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Abstract
This paper deals with the iterative algorithm and the implementation of the spectral
discretization of time-dependent Navier–Stokes equations in dimensions two and
three. We present a variational formulation, which includes three independent
unknowns: the vorticity, velocity, and pressure. In dimension two, we establish an
optimal error estimate for the three unknowns. The discretization is deduced from the
implicit Euler scheme in time and spectral methods in space. We present a matrix
linear system and some numerical tests, which are in perfect concordance with the
analysis.
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1 Introduction
The nonlinear Navier–Stokes equations model the flow of a viscous and incompressible
fluid such as water, air, and oil in stationary or nonstationary states. Those equations were
and are the subject of a large number of research papers. The modification of any of the pa-
rameters associated with these equations (the domain on which the equations are posed,
boundary conditions, nature of the data, variational formulation, time dependence, choice
of the approximation method, etc.) leads to new research problems. In the initiating paper
[1] the authors handle the Stokes and Navier–Stokes equations with nonstandard bound-
ary conditions on the velocity and the pressure for a convex or regular domain. Our in-
terest concerns the nonstationary Navier–Stokes equations with boundary conditions on
the normal component of the velocity and the tangential components of the potential vec-
tor vorticity. Such a problem allows us to model, for instance, two fluids separated by a
membrane or the flow in a network of pipes. The equivalent variational formulation of
the Navier–Stokes equations provided with these boundary conditions admits three un-
knowns: the vorticity, velocity, and pressure [2–5]. This formulation has been studied in
several works for the finite element discretization of the Stokes and Navier–Stokes prob-
lems in the stationary case (see [3, 6]). We cite in the same context the works of Bernardi et
al. [7, 8], which present a posteriori error analysis of time-dependent Stokes and Navier–
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Stokes problems. The extension to spectral discretization has been handled in [9, 10] for
the stationary Stokes and Navier–Stokes problems and in [11, 12] for the nonstationary
case.

In this paper, we propose a discretization of such a formulation by the implicit Euler
scheme in time and the spectral method in space in the square ] – 1, 1[2 for dimension two
and in the cube ] – 1, 1[3 for dimension three. The spectral method can be easily extended
to more complex geometries thanks to the arguments in [13, 14]. In dimension two, we
prove an optimal error estimate for the vorticity and the velocity and a quasioptimal er-
ror for the pressure, using the theorem of Brezzi, Rappaz, and Raviart [15]. However, the
extension to dimension three remains a difficult problem.

We describe a numerical algorithm used to solve the discrete nonlinear problem. We
also present clearly the matrices and the linear system derived from the discrete prob-
lem. This linear system is solved using the GMRES method since the global matrix is not
symmetric [16].

Finally, we present some numerical experiments, which confirm a good convergence of
our algorithm and the benefit of this formulation. These numerical results are coherent
with the theoretical ones.

This paper is organized as follows:
• In Sect. 2, we present a continuous problem and some regularity results.
• Sect. 3 is devoted to a description of time and full discrete problems.
• An error estimate is derived in Sect. 4.
• In Sect. 5, we describe an iterative algorithm used to solve a nonlinear discrete problem

and a linear matrix system. We conclude by presenting some numerical experiments.

2 A continuous problem and some regularity results
We consider an open bounded simply connected domain � of R

d (d = 2, d = 3) with
Lipschitz and connected boundary �. Let x = (x, y) for d = 2 or x = (x, y, z) for d = 3 be
the Cartesian coordinates. In this paper, we mainly focus on the following nonstationary
Navier–Stokes system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t (x, t) – ν�v(x, t) + (v · ∇v)(x, t) + ∇P(x, t) = f(x, t) in � × [0, T],

div v(x, t) = 0 in � × [0, T],

v(x, t) · n(x) = 0 on � × [0, T],

ς (curl v)(x, t) = 0 on � × [0, T],

v(x, 0) = v0 in �,

(1)

where v and P are the unknowns velocity and pressure, f represents the density of the
body forces, ν > 0 is the viscosity, and n is the unit outward normal vector on the bound-
ary �. We define the boundary operator ς such that ς (curl v) is the boundary of curl v in
dimension d = 2 or the boundary of the tangential components of the curl v in dimension
d = 3.
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We introduce the unknown vorticity θ = curl v (see [2, 3]), and since v.∇v is equal to
θ × v + 1

2 grad |v|2, system (1) is equivalent to the system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t (x, t) + ν(curl θ )(x, t) + (θ × v)(x, t) + ∇p(x, t) = f(x, t) in � × [0, T],

div v(x, t) = 0 in � × [0, T],

θ (x, t) = curl v(x, t) in � × [0, T],

v(x, t) · n(x) = 0 on ∂� × [0, T],

ς (θ )(x, t) = 0 on ∂� × [0, T],

v(x, 0) = v0 in �.

(2)

The dynamical pressure p is defined as

p = P +
1
2
|v|2.

We assume that the following condition is satisfied by the initial velocity v0 and the initial
vorticity θ0 = θ (x, 0):

div v0 = 0 in �, and θ0 = curl v0 in �. (3)

We define the space

H(div,�) =
{

u ∈ L2(�)d; div u ∈ L2(�)
}

equipped with the norm

‖u‖H(div,�) =
(‖u‖2

L2(�)d + ‖div u‖2
L2(�)

) 1
2

and its subspace

H0(div,�) =
{

u ∈ H(div,�); u.n = 0 on �
}

.

We also introduce the space

H(curl,�) =
{
ϕ ∈ L2(�)d; curlϕ ∈ L2(�)

d(d–1)
2

}

provided with the norm

‖u‖H(curl,�) =
(‖u‖2

L2(�)d + ‖ curl u‖2

L2(�)
d(d–1)

2

) 1
2

and its subspace

H0(curl,�) =
{

u ∈ H(curl,�); ς (u) = 0 on �
}

.

We recall that

L2
0(�) =

{

u ∈ L2(�);
∫

�

u dx = 0
}

and (·, ·) is the L2(�) scalar product.
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Let B a separable Banach space. We need to define the following space to handle the
nonstationary Navier–Stokes system:

Lp(0, T ; B) =
{

u measurable on ]0, T[ such that
∫ T

0

∥
∥u(t, ·)∥∥p

B dt < ∞
}

,

which is a Banach space with the norm

‖u‖Lp(0,T ;B) =

⎧
⎨

⎩

(
∫ T

0 ‖u(t, ·)‖p
B dt)

1
p , for 1 ≤ p < +∞,

sup0≤t≤T ‖u(t, ·)‖B, for p = +∞.

We also introduce the Banach space L(B) of the continuous linear functions from B to R

with the norm

∀L ∈L(B), ‖L‖L(B) = sup
x∈B/{0}

|L(x)|
‖x‖B

.

If the data f belongs to the space L2(0, T ; H0(div,�)′), where (H0(div,�)′ is the dual space
of H0(div,�) (see [17] for more detail ), then problem (2) is equivalent to the following
variational formulation:

Find (θ , v, p) ∈ L2(0, T ; H0(curl,�)) × L2(0, T ; H0(div,�)) × L2(0, T ; L2
0(�)) such that

⎧
⎪⎪⎨

⎪⎪⎩

∀w ∈ H0(div,�), ( ∂v
∂t , w) + l(θ , v; w) + Z(θ , v; w) + b(w, p) =≺ f , w 
,

∀q ∈ L2
0(�), b(v, q) = 0,

∀ϑ ∈ H0(curl,�), t(θ , v;ϑ) = 0,

(4)

where ≺ ·, · 
 is the duality product between H0(div,�)′ and H0(div,�). The bilinear forms
l(·, · ; ·), b(·, ·) and t(·, · ; ·) are defined as follows:

l(θ , v; w) = ν

∫

�

(curl θ )(x, t) · w(x) dx, b(v, q) = –
∫

�

div v(x, t)q(x) dx,

t(θ , v;ϑ) =
∫

�

θ (x, t).ϑ(x) dx –
∫

�

v(x, t) · curlϑ(x) dx.

In another way, we define the nonlinear term Z(·, · ; ·) by

Z(θ , v; w) =
∫

�

(θ × v)(x, t) · w(x) dx.

For proving the existence of solution for problem (2), we need to define the following
two kernels:

K =
{
ϕ ∈ H0(div,�);∀q ∈ L2

0(�), b(ϕ, q) = 0
}

,

the kernel of the bilinear form b(·, ·), which coincides with the space of divergence-free
functions in H0(div,�), and

W =
{

(ϑ ,ϕ) ∈ H0(curl,�) × K;∀ψ ∈ H0(curl,�), t(ϑ ,ϕ;ψ) = 0
}

=
{

(ϑ ,ϕ) ∈ H0(curl,�) × K;ϕ = curlϑ
}

,
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the kernel of the bilinear form t(·, · ; ·). From the continuity of the bilinear forms b(·, ·) and
t(·, · ; ·) we deduce that K and W are Hilbert spaces.

If (θ , v, p) is a solution of problem (4), then (θ , v) is solution of the following reduced
problem:

Find (θ , v) ∈ L2(0, T ; W) such that

∀w ∈ K,
(

∂v
∂t

, w
)

+ l(θ , v; w) + Z(θ , v; w) =≺ f , w 
 . (5)

In dimension two, it is simple to show that problem (5) has a solution. However, in di-
mension three, giving a sense to the nonlinear term Z(·, · ; ·) is related to the following
Assumption 1. In that case, the spaces H0(div,�) ∩ H(curl,�) and H(div,�) ∩ H0(curl,�)
are compactly embedded in H1(�) see ([18], Thm 2.17).

Assumption 1 In dimension three, we suppose that the boundary � is C1,1 or convex.

We recall the uniform inf-sup condition on bilinear form b(·, ·):
There exists a constant γ > 0 such that

∀q ∈ L2
0(�), sup

u∈H0(div,�)

b(u, q)
‖u‖H(div,�)

≥ γ ‖q‖L2(�)l; (6)

see [19] or [20, Chap. I, Cor. 2.4] for its proof.
When Assumption 1 and the inf-sup condition (6) are satisfied, then problems (5) and

(4) have a solution; see [21, Chap. III, Thm. 1.1], [22, Chap. V], and [9] for the proof.
Finally, we establish some regularity properties of the solution of problem (4). These reg-

ularity results can be easily derived from [18, Chap. 2], [23], and [24] by using a bootstrap
argument.

When � is convex and f belongs to L2(0, T ; Hmax(0,s–1)(�)d), the solution (θ , v, p) belongs
to the space L2(0, T ; Hs(�)

d(d–1)
2 ) × L2(0, T ; Hs(�)d) × L2(0, T ; Hs(�)) for all s ≤ 1, whereas

a greater regularity of the solution holds in dimension two [25, 26]:
If f belongs to L2(0, T ; Hmax(0,s)(�)2), then the solution (θ , v, p) belongs to the space
L2(0, T ; Hs+1(�)) × L2(0, T ; Hs(�)2) × L2(0, T ; Hs+1(�)) for all
i) s ≤ 1

2 in the general case,
ii) s ≤ 1 when � is convex, and
iii) s ≤ π

ω
when � is a polygon with the largest angle equal to ω.

3 The time and full discrete problems
For the time discretization of the nonstationnary Navier–Stokes problem, we use the back-
ward Euler method. We start by doing a partition of the interval [0, T] in subintervals
[ti–1, ti] for 1 ≤ i ≤ I , where I is a positive integer such that 0 = t0 < t1 < · · · < tI = T . Let
hi = ti – ti–1, h = (h1, h2, . . . , hI) and |h| = max1≤i≤I hi.

If the data f belongs to the space L2(0, T ; (H0(div,�))′) and (θ0, v0) ∈ H0(curl,�) ×
H0(div,�) satisfy condition (3), then the time semidiscrete problem is:

Find (θ i)0≤i≤I ∈ (H0(curl,�))I+1, (vi)0≤i≤I ∈ (H0(div,�))I+1, and (pi)1≤i≤I ∈ (L2
0(�))I such

that

θ0 = θ0 and v0 = v0 in � (7)
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and for all 1 ≤ i ≤ I ,

∀w ∈ H0(div,�), l̂
(
θ i, vi; w

)
+ hiZ

(
θ i, vi; w

)
+ hib

(
w, pi) = L(w),

∀q ∈ L2
0(�), b

(
vi, q

)
= 0,

∀ϑ ∈ H0(curl,�), t
(
θ i, vi;ϑ

)
= 0,

(8)

where f i = f(·, ti),

l̂
(
θ i, vi; w

)
=

(
vi, w

)
+ hil

(
θ i, vi; w

)
,

and

L(w) =
(
vi–1, w

)
+ hi ≺ f i, w 
 .

So when (θ i, vi, pi) is a solution of problem (7)–(8), the couple (θ i, vi) ∈ W is a solution
of the problem

∀w ∈ K, l̂
(
θ i, vi; w

)
+ hiZ

(
θ i, vi; w

)
= L(w). (9)

The existence of a solution for problems (9) and (8) is deduced from the properties (pos-
itivity and inf-sup conditions) of the bilinear form l̂(·, · ; ·) proved in [11, Lemma 1], the
properties of the trilinear form Z(·, · ; ·) (continuity and antisymmetry) proved in [12,
Lemma 1], and the inf-sup condition (6). We summarize this result of the existence in
dimensions two and three in the following theorem; see [12, Sect. 3], for its proof.

Theorem 1 Suppose the data f ∈ L2(0, t; (H0(div,�))′) and the initial vorticity–velocity
(θ0, v0) both belong to H0(curl,�)×H0(div,�) and satisfy condition (3). In dimension d = 2,
for any i, 1 ≤ i ≤ I , problem (7)–(8) has a solution (θ i, vi, pi) in H0(curl,�) × H0(div,�) ×
L2(�). In dimension d = 3, if Assumption 1 holds and there exists a constant � such that

�ν–2‖L‖L(H0(div,�)) < 1,

then problem (7)–(8) has a solution (θ i, vi, pi) in H0(curl,�) × H0(div,�) × L2(�). The pair
(θ i, vi) satisfies the following stability condition:

i∑

j=1

∥
∥θ j∥∥2

H(curl,�) +
∥
∥vi∥∥2

L2(�)d ≤ c
ν

(

‖v0‖2
L2(�)d +

i∑

j=1

hj
∥
∥f j∥∥2

H0(div,�)′

)

,

where c is a positive constant independent of i.

Hereinafter, for the spectral discretization, we assume that � is a square or cube. Using
the same idea of Nédélec’s finite elements (see [27, Sect. 2]), we introduce our discrete
spaces.

Let N ≥ 2 be an integer. The velocity discrete space VN is defined as

VN = H0(div,�) ∩
⎧
⎨

⎩

PN ,N–1(�) × PN–1,N (�) if d = 2,

PN ,N–1,N–1(�) × PN–1,N ,N–1(�) × PN–1,N–1,N (�) if d = 3.
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The vorticity discrete space TN is defined as

TN =

⎧
⎨

⎩

H1
0 (�) ∩ PN (�) if d = 2,

H0(curl,�) ∩ (PN–1,N ,N (�) × PN ,N–1,N (�) × PN ,N ,N–1(�)) if d = 3.

Finally, the pressure discrete spaces MN are defined as

MN = L2
0(�) ∩ PN–1(�).

Let the nodes εi, 0 ≤ i ≤ N , be the zeros of the polynomial (1 – x2)L′
N , where LN is the

Legendre polynomial of degree N on the interval [–1, 1], and let ρi, 0 ≤ i ≤ N , be the set
of weights for the Gauss–Lobatto quadrature formula. Then

∀ϕ ∈ P2N–1(–1, 1),
∫ 1

–1
ϕ(ζ ) dζ =

N∑

j=0

ϕ(εj)ρj. (10)

We have the following inequality [28]:

∀uN ∈ PN (–1, 1), ‖uN‖2
L2(–1,1) ≤

N∑

k=0

u2
N (εk)ρk ≤ 3‖uN‖2

L2(–1,1). (11)

For continuous functions ϕ and ψ on �̄, we define the discrete scalar product

(ϕ,ψ)N =

⎧
⎨

⎩

∑N
k=0

∑N
l=0 ϕ(εk , εl)ψ(εk , εl)ρkρl if d = 2,

∑N
k=0

∑N
l=0

∑N
r=0 ϕ(εk , εl, εr)ψ(εk , εl, εr)ρkρlρr if d = 3.

Hereinafter, we suppose that f is continuous on � × [0, T]. The full discrete problem is
constructed from problem (7)–(8) by using the Galerkin method combined with numeri-
cal integration.

If v0
N = IN (v0), then knowing vi–1

N , we find (τ i
N , vi

N , pi
N ) in TN × VN × MN such that for

1 ≤ i ≤ I ,

∀wN ∈ VN , l̂N
(
θ i

N , vi
N ; wN

)
+ hiZN

(
θ i

N , vi
N ; wN

)
+ hibN

(
wN , pi

N
)

= LN (wN ),

∀qN ∈MN , bN
(
vi

N , qN
)

= 0,

∀ϑN ∈ TN , tN
(
θ i

N , vi
N ;ϑN

)
= 0.

(12)

The bilinear forms l̂N (·, · ; ·), bN (·, ·), and tN (·, ·; ·) are defined as follows:

l̂N
(
θ i

N , vi
N ; wN

)
=

(
vi

N , wN
)

N + hiν
(
curl θ i

N , wN
)

N , bN (wN , qN ) = –(div wN , qN )N ,

and tN
(
θ i

N , vi
N ;ϕN

)
=

(
θ i

N ,ϕN
)

N –
(
vi

N , curlϕN
)

N .

From (11) combined with the Cauchy–Schwarz inequality it follows that the bilinear
formsl̂N (·, ·; ·), bN (·, ·). and tN (·, ·; ·) are continuous respectively on (TN × VN ) × VN ,
VN ×MN , and (TN ×VN ) ×TN with norms bounded independently of N . The functional
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LN (wN ) = (vi–1
N , wN )N + hi(IN (f i), wN )N is linear and continuous on VN . As a consequence

of the exactness property (10), the bilinear forms b(·, ·) and bN (·, ·) coincide on VN ×MN .
The discrete nonlinear term ZN (·, ·; ·) is defined as

ZN
(
θ i

N , vi
N ; wN

)
=

(
θ i

N × vi
N , wN

)

N .

We introduce the kernel of the discrete bilinear form bN (·, ·)

KN =
{

wN ∈VN ;∀qN ∈MN , bN (wN , qN ) = 0
}

,

which is equal to the space of divergence-free polynomials in DN .
We also define the discrete kernel of the bilinear form tN (·, · ; ·)

WN =
{

(ϑN , vN ) ∈ TN × KN ;∀ϕN ∈ TN , tN (ϑN , vN ;ϕN ) = 0
}

.

We remark that the discrete kernel WN is not included in the continuous kernel W; see
[10, Cor 3.2],. So the full discrete problem (12) is reduced as follows:

If v0
N = IN (v0), then knowing vi–1

N , find (θ i
N , vi

N ) ∈ WN such that for 1 ≤ i ≤ I ,

∀wN ∈ KN , l̂N
(
θ i

N , vi
N ; wN

)
+ hiZN

(
θ i

N , vi
N ; wN

)
= LN (wN ). (13)

We consider the inf-sup condition proved in [10, Lemma 3.9]. There exists a positive con-
stant β independent of N such that the discrete bilinear form bN (·, ·) satisfies

∀qN ∈ MN , sup
vN ∈VN

bN (vN , qN )
‖vN‖H(div,�)

≥ β ‖qN‖L2(�). (14)

The arguments used to prove the existence of a solution of problems (13) and (12) are
exactly the same as those for the continuous problems (9) and (8). These arguments are
based on Brouwer’s fixed point theorem [20, Chap. IV, Cor. 1.1] and the inf-sup condition
(14). We summarize this result on the existence in the following theorem proved in [12,
Sect. 4]

Theorem 3.1 Assume that the data f is continuous on �̄ × [0, T]. Then, knowing vi–1
N at

each time step i, problem (12) has a solution (θ i
N , vi

N , pi
N ) in TN ×VN ×MN . Moreover, the

pair (θ i
N , vi

N ) of this solution satisfies

i∑

j=1

∥
∥θ

j
N
∥
∥2

H(curl,�) +
∥
∥vi

N
∥
∥2

L2(�)d ≤ 3dc
2ν

(
∥
∥v0

N
∥
∥2

L2(�)d +
i∑

j=1

hj
∥
∥IN

(
f j)∥∥2

L2(�)d

)

,

where c is a positive constant independent of N and i..

Remark 1 Note that the previous existence result still holds when ZN (·, · ; ·) is replaced by
Z(·, · ; ·) in problem (12). In practice, this means that a more precise quadrature formula,
exact on P3N–1(�), is used to evaluate the integrals that appear in the treatment of the
nonlinear term. The corresponding discrete problem reads:
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If v0
N = IN (v0), then knowing vi–1

N , find (θ i
N , vi

N , pi
N ) in TN × VN × MN such that for 1 ≤

i ≤ I ,

∀wN ∈ VN , l̂N
(
θ i

N , vi
N ; wN

)
+ hiZ

(
θ i

N , vi
N ; wN

)
+ hibN

(
wN , pi

N
)

= LN (wN ),

∀qN ∈MN , bN
(
vi

N , qN
)

= 0,

∀ϑN ∈ TN , tN
(
θ i

N , vi
N ;ϑN

)
= 0.

(15)

In the same way the discrete reduced problem (13) is written as:
If v0

N = IN (v0), then knowing vi–1
N , find (θ i

N , vi
N ) ∈ WN , such that for 1 ≤ i ≤ I ,

∀wN ∈ KN , l̂N
(
θ i

N , vi
N ; wN

)
+ hiZ

(
θ i

N , vi
N ; wN

)
= LN (wN ). (16)

4 Error estimates
This section is devoted to the proof of the error estimate between the solution of problems
(7)–(8) and (15) in dimension two since the proof is difficult in dimension three. This proof
is based on the Brezzi–Rappaz–Raviart theorem [15].

For any data f ∈ L2(0, t; H0(div,�)′), we define the linear Stokes operator S (see [10, Cor.
2.4]), where SL is the solution (θ i, vi) of the following reduced problem: Let

θ0 = θ0 and v0 = v0 in �.

For all 1 ≤ i ≤ I , knowing vi–1, find (θ i, vi) ∈ H0(curl,�) × H0(div,�) such that

∀w ∈ H0(div,�), l̂
(
θ i, vi; w

)
= L(w).

We also define the mapping G from the space X = H0(curl,�) × K into the dual space of
H0(div,�) by

∀(
θ i, vi) ∈X, 1 ≤ i ≤ I,∀w ∈ H0(div,�)

≺ G
(
θ i, vi), w 
= hiZ

(
θ i, vi; w

)
– L(w).

So we conclude that problem (9) is equivalent to the problem

(
θ i, vi) + SG

(
θ i, vi) = 0. (17)

We proceed in the same way for the discrete case. Let XN = WN × KN . Consider the dis-
crete Stokes operator SN such that SN L is the solution (θ i

N , vi
N ) of the following problem:

If v0
N = IN (v0), then knowing vi–1

N , find (θ i
N , vi

N ) ∈ WN such that for 1 ≤ i ≤ I ,

∀wN ∈ KN , l̂N
(
θ i

N , vi
N ; wN

)
= LN (wN ). (18)

We also remind from [10] the following properties of the discrete operator SN :
• The stability property

‖SN L‖X ≤ c sup
wN ∈KN

|L(wN )|
‖wN‖L2(�)d

. (19)
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• If (θ i, vi) belongs to Hs+1(�) × Hs(�)2 for any 1 ≤ i ≤ I and s ≥ 1, then we have the
following error:

∥
∥(S – SN )L

∥
∥ ≤ cN–s∥∥

(
θ i, vi)∥∥

Hs+1(�)×Hs(�)2 . (20)

We also define the discrete mapping GN from XN into the dual space of VN by

∀(
θ i

N , vi
N
) ∈XN , 1 ≤ i ≤ I,∀wN ∈VN ,

≺ GN
(
θ i

N , vi
N
)
, wN 
= hiZ

(
θ i

N , vi
N ; wN

)
– LN (wN ).

Then we conclude that the problem (13) is equivalent to the problem

(
θ i

N , vi
N
)

+ SNGN
(
θ i

N , vi
N
)

= 0.

Let D be a differential operator. We make the following assumption.

Assumption 2 Knowing vi–1, (θ i, vi) is a solution of problem (9) such that the operator
Id + SDG(θ i, vi) is an isomorphism of X.

We start by proving the following continuity property using the discrete implicit func-
tion defined in the theorem of Brezzi, Rappaz, and Raviart [15].

Lemma 1 For any (θN , vN , wN ) belonging to TN ×VN ×VN ,

∣
∣Z(θN , vN ; wN )

∣
∣ ≤ c ln(N)

1
2 ‖θN‖H(curl,�)‖vN‖L2(�)2‖wN‖L2(�)2 , (21)

where c is a positive constant.

Proof Using the Hölder inequality for all r > 2 and s > 2 such that 1
r + 1

s = 1
2 , we obtain

∣
∣Z(θN , vN ; wN )

∣
∣ ≤ ‖θN‖Lr (�)2‖vN‖Ls(�)2‖wN‖L2(�)2 .

Then by the inverse inequality (see [29])

∀uN ∈ PN (�), ‖uN‖Ls(�) ≤ cN (2– 4
s )‖uN‖L2(�),

and the fact that the embedding of H(curl,�) into Ls(�) is continuous with a norm
bounded by s 1

2 (see [30]), we get inequality (21) when s = ln(N). �

Let L the space of linear operators from X into X.

Lemma 2 Under Assumption 2, there exists an integer N∗ such that, for all N ≥ N∗, the
operator Id + SN DGN (θ i, vi) is an isomorphism of X. The norm of its inverse operator is
bounded independently of N .
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Proof Writing

Id + SN DGN
(
θ i, vi) = Id + SDG

(
θ i, vi) – (S – SN )DG

(
θ i, vi)

– SN
(
DG

(
θ i, vi) – DGN

(
θ i, vi)), (22)

we prove the desired result in three steps.
1) The last term in the right-hand side of equality (22) is equal zero since DG(θ i, vi) =

DGN (θ i, vi) (see the definition of G and GN ).
2) The second term in the right-hand side of equality (22) tends to zero as N tends to

infinity. For any (ϑ ,ω), we have

DG(θ , v) · (ϑ ,ω) = θ × ω + ϑ × v.

Then from the property [9, (2.37)] we obtain

curl
(
DG(θ , v) · (ϑ ,ω)

)
= grad(θ ) × ω + grad(ϑ) × v.

We conclude that the term SDG(θ , v) · (ϑ ,ω) is in H2(�) × H1(�)2 and satisfies
∥
∥SDG(θ , v) · (ϑ ,ω)

∥
∥

H2(�)×H1(�)2 ≤ c
(‖θ‖H2(�) + ‖v‖H1(�)2

)∥
∥(ϑ ,ω)

∥
∥
X

.

Finally, from (20) we have
∥
∥(S – SN )DG(θ , v)

∥
∥
L

= 0. (23)

(3) Using Assumption 2, take η = ‖(Id + SDG(θ , v))–1‖L for N large enough. Then the
quantity in (23) is bounded by 1

2η
, which gives the desired result with the norm of the

inverse bounded by 2η. �

Now we prove the following Lipschitz property of the operator SN .

Lemma 3 There exists a constant k > 0 such that for any (θ̂ , v̂) ∈X,
∥
∥SN

(
DGN (θ , v) – DGN (θ̂ , v̂)

)∥
∥
L

≤ k
(‖θ – θ̂‖H(curl,�) + ‖v – v̂‖L2(�)2

)
.

Proof For any wN ∈ KN , we have

≺ (
DGN (θ , v) – DGN (θ̂ , v̂)

) · (ϑ ,ω), wN 
= K(θ – θ̂ ,ω; wN ) + K(ϑ , v – v̂; wN ).

This leads to the desired Lipschitz property using the same idea as in the proof of Lemma 1
and (19). �

Lemma 4 Assume that the data function f belongs to the space L2(0, T ; Hμ(�)2),μ > 3
2 ,

and that the solution (θ i, vi, pi), 1 ≤ i ≤ I , of problem (7)–(8) belongs to Hs+1(�)×Hs(�)2 ×
Hs(�), s > 1. We have the following estimate:

∥
∥
(
θ i, vi) + SNGN

(
θ i, vi)∥∥

X
≤ c

((|h| + N1–s)(∥∥θ i∥∥
Hs+1�) +

∥
∥vi∥∥

Hs(�)2
)

+
(|h| + N–μ

)‖f‖L2(0,T ;Hμ(�)2)
)

(24)

with a constant c only depending on the data f and vj, 0 ≤ j ≤ i – 1.
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Proof From equality (17) we derive that

∥
∥Id + SNGN

(
θ i, vi)∥∥

X
≤ ∥

∥(S – SN )GN
(
θ i, vi)∥∥

X

+
∥
∥SN

(
GN

(
θ i, vi) – G

(
θ i, vi))∥∥

X
. (25)

Based on (20), we bound the first term in the right-hand side of inequality (25). To bound
the second term, we write, thanks to the definition of G and GN ,

≺ (
GN

(
θ i, vi) – G

(
θ i, vi)), wN 


= LN (wN ) – L(wN )

=
(
vi–1

N , wN
)

N –
(
vi–1, wN

)
+ hi

((
IN

(
f i), wN

)

N –
(
f i, wN

))
.

The approximation properties of the operators �N–1 and IN (see [28]) give the bound for
this last term, which concludes the proof of (24). �

Consequently, in the following theorem, we state an error estimate.

Theorem 2 Assume that the data function f belongs to the space L2(0, T ; Hμ(�)2),μ > 3
2 ,

and that the solution (θ i, vi, pi), 1 ≤ i ≤ I , of problem (7)–(8) belongs to Hs+1(�)×Hs(�)2 ×
Hs(�), s > 1, and satisfies Assumption 2. Then, there exist an integer N∗ and a positive real
number h∗ such that for all N ≥ N∗ and |h| ≤ h∗, problem (15) has a unique solution.
Moreover, this solution satisfies for all 1 ≤ i ≤ I the following error estimate:

∥
∥θ i – θ i

N
∥
∥

H(curl,�) +
∥
∥vi – vi

N
∥
∥

H(div,�) + ln(N)– 1
2
∥
∥pi – pi

N
∥
∥

L2(�)

≤ c
((|h| + N1–s)(∥∥θ i∥∥

Hs+1�) +
∥
∥vi∥∥

Hs(�)2 +
∥
∥pi∥∥

Hs(�)

)

+
(|h| + N–μ

)‖f‖L2(0,T ;Hμ(�)2)
)
. (26)

Proof Using Lemmas 2–4 together with the Brezzi–Rappaz–Raviart theorem (see [15]),
for N large enough, we obtain that for all 1 ≤ i ≤ I , problem (16) has a unique solution
(θ i

N , vi
N ), which satisfies

∥
∥θ i – θ i

N
∥
∥

H(curl,�) +
∥
∥vi – vi

N
∥
∥

H(div,�) ≤ c
((|h| + N1–s)(∥∥θ i∥∥

Hs+1�) +
∥
∥vi∥∥

Hs(�)2
)

+
(|h| + N–μ

)‖f‖L2(0,T ;Hμ(�)2)
)
.

Besides, using the discrete inf-sup condition (14), for all 1 ≤ i ≤ I , there exists a unique
pressure pi

N in MN such that

∀wN ∈VN , bN
(
wN , pi

N
)

=
(

1
hi

)
(
LN (wN ) – l̂N

(
θ i

N , vi
N ; wN

))
– Z

(
θ i

N , vi
N ; wN

)
.

Furthermore, for any qN ∈ MN , having

bN
(
wN , pi

N – qN
)

= b
(
wN , pi – qN

)
– L(wN ) + LN (wN ) + l̂

(
θ i – θ i

N , vi – vi
N ; wN

)

+ (l̂ – l̂N )
(
θ i

N , vi
N ; wN

)
+ Z

(
θ i, vi; wN

)
– Z

(
θ i

N , vi
N ; wN

)
,

we deduce the estimate for ‖pi – pi
N‖L2(�) from (14) and the triangle inequality. �
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Remark 2 Estimate (26) is fully optimal for the vorticity and velocity, whereas it is quasi-
optimal for the pressure.

5 Resolution algorithm and numerical results
5.1 Resolution algorithm
Considering the result of the error estimate, we will establish numerical tests just in the
two-dimensional case on the square � =] – 1, 1[2. We elaborate the following iterative
algorithm to solve problem (12). For simplicity, we omit the indices N .

Step 1. We start by solving the linear Stokes problem:
If v0 = IN (v0), then knowing vi–1

0 , find (θ i
0, vi

0, pi
0) in TN ×VN ×MN such that for 1 ≤ i ≤ I ,

∀wN ∈ VN , l̂N
(
θ i

0, vi
0; wN

)
+ hibN

(
wN , pi

0
)

= LN (wN ),

∀qN ∈MN , bN
(
vi

0, qN
)

= 0,

∀ϑN ∈ TN , tN
(
θ i

0, vi
0;ϑN

)
= 0.

Step 2. We suppose that the (k – 1)th iteration (θ i
k–1, vi

k–1, pi
k–1) is known. Then we solve

the problem:
If v0 = IN (v0), then knowing vi–1

k , find (θ i
k , vi

k , pi
k) in TN ×VN ×MN such that for 1 ≤ i ≤ I ,

∀wN ∈ VN ,

l̂N
(
θ i

k , vi
k ; wN

)
+ hiZN

(
θ i

k–1, vi
k ; wN

)
+ hiZN

(
θ i

k , vi
k–1; wN

)
+ hibN

(
wN , pi

k
)

= LN (wN ) + hiZN
(
θ i

k–1, vi
k–1; wN

)
,

∀qN ∈MN , bN
(
vi

k , qN
)

= 0,

∀ϑN ∈ TN , tN
(
θ i

k , vi
k ;ϑN

)
= 0.

(27)

We do the iterations until the following condition is satisfied:

(∥
∥θ i

k – θ i
k–1

∥
∥2

H(curl,�) +
∥
∥vi

k – vi
k–1

∥
∥2

H(div,�)

) 1
2 ≤ ξ

for some fixed ξ .
In the following, we start by presenting the linear system deduced from the discrete

problem (27). We build a basis of the discrete spaces TN , VN , and MN .
We consider the Lagrange polynomial ψp in PN (–1, 1) associated with the nodes εp,

0 ≤ p ≤ N , such that

ψp ∈ PN
(
[–1, 1]

)
, ψp(εq) = δpq, 0 ≤ p, q ≤ N ,

where δpq is the Kronecker symbol. We fix the integer p∗ between 0 and N equal to N
2

or to (N+1)
2 . We denote the set P∗ = {0, . . . , N} \ {p∗} and consider the polynomial ψ∗

p ∈
PN–1([–1, 1]) such that

ψ∗
p (ζ ) = ψp(ζ )

εp – εp∗

ζ – εp∗
, p ∈ P∗.
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Then the discrete unknowns θ i
N , vi

N and a pseudopressure p̆i
N are written as

θ i
N (x, y) =

N–1∑

p=1

N–1∑

q=1

θ i
pqψp(x)ψq(y),

vi
Nx(x, y) =

N–1∑

p=1

∑

q∈P∗
vix

pqψp(x)ψ∗
q (y), vi

Ny(x, y) =
∑

p∈P∗

N–1∑

q=1

viy
pq ψ∗

p (x)ψq(y),

p̆i
N (x, y) =

∑

p∈P∗ ,q∈P∗ ,(p,q) �=(0,0)

p̆pq ψ∗
p (x)ψ∗

q (y).

The function p̆i does not belong to L2
0(�). However, the real pressure pi

N is obtained from
the formula

pi
N (x, y) = p̆i

N (x, y) –
1
4

(
p̆i

N , 1
)

N .

The components of the unknowns θ i
N , vi

Nx, vi
Ny, and pi

N allow us to form the unknowns
vectors denoted by �i, V i

x, V i
y , and Pi. Their dimensions are equal to (N – 1)2, N(N – 1),

N(N – 1), and N2 – 1, respectively. We consider V 0 = (V 0
1 , V 0

2 ), where the components of
the vectors V 0

1 and V 0
2 are respectively v0

Nx(εp, εq) and v0
Ny(εp, εq) such that v0 = (v0

Nx, v0
Ny).

Consequently, we formulate the discrete problem (27) as the following equivalent linear
system:

⎛

⎜
⎜
⎜
⎝

νAi
1 – Di

11 0 –Di
21 –Bi

1

νAi
2 – Di

12 Di
22 0 –Bi

2

0 BiT
1 BiT

2 0
Cω –AiT

1 –AiT
2 0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

�i

V i
x

V i
y

Pi

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Fi
1 + Ni

1

Fi
2 + Ni

2

0
0

⎞

⎟
⎟
⎟
⎠

, (28)

where BT is the transpose of a matrix B. The matrices Ai = (Ai
1, Ai

2), Bi = (Bi
1, Bi

2), and Cω

are the same as for the Stokes problem (see [10, Sect. 6]).
The matrices D1 = (D11, D12), D2 = (D21, D22), and N1 = (N1, N2) are made respectively

from the terms ZN (θ i
1, vi

0; vN )., ZN (θ i
0, vi

1; vN )., and ZN (θ i
0, vi

0; vN ).
Since the global matrix of the linear system (28) is not symmetric, the GMRES method

[16] is used for the resolution.

5.2 Numerical results
In this section, we start by studying the time convergence. We consider a given solution
obtained from the formulas v = curlϕ and θ = curl v, where ϕ is the stream function. We
handle the following two cases.

Case (1): Assume that the steam function ϕ and the pressure p are C∞ are related to the
time and space so that (θ , v; p) is a solution of problem (4):

ϕ(t, x, y) = et sin(πx) sin(πy), p(t, x, y) = e–t(x + y). (29)

Case (2): Assume that the steam function ϕ and the pressure p are less regularly related
to the time and space so that (θ , v; p) is a solution of problem (4):

ϕ(t, x, y) = t
1
2
(
1 – x2)3(1 – y2) 7

2 , p(t, x, y) = t
1
2 x

(
1 – x2) 3

2
(
1 + y2)– 1

2 . (30)
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Figure 1 The time convergence

Figure 2 The spectral convergence

The velocity is a Gaussian; then v0 = v(x, 0) = (0, 0). We fix the space discrete parameter
N = 40, T = 1, and the time steps h varying in {0.1, 0.001, 0.0001}. The viscosity ν and e
tolerance ξ are given by

ν = 5 · 10–2, ξ = 10–12.

Figure 1 presents the curves of convergence for the three terms log‖θ – θ i
N‖H(curl,�) (in

red), log‖v – vi
N‖H(div,�) (in blue), and log‖p – pi

N‖L2(�) (in green) as functions of log(h).
Figures 1(a) and 1(b) represent the convergence in time for the continuous solutions de-
fined in (29) and (30), respectively. We remark that in the two cases (regular solution or
less regular solution) the time convergence order is almost equal to 1, which confirms the
result of Theorem 2.

In Fig. 2(a), for the solution issued from (29), we present the spectral convergence curves
on the vorticity θ in norm H(curl,�), the velocity v in norm H(div,�), and the pressure
in norm L2(�). These error curves are provided in semilogarithmic scales, as functions of
log(N), for N varying from 5 to 30. As can be expected from Theorem 2, the convergence
is exponential for the solution, and the slope for the error curve on the pressure is the
same as that for the vorticity and velocity.
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Figure 3 The discrete solution for the data f defined in ((31)) and g = 0

Figure 2(b) shows the convergence curves of the relative errors of the vorticity θ in norm
H(curl,�), the velocity v in norm H(div,�), and the pressure in norm L2(�) in semiloga-
rithmic scales, as functions of log(N), for the solution issued from (30). We note that the
error is much larger for the singular solution (30) than that for the regular solution (29),
which confirms the results of Theorem 2.

Figure 3 corresponds from top to bottom and left to right to the discrete vorticity, the
two components of the discrete velocity, and the discrete pressure for the data

f = (fx, fy) =
(
txy2, 0

)
, v0 = (0, 0), (31)

homogeneous boundary conditions v · n = g = 0 on �, and N = 35.
Now we handle the influence of the viscosity ν on the number of iterations. We take

ξ = 10–12 and the regular solution issued from (29).
Figure 4 presents the number of iterations processed by the algorithm as a function of N

as it varies from 5 to 25. This number of iterations is greater when the viscosity ν decreases.
We further use a nonhomogeneous test. We deal with a Poiseuille linear flow, the data

f = (0, 0), and the boundary condition v · n = g given by

g(–1, y) = –y(1 – y), if 0 < y < 1,

g(1, y) = y(1 + y), if – 1 < y < 0,

else, g(x, y) = 0.

Figure 5 presents from left to right the curves of the velocity field with viscosity ν = 10–1

obtained with N = 20 and with viscosity ν = 10–2 obtained with N = 30. The vorticity and
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Figure 4 Influence of the viscosity on the time convergence of the algorithm

Figure 5 Curves of the velocity fields for different viscosities

pressure are equal to zero since the data f = (0, 0), which is easily proved from the Navier–
Stokes equations.

6 Conclusion
This paper deals with the resolution and implementation of the implicit Euler scheme in
time and spectral discretization in space of the nonstationary vorticity velocity pressure
formulation of the Navier–Stokes problem with nonstandard boundary conditions. We
prove using the Brezzi–Rappaz–Raviart theorem that the new discrete formulation has a
unique local solution. In dimension two, we show an optimal error estimate for the vor-
ticity and velocity and a nearly optimal for the pressure,.
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