all such functions.

Definition . ([]) Let ϕ(·) = (ϕ(·),ϕ(·), . . . ,ϕn(·)) be a piecewise continuous function
with first kind discontinuities at the points of a fixed sequence {tk}. We call ϕ almost pe-
riodic if:

() {tk} is equipotentially almost periodic, that is, ∀ε > , there exists a relatively dense
set of ε-almost periodic common for any sequences {tj

k}, tj
k = tk+j – tk ;

() ∀ε > , ∃δ >  such that if the points t′, t′′ belong to the same interval of continuity
and |t′ – t′′| < δ, then |ϕ(t′) – ϕ(t′′)| < ε;

() ∀ε > , there exists a relatively dense set T(ϕ, ε) such that if τ ∈ T(ϕ, ε), then
|ϕ(t) – ϕ(t + τ )| < ε for all t ∈ R which satisfy the condition |t – ti| > ε,
i = ,±,±, . . . .

Denote by AP(R, Rn) all such functions.

Now, we introduce some basic notations. Suppose f ∈ ap(R, Rn) or f ∈ AP(R, Rn), we
use �f to denote the set of Fourier exponents of f , mod(f ) to denote the module of f , m(f )
to denote the limit mean of f . We suppose that dik and τij(·) in system (.) satisfy the
following conditions:

(A)
∏

<tk <t( + djk),
∏

<tk <t–τij(t)( + djk) are positive almost periodic functions,
inft∈R

∏
<tk <t( + djk) > , j = , . . . , n;

(A)
∫ t

–∞ kij(t – s) ln
∏

<tk <s( + djk) ds are almost periodic functions, i, j = , . . . , n.
Thereinto, the definition of

∏
<tk <t( + djk) (j = , , . . . , n) is as follows:

∏

<tk <t

( + djk) =

⎧
⎨

⎩
, t ∈ (–∞, t],

( + dj) · · · ( + djk), t ∈ (tk , tk+], k = , , , . . . .

Remark There exist a great deal of functions satisfying assumptions (A) and (A). For
instance, let {tk} be an arbitrary equipotentially almost periodic sequence, τij(t) = τ > ,
dj,k = dj,k+T , ( + dj,k) > , k = , , . . . and ( + dj)( + dj) . . . ( + djT ) = , then

∏
<tk <t( + djk)

is a positive almost periodic function with discontinuous points tk , and inft∈R
∏

<tk <t( +
djk) > .

∏
<tk <t–τij(t)( + djk) is also a positive almost periodic function with discontinuous

points tk + τ , i, j = , . . . , n.
Besides, we suppose that kij(·) satisfy

∫ t
–∞ kij(t – s) ds =

∫ +∞
 kij(u) du < +∞ and

kij(t) =

⎧
⎨

⎩
, t ∈ [, supi∈Z t

i + ],

≥, otherwise,

then
∫ t

–∞ kij(t – s) ln
∏

<tk <s( + djk) ds ≡ , i, j = , , . . . , n. Thus, assumption (A) holds.
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Before studying the existence of strictly positive AP solutions of system (.), we firstly
consider the following equation:

y′
i(t) = yi(t)

[

ri(t) –
n∑

j=

aij(t) ln
∏

<tk <t

( + djk) –
n∑

j=

bij(t) ln
∏

<tk <t–τij(t)

( + djk)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s) ln

∏

<tk <s

( + djk) ds –
n∑

j=

aij(t) ln yj(t)

–
n∑

j=

bij(t) ln yj
(
t – τij(t)

)
–

n∑

j=

cij(t)
∫ t

–∞
kij(t – s) ln yj(s) ds

]

, (.)

where i = , , . . . , n. The solutions of Eqs. (.) and (.) satisfy the following relation.

Lemma . Suppose that (A) is satisfied, the following results hold:
() If Ni(t) ∈AP(R, R) is a positive solution of Eq. (.), then

yi(t) =
∏

<tk <t( + dik)–Ni(t) is a positive ap solution of Eq. (.), i = , , . . . , n.
() If yi(t) ∈ ap(R, R) is a positive solution of Eq. (.), then Ni(t) =

∏
<tk <t( + dik)yi(t) is

a positive AP solution of Eq. (.), i = , , . . . , n.

Proof Since
∏

<tk <t( + dik) ∈ AP(R, R) and inft∈R
∏

<tk <t( + dik) > , i = , . . . , n, from
[] we know

∏
<tk <t( + dik)– ∈ AP(R, R). Therefore, if yi(t) ∈ ap(R, R), then Ni(t) =

∏
<tk <t(+dik)yi(t) ∈AP(R, R); if Ni(t) ∈AP(R, R), combining Ni(t+

k ) = (+dik)Ni(tk), then
yi(t) =

∏
<tk <t( + dik)–Ni(t) ∈ ap(R, R). Similar as [], the rest of the proof of Lemma .

can be obtained easily, we omit it here. �

In order to investigate Eq. (.), we take yi(t) = exi(t), Eq. (.) can be translated to

x′
i(t) = r̄i(t) –

n∑

j=

aij(t)xj(t) –
n∑

j=

bij(t)xj
(
t – τij(t)

)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s)xj(s) ds, (.)

where

r̄i(t) = ri(t) –
n∑

j=

aij(t) ln
∏

<tk <t

( + djk) –
n∑

j=

bij(t) ln
∏

<tk <t–τij(t)

( + djk)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s) ln

∏

<tk <s

( + djk) ds, i = , , . . . , n.

Obviously, if Eq. (.) has ap solution, then Eq. (.) has strictly positive ap solution.
It follows from Lemma . that Eq. (.) has strictly positive AP solution. Consequently,
we mainly study the existence of ap solution of Eq. (.). To do so, we firstly summarize a
few concepts.

Let X and Z be real Banach spaces, L : dom L ⊂ X → Z be a linear mapping, N : X → Z
be a continuous mapping. L is called a Fredholm mapping of index zero if dim Ker L =
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codim Im L < ∞ and Im L is close in Z. If L is a Fredholm mapping of index zero, there are
continuous projects P : X → X, Q : Z → Z such that Im P = Ker L, Im L = Ker Q = Im(I –Q).
It follows that L|dom L∩Ker P : (I –P)X → Im L is invertible. We denote the inverse of that
map by Kp. If 	 is an open subset of X, the mapping N will be called L-compact on 	 if
QN(	̄) is bounded and Kp(I – Q)N : 	̄ → X is compact. Since Im Q is isomorphic to Ker L,
there exists an isomorphism J : Im Q → Ker L. The following result is proved in [].

Lemma . (Continuous theorem) Let 	 ⊂ X be an open bounded set, let L be a Fredholm
mapping of index zero and N be L-compact on 	̄. Assume

() For each λ ∈ (, ), every solution x of Lx = λNx is such that x /∈ ∂	;
() For each x ∈ Ker L ∩ ∂	, QNx �= ;
() deg(JQN , Ker L ∩ 	, ) �= .

Then Lx = Nx has at least one solution in dom L ∩ 	̄.

3 Main results
In this section, by means of the continuous theorem of coincidence degree theory, we
investigate the existence of strictly positive AP solution of Eq. (.). To do so, we take

X =
{

x = (x, . . . , xn) ∈ ap
(
R, Rn) : mod(xi) ⊂ mod(F),∀λ ∈ �xi ,α > |λ| > α

} ∪ {},

Z =

{

z = (z, . . . , zn) ∈AP
(
R, Rn),

zi(t) are AP functions with discontinuous points tk ,

mod(zi) ⊂ mod(F),∀λ ∈ �zi ,α > |λ| > α,
∞∑

j=

∣
∣a(λj, zi)

∣
∣ < +∞

}

∪ {},

Z = X =
{

h = (h, h, . . . , hn) ∈ Rn},

where α and α are given positive constants, and F is a given almost periodic function in
sense of Bohr. Define X = X ⊕X, Z = Z ⊕Z with the norm ‖φ‖ = max≤i≤n supt∈R |φi(t)|,
φ = (φ,φ, . . . ,φn) ∈ X or Z.

Lemma . X and Z are Banach spaces equipped with the norm ‖ · ‖.

Proof Firstly, we can easily obtain that X is a Banach space, hence we only need to prove
that Z is a Banach space. If {zk = (zk , . . . , znk)}k ⊂ Z converges to z = (z, . . . , zn) uniformly,
it follows from the properties of AP functions that z ∈ AP(R, Rn). Similar as [], the
fact mod(zi) ⊂ mod(F), ∀λ ∈ �zi , α > |λ| > α can be obtained easily. Now, we assert that
∑∞

j= |a(λj, zi)| < +∞, i = , . . . , n. If not, ∀M > , ∃m >  and ī such that

m∑

j=

∣∣a(λj, zī)
∣∣ > M. (.)

Since {zk} is a Cauchy sequence, for /m, ∃K such that for any m̄, n̄ > K ,

∣
∣a(λ, zī,m̄) – a(λ, zī,n̄)

∣
∣ =

∣∣
∣∣ lim
T→+∞


T

∫ T

–T

(
zī,m̄(t) – zī,n̄(t)

)
e–iλt dt

∣∣
∣∣ <


m , ∀λ ∈ R. (.)
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Since zk converges to z uniformly,

for λl ∈ �zī
and


l ,∃nl > K , s.t.,

∣∣a(λl, zī)
∣∣ <

∣∣a(λl, zī,nl )
∣∣ +


l , l = , , . . . , m. (.)

Since n, n, . . . , nm > K , from (.)

∣∣a(λj, zī,nj )
∣∣ <

∣∣a(λj, zī,n )
∣∣ +


m , j = , , . . . , m. (.)

Hence, combining (.)-(.)

M <
m∑

j=

∣
∣a(λj, zī)

∣
∣ <

m∑

j=

∣
∣a(λj, zī,nj )

∣
∣ +


j <

m∑

j=

∣
∣a(λj, zī,nj )

∣
∣ + 

<
m∑

j=

∣
∣a(λj, zī,n )

∣
∣ +  +

m
m <

∞∑

j=

∣
∣a(λj, zī,n )

∣
∣ +  < +∞.

The arbitrariness of M leads to a contradiction, so the assertion holds. Therefore, Z is a
Banach space. Similarly, we can obtain that Z is a Banach space. The proof is complete.

�

Lemma . Let

L : X → Z, L(x, x, . . . , xn) =
(

dx

dt
,

dx

dt
, . . . ,

dxn

dt

)
,

then L is a Fredholm mapping of index zero.

Proof Obviously, Ker L = X. We prove Im L = Z. Firstly, for any ϕ + ϕ = ϕ ∈ Im L ⊂ Z,
ϕ ∈ Z, ϕ ∈ Z, since

∫ t
 ϕ(s) ds ∈ ap(R, Rn), that is,

∫ t
 ϕ(s) ds +

∫ t
 ϕ(s) ds ∈ ap(R, Rn).

From [] we know
∫ t

 ϕ(s) ds ∈ ap(R, Rn), then ϕ = . Hence ϕ ∈ Z, Im L ⊂ Z. Sec-
ondly, for any ϕ = (ϕ,ϕ, . . . ,ϕn) ∈ Z, without loss of generality, we suppose ϕ �= . Since
∫ t

 ϕ(s) ds ∈ ap(R, Rn), furthermore

�∫ t
 ϕi(s) ds–m(

∫ t
 ϕi(s) ds) = �ϕi , i = , , . . . , n,

then
∫ t

 ϕi(s) ds – m(
∫ t

 ϕi(s) ds) is the primitive of ϕi in X, ϕ ∈ Im L. Therefore, Z ⊂ Im L.
To sum up, Z = Im L. Besides, one can easily show that Im L is closed in Z

dim Ker L = n = codim Im L.

Therefore, L is a Fredholm mapping of index zero. �

Remark If f ∈ ap(R, Rn) and ∀λ ∈ �f , |λ| > α > , then f has an ap primitive function. It
does not hold for an AP function. From [] we know that if f ∈ AP(R, Rn), ∀λ ∈ �f ,
α > |λ| > α > ,

∑∞
i= |a(λi, f )| < +∞, then f has an AP primitive function. That is the

reason why in Lemma . we take Z like that.
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Set

N : X → Z, N(x, x, . . . , xn) = (Nx, Nx, . . . , Nxn),

Q : Z → Z, Q(z, z, . . . , zn) =
(
m(z), m(z), . . . , m(zn)

)
,

P : X → X, P(x, x, . . . , xn) =
(
m(x), m(x), . . . , m(xn)

)
,

where

Nxi(t) = r̄i(t) –
n∑

j=

aij(t)xj(t) –
n∑

j=

bij(t)xj
(
t – τij(t)

)
–

n∑

j=

cij(t)
∫ t

–∞
kij(t – s)xj(s) ds,

then we have the following.

Lemma . N is L-compact on 	̄ (	 is an open, bounded subset of X).

Proof Firstly, it is easy to show that P and Q are continuous projectors such that

Im P = Ker L, Im L = Im(I – Q) = Ker Q,

where I is an identity mapping. Hence L|dom L ∩ Ker P : (I – P)X → Im L is invertible. We
denote the inverse of that map by Kp. Kp : Im L → Ker P ∩ Dom L has the form

Kpz = Kp(z, z, . . . , zn)

=
(∫ t


z(s) ds – m

(∫ t


z(s) ds

)
, . . . ,

∫ t


zn(s) ds – m

(∫ t


zn(s) ds

))
.

Thus,

QNx = (QNx, . . . , QNxn),

Kp(I – Q)Nx =
(
f
(
x(t)

)
– Qf

(
x(t)

)
, . . . , f

(
xn(t)

)
– Qf

(
xn(t)

))
,

where

f
(
xi(t)

)
=

∫ t



(
Nxi(s) – QNxi(s)

)
ds,

QNxi(t) = m

(

r̄i(t) –
n∑

j=

aij(t)xj(t) –
n∑

j=

bij(t)xj
(
t – τij(t)

)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s)xj(s) ds

)

.

Obviously, QN and (I – Q)N are continuous. In fact, Kp is also continuous. For any
z = (z, . . . , zn) ∈ Z and for any  > ε > , let l(ε) denote the inclusion interval of T(F , ε).
Suppose z = (z, z, . . . , zn) ∈ Z = Im L, then

∫ t
 z(s) ds ∈ ap(R, Rn). Since

�∫ t
 zi(s) ds\{} = �∫ t

 zi(s) ds–m(
∫ t

 zi(s) ds) = �zi , i = , , . . . , n,
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and mod(zi) ⊂ mod(F), then mod(
∫ t

 zi(s) ds) ⊂ mod(F). Therefore, there exists  < δ < ε

such that T(F , δ) ⊂ T(
∫ t

 zi(s) ds, ε). Let l be the inclusion interval of T(F , δ), then l ≥ l(ε).
For any t /∈ [, l], there exists ξ ∈ T(F , δ) ⊂ T(

∫ t
 zi(s) ds, ε) such that t + ξ ∈ [, l]. Hence,

by the definition of almost periodic function, we have

sup
t∈R

∣∣∣
∣

∫ t


zi(s) ds

∣∣∣
∣ ≤ sup

t∈[,l]

∣∣∣
∣

∫ t


zi(s) ds

∣∣∣
∣ + sup

t /∈[,l]

∣∣∣
∣

∫ t


zi(s) ds –

∫ t+ξ


zi(s) ds

∣∣∣
∣

+ sup
t /∈[,l]

∣∣
∣∣

∫ t+ξ


zi(s) ds

∣∣
∣∣

≤  sup
t∈[,l]

∫ t



∣∣zi(s)
∣∣ds + sup

t /∈[,l]

∣∣∣
∣

∫ t


zi(s) ds –

∫ t+ξ


zi(s) ds

∣∣∣
∣

≤ 
∫ l



∣
∣zi(s)

∣
∣ds + ε.

Hence, we can conclude that Kp is continuous, and consequently, Kp(I – Q)N is also
continuous. In addition, we also have Kp(I – Q)N is uniformly bounded in 	̄, QN(	̄)
is bounded and Kp(I – Q)N is equicontinuous in 	̄. Since (I – Q)Nx ∈ Z = Im L and
�Kp(I–Q)Nx = �(I–Q)Nx, ∀x ∈ 	, then mod(Kp(I – Q)Nx) = mod((I – Q)Nx) ⊂ mod(F). For
any ε > , ∃δ >  such that T(F , δ) ⊂ T(Kp(I – Q)Nx, ε), ∀x ∈ 	, hence Kp(I – Q)N is equi-
almost periodic in 	, According to [], we can conclude that Kp(I – Q)N	̄ is compact,
thus N is L-compact on 	̄. �

Noticing Lemmas .-., for Eq. (.), we have the following result.

Theorem . If (A) and (A) are satisfied, m(
∑n

j=(aij(t) + bij(t) + cij(t)
∫ t

–∞ kij(t – s) ds)) �=
, i = , , . . . , n, then Eq. (.) has at least one strictly positive almost periodic solution.

Proof From the analysis above, we know that in order to prove the existence of strictly
positive AP solution of Eq. (.), we only need to investigate the existence of ap solution
of Eq. (.).

Define the isomorphism J : Im Q → Ker L as an identity mapping. We search for an ap-
propriate bounded open subset 	 for the application of Lemma .. Corresponding to the
operator equation Lx = λNx, λ ∈ (, ), we have

x′
i(t) = λ

(

r̄i(t) –
n∑

j=

aij(t)xj(t) –
n∑

j=

bij(t)xj
(
t – τij(t)

)

–
n∑

j=

cij(t)
∫ t

–∞
kij(t – s)xj(s) ds

)

, i = , , . . . , n. (.)

If x ∈ X is a solution of system (.), taking the limit mean for system (.), we obtain

m
(
r̄i(t)

)
= m

( n∑

j=

(
aij(t)xj(t) + bij(t)xj

(
t – τij(t)

)
+ cij(t)

∫ t

–∞
kij(t – s)xj(s) ds

))

,

i = , , . . . , n,
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then

sup
t∈R

xi(t) ≥ m(r̄i(t))
m(

∑n
j=(aij(t) + bij(t) + cij(t)

∫ t
–∞ kij(t – s) ds))

, i = , , . . . , n,

inf
t∈R

xi(t) ≤ m(r̄i(t))
m(

∑n
j=(aij(t) + bij(t) + cij(t)

∫ t
–∞ kij(t – s) ds))

, i = , , . . . , n.

Thus, there exists at least one t∗ ∈ R such that

∣∣xi
(
t∗)∣∣ ≤ |m(r̄i(t))|

|m(
∑n

j=(aij(t) + bij(t) + cij(t)
∫ t

–∞ kij(t – s) ds))| + , i = , , . . . , n. (.)

Since Lx ∈ Z, by a similar argument as in Lemma . we can derive that

‖xi‖ = sup
t∈R

∣∣xi(t)
∣∣ ≤ ∣∣xi

(
t∗)∣∣ + sup

t∈R

∣∣∣
∣

∫ t

t∗
x′

i(s) ds
∣∣∣
∣

≤ ∣
∣xi

(
t∗)∣∣ + 

∫ t∗+l

t∗

∣
∣x′

i(s)
∣
∣ds + , i = , , . . . , n. (.)

Take τ̄ ∈ [l, l] ∩ T(F , δ) ⊂ T(
∫ t

 x′
i(s) ds, ε), then

∣
∣∣
∣

∫ t∗


x′

i(s) ds –
∫ t∗+τ̄


x′

i(s) ds
∣
∣∣
∣ =

∣
∣∣
∣

∫ t∗+τ̄

t∗
x′

i(s) ds
∣
∣∣
∣ ≤ ε ≤ , i = , , . . . , n.

Integrating system (.) over the interval [t∗, t∗ + τ̄ ], we obtain

λ

∫ t∗+τ̄

t∗

∣∣
∣∣

n∑

j=

(
aij(s)xj(s) + bij(s)xj

(
s – τij(s)

)
+ cij(s)

∫ s

–∞
kij(s – u)xj(u) du

)∣∣
∣∣ds

≤ λ

∫ t∗+τ̄

t∗

∣∣r̄i(s)
∣∣ds + .

Consequently,

∫ t∗+l

t∗

∣
∣x′

i(s)
∣
∣ds

≤
∫ t∗+τ̄

t∗

∣∣x′
i(s)

∣∣ds ≤ λ

∫ t∗+τ̄

t∗

∣∣r̄i(s)
∣∣ds

+ λ

∫ t∗+τ̄

t∗

∣
∣∣
∣

n∑

j=

(
aij(s)xj(s) + bij(s)xj

(
s – τij(s)

)
+ cij(s)

∫ s

–∞
kij(s – u)xj(u) du

)∣
∣∣
∣ds

≤ 
∫ t∗+τ̄

t∗

∣∣r̄i(s)
∣∣ds + . (.)

Combining (.)-(.), we obtain

‖xi‖ ≤ M, i = , , . . . , n,
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where

M =
|m(r̄i(t))|

|m(
∑n

j=(aij(t) + bij(t) + cij(t)
∫ t

–∞ kij(t – s) ds))| +  + 
∫ t∗+τ̄

t∗

∣∣r̄i(s)
∣∣ds.

Take 	 = {x ∈ X,‖x‖ ≤ M + }, then it is clear that 	 verifies all the requirements in
Lemma ., hence Eq. (.) has at least one almost periodic solution in 	 and the proof is
complete. �

Remark In this paper, we investigate the existence of almost periodic solution of Eq. (.)
in terms of the continuous theorem of coincidence degree theory. The novelty of this paper
is not only the method but also the results. In fact, if dik = , cij = , i = j = , Eq. (.) can
be rewritten as

N ′(t) = N(t)
[
r(t) – a(t) ln N(t) – b(t) ln N

(
t – τ (t)

)]
.

Paper [] obtains the existence of almost periodic solution of the above equation based
on the assumptions m(a(t) + b(t)) �= . Obviously, our results generalize previous results
obtained in paper [].
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