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Abstract
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1 Introduction

Fractional differential equations have proved to be promising tools in the modeling of
diverse phenomena in various fields, such as physics, chemistry, biology, engineering and
economics. In recent years, there was a significant development in fractional differential
equations due to the possibility of accounting for a larger class of memory properties. For
instance, consider the studies of Miller and Ross [1], Boulaaras et al. [2, 3], Podlubny [4],
Hilfer [5], Kilbas et al. [6], and the related papers [1, 7–16] and the references therein.

Critical point theory was very useful in determining the existence of solutions to com-
plete differential equations with certain boundary conditions; see, for example, in the ex-
tensive literature on the subject, the classical books [17–19], and the references therein.
However, so far, some problems were created for fractional boundary value problems
(F-BVP) by exploiting this approach, where it is often very difficult to create suitable spaces
and functions for fractional problems.
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In [20], the authors investigated the following nonlinear fractional differential equation
depending on two parameters:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tD
αi
T (ai(t)0Dαi

t ui(t))

= λFui (t, u1(t), u2(t), . . . , un(t))

+ μGui (t, u1(t), u2(t), . . . , un(t)) + hi(ui) a.e [0, T],

ui(0) = ui(T) = 0,

(1.1)

for 1 ≤ i ≤ n, where αi ∈ (0; 1], 0Dαi
t and tD

αi
T are the left and right Riemann–Liouville

fractional derivatives of order αi, respectively, with ai ∈ L∞([0, T]) for

ai0 = ess inf
[0,T]

ai(t) > 0 for 1 ≤ i ≤ n,λ,μ

are positive parameters, F , G : [0, T] ×R
n −→R are measurable functions with respect to

t ∈ [0, T] for every (x1, . . . , xn) ∈ R
n and are C1 with respect to (x1, . . . , xn) ∈ R

n for a.e. t ∈
[0, T], Fui and Gui denote the partial derivative of F and G with respect to ui, respectively,
and hi : R → R are Lipschitz continuous functions with the Lipschitz constants Li > 0 for
1 ≤ i ≤ n, i.e.,

∣
∣hi(x1) – hi(x2)

∣
∣ ≤ Li|x1 – x2|

for every x1, x2 ∈ R, and hi(0) = 0 for 1 ≤ i ≤ n. Motivated by [21] and [22], using a three
critical points theorem obtained in [23], which is recalled in the next section (Theorem 2),
the existence of at least three solutions for this system is demonstrated.

For example, according to some assumptions, in [24], by using variational methods the
authors obtained the existence of at least one weak solution for the following p-Laplacian
fractional differential equation [24]:

⎧
⎨

⎩

tDα
T (φp(0Dα

t u(t))) = λf (t, u(t)) a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(1.2)

where 0Dα
t and tDα

T are the left and right Riemann–Liouville fractional derivatives with
0 < α ≤ 1, respectively, the function φp(s) = |s|p–2s, p > 1. Taking a class of fractional differ-
ential equation with p-Laplacian operator as a model, Li et al. investigated the following
equation recently [25]:

⎧
⎨

⎩

tDα
T ( 1

w(t)p–2 ϕp(0Dα
t u(t))) + λu(t) = f (t, u,c0 Dα

t u(t)) + h(u(t)) a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(1.3)

with 1
p < α ≤ 1, λ a non-negative real parameter.

The function

ϕp(s) = |s|p–2s, p ≥ 2, f : [0; T] ×R×R →R,

is continuous and h : R →R is a Lipschitz continuous function.
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By using the mountain pass theorem combined with iterative technique, the authors
obtained the existence of at least one solution for problem (1.3). In addition, in [20], three
weak solutions for a new class of fractional p-Laplacian for boundary value Systems were
established by using variational methods and critical point theory. In contrast, motivated
by [21] and [22], the existence of at least three solutions for system (1.4) is demonstrated
in the present paper, by means of the three critical points theorem obtained in [23], which
is recalled in the next section (Theorem 2). This theorem has been successfully employed
to establish the existence of at least three solutions for the case of perturbed boundary
value problems; see [7, 26–28] and [29].

Consider the following fractional nonlinear system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tD
αi
T φp(0Dαi

t ui(t))

= λFui (t, u1(t), u2(t), . . . , un(t))

+ μGui (t, u1(t), u2(t), . . . , un(t))

+ hi(ui(t)) a.e. t ∈ [0, T], for 1 ≤ i ≤ n

ui(0) = ui(T) = 0,

(1.4)

where αi ∈ (0; 1], φp(t) = |t|p–2t, t �= 0, φp(0) = 0, p > 1,0 Dαi
t and tD

αi
T are the left and right

Riemann–Liouville fractional derivatives of order αi, respectively, for 1 ≤ i ≤ n,λ and μ

are positive parameters, and F , G : [0, T] ×R
n → R are measurable functions with respect

to t ∈ [0, T] for every (x1, x2, . . . , xn) ∈R
n and are C1 with respect to (x1, x2, . . . , xn) ∈R

n.for
a.e. t ∈ [0, T], Fui , Gui denote the partial derivative of F and G with respect to ui, respec-
tively, and hi : R →R are Lipschitz continuous functions of order (p – 1) with Lipschizian
constants Li > 0 for 1 ≤ i ≤ n, i.e.,

∣
∣hi(x1) – hi(x2)

∣
∣ ≤ Li|x1 – x2|p–1 (1.5)

for every x1, x2 ∈R, and hi(0) = 0 for 1 ≤ i ≤ n.
In this paper, the following conditions are assumed:
(H0) αi ∈ ( 1

p ; 1] for 1 ≤ i ≤ n.
(F1) for every M > 0 and every 1 ≤ i ≤ n,

sup
|(x1,x2,...,xn)|≤M

∣
∣Fui (t, x1, x2, . . . , xn)

∣
∣ ∈ L1([0, T]

)
.

(F2) F(t, 0, 0, . . . , 0) = 0 for a.e. t ∈ [0, T].
(G) for every M > 0 and every 1 ≤ i ≤ n,

sup
|(x1,x2,...,xn)|≤M

∣
∣Gui (t, x1, x2, . . . , xn)

∣
∣ ∈ L1([0, T]

)
.

This rest of this paper is organized as follows. The next section presents the necessary
preliminary to develop the main contribution of this paper. In Sect. 3, the main result
(Theorem 2) is derived, and meaningful consequences (Corollaries 1 and 2 and Example 1)
are presented.
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2 Preliminaries
For the sake of clarity, the necessary definitions and properties of fractional calculus are
presented below.

Definition 1 ([6]) Let u be a function defined on [a, b]. The left and right Riemann–
Liouville fractional derivatives of order α > 0 for a function u are defined by

aDα
t u(t) :=

dn

dtn aDα–n
t u(t) =

1
Γ (n – α)

dn

dtn

∫ t

a
(t – s)n–α–1u(s) ds

and

tDα
b u(t) := (–1)n dn

dtn tDα–n
b u(t) =

(–1)n

Γ (n – α)
dn

dtn

∫ b

t
(t – s)n–α–1u(s) ds,

for every t ∈ [a, b], provided the right-hand sides are pointwise defined on [a, b], where
n – 1 ≤ α < n and n ∈N.

Here, Γ (α) is the gamma function, given by

Γ (α) :=
∫ +∞

0
zα–1e–z dz.

The set ACn([a, b],R) corresponds to the space of functions u : [a, b] → R such that
u ∈ Cn–1([a, b],R) and u(n–1) ∈ ACn([a, b],R). Here, as usual, Cn–1([a, b],R) denotes the
set of mappings that are (n – 1) times continuously differentiable on [a, b]. In particular,
AC([a, b],R) := AC1([a, b],R).

Proposition 1 ([30]) The following property of fractional integration holds:

∫ b

a

[

aD–α
t u(t)

]
v(t) dt =

∫ b

a

[

tD
–α
b v(t)

]
u(t) dt, α > 0,

provided that u ∈ Lp([a, b],R), v ∈ Lq([a, b],R) and p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1 + α or p �= 1,
q �= 1, 1

p + 1
q = 1 + α.

Proposition 2 ([31]) If u(a) = u(b) = 0, u ∈ L∞([a, b],RN ), v ∈ L1([a, b],R), or v(a) = v(b) =
0, v ∈ L∞([a, b],RN ), u ∈ L1([a, b],R), then

∫ b

a

[

aDα
t u(t)

]
v(t) dt =

∫ b

a

[

tD
α
b v(t)

]
u(t) dt, 0 < α ≤ 1.

To establish a variational structure for the main problem, it is necessary to construct
appropriate function spaces. Following [32], C∞

0 ([0, T],R) denotes the set of all functions
g ∈ C∞([0, T],R) with g(0) = g(T) = 0.

Definition 2 ([24]) For 0 < αi ≤ 1, and for 1 ≤ i ≤ n, the fractional derivative space Eαi,p
0

is defined by

Eαi,p
0 =

{
u ∈ Lp([0, T],R

)
: 0Dαi

t ui ∈ Lp, u(0) = u(T) = 0
}
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with the norm

‖ui‖αi ,p =
(‖ui‖p

Lp + ‖0Dαi
t ui‖p

Lp
) 1

p , ∀ui ∈ Eαi,p
0 , (2.1)

where

‖ui‖Lp =
(∫ T

0
|ui|2 dt

) 1
p

is the norm of Lp([0, T],R) for 1 ≤ i ≤ n, and

‖ui‖∞ = max
t∈[0,T]

∣
∣ui(t)

∣
∣. (2.2)

From [24, Lemma 3.1], one finds that, for 0 < αi ≤ 1 and 1 < p < +∞, the space Eαi ,p
0 is a

reflexive and separable Banach space.

Lemma 1 ([24]) Let 0 < αi ≤ 1, for 1 ≤ i ≤ n and 1 < p < +∞, for all ui ∈ Eαi ,p
0 one has

‖ui‖Lp ≤ Tαi

Γ (αi + 1)
‖0Dαi

t ui‖Lp , (2.3)

‖ui‖∞ ≤ Tαi– 1
p

Γ (αi)((αi – 1)q + 1)
1
q
‖0Dαi

t ui‖Lp . (2.4)

Hence, it is possible to consider Eαi ,p
0 with respect to the norm

‖ui‖αi ,p = ‖0Dαi
t ui‖Lp =

(∫ T

0

∣
∣
0Dαi

t ui
∣
∣p dt

) 1
p

, ∀ui ∈ Eαi ,p
0 , (2.5)

for 1 ≤ i ≤ n, which is equivalent to (2.1).
Hereafter, let X be the Cartesian product of the n spaces Eαi ,p

0 , i.e., X = Eα1,p
0 × Eα2,p

0 ×
· · · × Eαn ,p

0 equipped with the norm

‖u‖ =
n∑

i=1

‖ui‖αi ,p, u = (u1, u2, . . . , un),

where ‖ui‖αi ,p is defined in (2.5). It is evident that X is compactly embedded in
C([0, T],R)n.

Definition 3 A weak solution of system (1.4) consists of any function u = (u1, u2, . . . , un) ∈
X, such that, for all v = (v1, v2, . . . , vn) ∈ X, one finds that

∫ T

0

n∑

i=1

∣
∣
0Dαi

t ui(t)
∣
∣p–2

0Dαi
t ui(t)0Dαi

t vi(t) dt

= λ

∫ T

0

n∑

i=1

Fui

(
t, u1(t), u2(t), . . . , un(t)

)
vi(t) dt

+ μ

∫ T

0

n∑

i=1

Gui

(
t, u1(t), u2(t), . . . , un(t)

)
vi(t) dt +

∫ T

0

n∑

i=1

hi
(
ui(t)

)
vi(t) dt.
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Remember the following result of [14, Theorem 1], with easy manipulations that are
provided in the sequel.

Theorem 1 (Ricceri [14]) Let X be a reflexive real Banach space; Φ : X → R be a con-
tinuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional
whose Gâteaux derivative admits a continuous inverse on X∗, bounded on bounded subsets
of X, Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive is compact such that

Φ(0) = Ψ (0) = 0.

Assume that there exists r > 0 and x ∈ X, with r < Φ(x), such that
(a1) supΦ(x)≤r Ψ (x)

r < Φ(x)
Ψ (x) ;

(a2) for each λ ∈ Λr ; =] Φ(x)
Ψ (x) , r

supΦ(x)≤r Ψ (x) [, the functional Φ – λΨ is coercive.
Then, for each compact interval [a, b] ⊆ Λr , there exists ρ > 0 with the following property:
for every λ ∈ [a, b] and every C1 functional � : X →R with compact derivative, there exists
δ > 0 such that, for each μ ∈ [0, δ], the equation

Φ ′(x) – λΨ ′(x) – μ�′(x) = 0

has at least three solutions in X whose norms are less than ρ .

3 The main results
In the present section, the existence of multiple solutions for system (1.1) is discussed. For
any ς > 0, K(ς ) denotes

{

(x1, x2, . . . , xn) ∈R
n :

1
p

n∑

i=1

|xi|p ≤ ς

}

.

This set is one of the cornerstones of the given hypotheses for appropriate choices of ς .
For u = (u1, u2, . . . , un) ∈ X one has

Υ (u) :=
n∑

i=1

Υi(ui),

where

Υi(x) :=
∫ T

0
Hi

(
x(s)

)
ds and Hi(x) :=

∫ x

0
hi(z) dz, 1 ≤ i ≤ n,

for every t ∈ [0, T] and x ∈ R. Moreover, let

c := max
1≤i≤n

{
Tαi– 1

p

Γ (αi)((αi – 1)q + 1)
1
q

}

,

k := min
1≤i≤n

{

1 –
LiTαip

(Γ (αi + 1))p

}

,

τ := max
1≤i≤n

{

1 +
LiTpαi

(Γ (αi + 1))p

}

.
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Theorem 2 Suppose that k > 0 and the conditions (F1), (F2), (G) and (H) are satisfied. Fur-
thermore, assume that there exist a positive constant r and a function ω = (ω1,ω2, . . . ,ωn) ∈
X such that

(i)

1
p

n∑

i=1

‖ωi‖p
αi

>
r
k

;

(ii)

r
∫ T

0 F(t,ω1,ω2, . . . ,ωn) dt
1
p
∑n

i=1 ‖ωi‖p
αi – Υ (ω1,ω2, . . . ,ωn)

–
∫ T

0
max

(x1,x2,...,xn)∈K ( cr
k )

F(t, x1, x2, . . . , xn) dt > 0;

(iii)

lim
(|x1|,|x2|,...,|xn|)→(+∞,+∞,...,+∞)

sup
supt∈[0,T] F(t, x1, x2, . . . , xn)

1
p
∑n

i=1 |xi|p ≤ 0.

Then, setting

Λr :=
] 1

p
∑n

i=1 ‖ωi‖p
αi – Υ (ω1,ω2, . . . ,ωn)

∫ T
0 F(t,ω1,ω2, . . . ,ωn) dt

,
r

∫ T
0 max(x1,x2,...,xn)∈K ( cr

k ) F(t, x1, x2, . . . , xn) dt

[

,

for each compact interval [a, b] ⊆ Λr , there exists ρ > 0 with the following property: for
every λ ∈ [a, b] there exists δ > 0 such that, for each μ ∈ [0, δ], system (1.4) admits at least
three solutions in X whose norms are less than ρ .

Proof For each u = (u1, u2, . . . , un) ∈ X, define Φ , Ψ : X → R as

Φ(u) :=
1
p

n∑

i=1

‖ui‖p
αi ,p – Υ (u)

and

Ψ (u) :=
∫ T

0
F
(
t, u1(t), u2(t), . . . , un(t)

)
dt.

Clearly, Φ and Ψ are continuously Gâteaux differentiable functionals whose Gâteaux
derivatives at the point u ∈ X are given by

Φ ′(u)(v) :=
∫ T

0

n∑

i=1

∣
∣
0Dαi

t ui(t)
∣
∣p–2

0Dαi
t ui(t)0Dαi

t vi(t) dt –
∫ T

0

n∑

i=1

hi
(
ui(t)

)
vi(t) dt,

Ψ ′(u)(v) =
∫ T

0

n∑

i=1

Fui

(
t, u1(t), u2(t), . . . , un(t)

)
vi(t) dt,

for every v = (v1, v2, . . . , vn) ∈ X. Hence, Φ – λΨ ∈ C1(X,R). Moreover, Ψ ′ : X → X∗ is a
compact operator (see the proof of [21, Theorem 3.1]). Furthermore, similar to the proof
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of [22, Theorem 3.1], we can show that Φ is sequentially weakly lower semicontinuous. As
concerns functional Φ , it is easy to show that Φ is bounded on each bounded subset of X
and its derivative admits a continuous inverse on X∗. Moreover, we have Φ(0) = Ψ (0) = 0.

It is shown that the required hypothesis Φ(x) > r follows from (i) and the definition of Φ ,
by choosing x = ω. Indeed, since (1.5) holds for every x1, x2 ∈ R and h1(0) = h2(0) = · · · =
hn(0) = 0, one has |hi(x)| ≤ Li|x|p–1, 1 ≤ i ≤ n, for all x ∈ R. Besides, it follows from (2.3)
that

Φ(ω) ≥ 1
p

n∑

i=1

‖ωi‖p
αi ,p –

∣
∣
∣
∣
∣

∫ T

0

n∑

i=1

Hi
(
ωi(t)

)
dt

∣
∣
∣
∣
∣

≥ 1
p

n∑

i=1

‖ωi‖p
αi ,p –

1
p

n∑

i=1

Li

∫ T

0
|ωi|pi dt

≥
n∑

i=1

(
1
p

–
LiTαip

p(Γ (αi + 1))pi

)

‖ωi‖p
αi ,p

≥ k
p

n∑

i=1

‖ωi‖p
αi ,p > r. (3.1)

From (2.2) and (2.4), for every ui ∈ Eαi ,p
0 one has

max
t∈[0,T]

∣
∣ui(t)

∣
∣p ≤ c‖ui‖p

αi ,p, (3.2)

for each u = (u1, u2, . . . , un) ∈ X. From (2.4), (3.1) and (3.2), for each r > 0 one obtains

Φ–1((–∞; r])

=
{

u = (u1, u2, . . . , un) ∈ X : Φ(u) ≤ r
}

⊆
{

u = (u1, u2, . . . , un) ∈ X :
1
p

n∑

i=1

‖ui‖p
αi ,p ≤ r

k

}

⊆
{

u = (u1, u2, . . . , un) ∈ X :
1
p

n∑

i=1

(Γ (αi))p(((αi – 1)q + 1))
p
q

Tαip–1 ‖ui‖p
∞ ≤ r

k

}

⊆
{

u = (u1, u2, . . . , un) ∈ X :
1
p

n∑

i=1

|ui|p ≤ cr
k

, for all t ∈ [0, T]

}

.

Then

sup
u∈Φ–1((–∞;r])

Ψ (u) = sup
u∈Φ–1((–∞;r])

∫ T

0
F
(
t, u1(t), u2(t), . . . , un(t)

)
dt

≤
∫ T

0
max

(x1,x2,...,xn)∈K ( cr
k )

F(t, x1, x2, . . . , xn) dt.
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Therefore, from the condition (ii), one gets

sup
u∈Φ–1((–∞;r])

Ψ (u) ≤
∫ T

0
max

(x1,x2,...,xn)∈K ( cr
k )

F(t, x1, x2, . . . , xn) dt

<
r
∫ T

0 F(t,ω1,ω2, . . . ,ωn) dt
1
p
∑n

i=1 ‖ωi‖p
αi ,p – Υ (ω1,ω2, . . . ,ωn)

=
r
∫ T

0 F(t,ω1,ω2, . . . ,ωn) dt
1
p
∑n

i=1 ‖ωi‖p
αi ,p – Υ (ω1,ω2, . . . ,ωn)

= r
Ψ (w)
Φ(w)

,

from which assumption (a1) of Theorem 1 follows. Fix 0 < ε < 1
pTcλ ; from (iii) there is a

constant τε such that

F(t, x1, x2, . . . , xn) ≤ ε

n∑

i=1

|xi|p + τεi (3.3)

for every t ∈ [0, T] and for every (x1, x2, . . . , xn) ∈R
n. Taking (2.4) into account, from (3.3),

it follows that, for each u ∈ X,

Φ(u) – λΨ (u) =
1
p

n∑

i=1

‖ui‖p
αi ,p – λ

∫ T

0
F(t, u1, u2, . . . , un) dt

≥ 1
p

n∑

i=1

‖ui‖p
αi ,p – Tλcε

n∑

i=1

‖ui‖p
αi ,p – λτε

≥
(

1
p

– Tλcε
) n∑

i=1

‖ui‖p
αi ,p – λτε ,

and thus

lim‖u‖→+∞
(
Φ(u) – λΨ (u)

)
= +∞,

which means the functional Φ(u) – λΨ (u) is coercive for every parameter λ, in particular,
for every λ ∈ Λ ⊂] Φ(ω)

Ψ (ω) , r
supΦ(u)≤r Ψ (u) [. Then also condition (a2) holds.

In addition, since G : [0, T] ×R
n →R is a measurable function with respect to t ∈ [0, T]

for every (x1, x2, . . . , xn) ∈ R
n belonging to C1 with respect to

(x1, x2, . . . , xn) ∈R
n for a.e. t ∈ [0, T] satisfying condition (G), the functional

�(u) =
∫ T

0
G

(
t, u1(t), u2(t), . . . , un(t)

)
dt

is well defined and continuously Gâteaux differentiable on X with a compact derivative,
and

�
′(u) =

∫ T

0

n∑

i=1

Gui

(
t, u1(t), u2(t), . . . , un(t)

)
vi(t) dt
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for all (u1, u2, . . . , un), (v1, v2, . . . , vn) ∈ X. Thus, all the hypotheses of Theorem 1 are satis-
fied. Also note that the solutions of the equation

Φ ′(x) – λΨ ′(x) – μ�′(x) = 0

are exactly the solutions of (1.4) (see [21]). So, the conclusion follows from Theo-
rem 1. �

Example 1 Consider the following fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tD0,75
T φ3(0D0,75

t u1(t)) = λFu1 (t, u1(t), u2(t)) + μGu1 (t, u1(t), u2(t)) + h1(u1(t))

a.e. t ∈ [0, T],

tD0,6
T φ3(0D0,6

t u2(t)) = λFu2 (t, u1(t), u2(t)) + μGu1 (t, u1(t), u2(t)) + h2(u2(t))

a.e. t ∈ [0, T],

u1(0) = u2(0) = u1(1) = u2(1) = 0,

(3.4)

where α1 = 0.75, α2 = 0.6, p = 3, T = 1, h1(u1) = (sin( u1
2 ))2, h2(u2) = (arctan( u2

3 ))2 and G :
[0, 1] × R

2 → R is an arbitrary function which is measurable with to respect to t ∈ [0, 1]
for every (x1, x2) ∈R

2 and is C1 with respect to (x1, x2) ∈R
2 for a.e. t ∈ [0, 1], satisfying

sup
|(x1,x2)|≤M

∣
∣Gui (t, x1, x2)

∣
∣ ∈ L1([0, T]

)
,

for every M > 0 and i = 1, 2. Moreover, for all (t, x1, x2) ∈ [0, 1] × R
2, put F(t, x1, x2) = (1 +

t2)H(x1, x2), where

H(x1, x2) =

⎧
⎨

⎩

(x3
1 + x3

2)2, x3
1 + x3

2 ≤ 1,

2
√

x3
1 + x3

2 – (x3
1 + x3

2), x3
1 + x3

2 > 1.

Obviously, F(t, 0, 0) = 0 for all t ∈ [0, 1], and a direct calculation shows that

c ≈ 1.0727, k ≈ 0.3559.

By choosing, for instance,

ω1(t) = Γ (1, 25)t(1 – t), ω2(t) = Γ (1, 4)t(1 – t),

and r = 1
103 all assumptions of Theorem 2 are satisfied. In fact, ωi(0) = ωi(1) = 0, i = 1, 2,

and

0D0,75
t ω1(t) = t0,25 –

2Γ (1, 25)
Γ (2, 25)

t1,25, 0D0,6
t ω2(t) = t0,4 –

2Γ (1, 4)
Γ (2, 4)

t1,4.

Then one has

‖ω1‖3
0.75 ≈ 0.0498, ‖ω2‖3

0.6 ≈ 0.0233,
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which implies that the condition (i) holds, and

∫ 1
0 max

(x1,x2)∈π ( cr
k )

F(t, x1, x2) dt

r
=

12c2r
k2 ≈ 0.1090

<
∫ 1

0 F(t,ω1,ω2) dt
1
3
∑2

i=1 ‖ωi‖3
αi

– Υ (ω1,ω2)
≈ 0.5548

and

lim
(|x1|,|x2|)→(+∞,+∞)

sup
supt∈[0,1] F(t, u1, u2)

1
3
∑2

i=1 |ui|3
= 0.

Thus, conditions (ii) and (iii) are satisfied. Then, in view of Theorem 2 for each λ ∈
]1.8025, 9.1743[, system (3.4) has at least three weak solutions in X = E.0,75,3

0 × E.0,6,3
0 .

Next, it is desirable to give a verifiable consequence of Theorem 2 for a fixed text function
ω. For a given constant γ ∈ (0, 1

2 ) and for all 1 ≤ i ≤ n, set

Ci(αi,γ ) =
1

p(γ T)p

{∫ γ T

0
tp(1–αi) dt +

∫ (1–γ )T

γ T

(
t1–αi – (t – γ T)1–αi

)p dt

+
∫ T

(1–γ )T

(
t1–αi – (t – γ T)1–αi

)
–

(
1 –

(
(1 – γ )T

)1–αi)p
}

,

� = min
1≤i≤n

{ n∑

i=1

Ci(αi,γ )

}

,

�′ = max

{ n∑

i=1

Ci(αi,γ )

}

.

Corollary 1 Let assumption (iii) in Theorem 2 hold. Assume that there exist positive con-
stants d and η such that d

�ckn ≥ ηp, and also
(j) F(t, x1, x2, . . . , xn) ≥ 0, for each (t, x1, x2, . . . , xn) ∈ [0, T] × [0; +∞) × · · · × [0; +∞);

(jj)
∫ T

0 max(x1,x2,...,xn)∈K (d) F(t,x1,x2,...xn) dt
kd <

∫ (1–γ )T
γ T F(t,Γ (2–α1)η,...,Γ (2–αn)η) dt

ncτ�′ηp .

Then, setting

Λ1 :=
(

nτ�′ηp

∫ (1–γ )T
γ T F(t,Γ (2 – α1)η, . . . ,Γ (2 – αn)η) dt

,

kd
∫ T

0 max(x1,x2,...,xn)∈K (d) F(t, x1, x2, . . . xn) dt

)

for each compact interval [a, b] ⊆ Λ1, there exists ρ > 0 with the following property: for
every λ ∈]a, b[, there exists δ such that, for each μ ∈ [0, δ], system (1.4) admits at least
three solutions in X whose norms are less than ρ .
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Proof For γ ∈ (0, 1
2 ) choose ω(t) = (ω1(t), . . . ,ωn(t)) for every t ∈ [0, T] with

ωi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Γ (2–αi)η
γ T t, t ∈ [0;γ T),

Γ (2 – αi)η, t ∈ [γ T ; (1 – γ )T],
Γ (2–αi)η

γ T (t – T), t ∈ ((1 – γ )T ; T],

for 1 ≤ i ≤ n, Clearly ωi(0) = ωi(T) = 0 and ωi ∈ L2([0, T],R) for 1 ≤ i ≤ n,A direct calcu-
lation shows that

0Dαi
t ωi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

η

γ T t1–αi , t ∈ [0;γ T),
η

γ T (t1–αi – (t – γ T)1–αi ), t ∈ [γ T ; (1 – γ )T],
η

γ T (t1–αi – (t – γ T)1–αi – (t – (1 – γ )T)1–αi ), t ∈ ((1 – γ )T ; T],

for 1 ≤ i ≤ n. Furthermore,

∫ T

0

∣
∣
0Dαi

t ωi(t)
∣
∣p dt =

(
η

γ T

)p{∫ γ T

0
t(1–αi)p dt +

∫ (1–γ )T

hT

(
t1–αi – (t – γ T)1–αi

)p dt

+
∫ T

(1–h)T

(
t1–αi – (t – γ T)1–αi –

(
t – (1 – γ )T

)1–αi)p dt
}

= pηpCi(αi, h),

for 1 ≤ i ≤ n. Thus, ω ∈ X, and

‖ωi‖p
αi ,p = pηpCi(αi, h),

with 1 ≤ i ≤ n. This and (3.1) imply that

Φ(ω) = Φ(ω1, . . . ,ωn) =
1
p

n∑

i=1

‖ωi‖p
αi ,p – Υ (ωi)

≥ k
p

n∑

i=1

‖ωi‖p
αi ,p

≥ kηp
n∑

i=1

Ci(αi, h)

≥ nk�ηp. (3.5)

Similarly to (3.1) and (3.5) one has

Φ(ω) ≤ nτ�′ηp.

Let r = kd
c . From d

�ckn < ηp, it is found as a result that

1
p

n∑

i=1

‖ωi‖p
αi ,p ≥ Φ(ω) ≥ nk�ηp ≥ nk� × d

�ckn
=

r
k

,
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which is assumption (i) of Theorem 2.
On the other hand, by using assumption (j), one can infer

Ψ (ω) :=
∫ T

0
F
(
t,ω1(t),ω2(t), . . . ,ωn(t)

)
dt

≥
∫ (1–γ )T

γ T
F
(
t,Γ (2 – α1)η,Γ (2 – α2)η, . . . ,Γ (2 – αn)η

)
dt.

Moreover, by condition (jj) one gets

∫ T
0 max(x1,x2,...,xn)∈K ( cr

k ) F(t, x1, x2, . . . xn) dt
r

=
c
∫ T

0 max(x1,x2,...,xn)∈K (d) F(t, x1, x2, . . . xn) dt
kd

<

∫ (1–γ )T
γ T F(t,Γ (2 – α1)η, . . . ,Γ (2 – αn)η) dt

nτ�′ηp

≤
∫ (1–γ )T
γ T F(t,Γ (2 – α1)η, . . . ,Γ (2 – αn)η) dt

Φ(ω)

≤ p
∫ T

0 F(t,ω1,ω2, . . . ,ωn) dt
∑n

i=1 ‖ωi‖p
αi ,p – pΥ (ω1,ω2, . . . ,ωn)

,

which implies that (ii) is satisfied. Thus, all the assumptions of Theorem 2 are satisfied and
the proof is complete. �

Corollary 2 Let F : Rn →R
n be a C1-function and F(0, . . . , 0) = 0. Assume that there exist

positive constants d and η such that d
�ckn < ηp, and also

(H) F(x1, . . . , xn) ≥ 0, for each (x1, . . . , xn) ∈ [0; +∞) × · · · × [0; +∞);
(HH) max(x1,x2,...,xn)∈K (d) F(x1,x2,...xn)

kd < (1–2γ )F(Γ (2–α1)η,...,Γ (2–αn)η)
ncτ�′ηp ;

(HHH) lim(|x1|,|x2|,...,|xn|)→(+∞,+∞,...,+∞) sup F(x1,x2,...,xn)
1
p

∑n
i=1 |xi|p ≤ 0.

Then, setting

Λ2 :=
(

nτ�′ηp

T(1 – 2γ )F(Γ (2 – α1)η, . . . ,Γ (2 – αn)η)
,

kd
cT max(x1,x2,...,xn)∈K (d) F(x1, x2, . . . xn)

)

,

for each compact interval [a, b] ⊆ Λ2, there exists ρ > 0 with the following property: for
every λ ∈]a, b[, there exists δ > 0 such that, for each μ ∈ [0, δ], system (1.4) admits at least
three solutions in X whose norms are less than ρ .
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