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Abstract
In this paper, we study a class of predator-prey model with Holling-II functional
response. Firstly, by using linearization method, we prove the stability of nonnegative
equilibrium points. Secondly, we obtain the existence, direction, and stability of Hopf
bifurcation by using Poincare–Andronov Hopf bifurcation theorem. Finally, we
demonstrate the validity of our results by numerical simulation.
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1 Introduction
Population ecology is a discipline in which dynamic systems are involved in species, popu-
lations, and how these groups interact with the environment. Population ecology primarily
studies how species population size changes over time and space. Since Lotka–Volterra’s
groundbreaking work in the 1920s, the predator-prey model has become one of the most
important research topics in mathematical ecology for nearly a century. At the same time,
mathematicians used the theory of dynamics to analyze the differential equations based
on a predator-prey model. Hsu and Huang in [4] got some results on the global stability of
a predator-prey system. Xiao and Ruan have investigated the global analysis in a predator-
prey system with nonmonotonic functional response (we can see [10]). In addition, there
are some scholars who applied bifurcation theory in dynamics based on models. In [7],
Li and Li considered the Hopf bifurcation of a predator-prey model with time delay and
stage structure for the prey. Song studied the stability and Hopf bifurcation of a predator-
prey model with stage structure and time delay for the prey (see [8]). There are also many
related studies, and we can find them in [5, 11] etc. In this paper, we consider the Gause-
type model raised by Caughley and Lawton in [1]. Namely, we are concerned with the
predator-prey model with Holling-II functional response

⎧
⎨

⎩

dN
dT = Ng(N) – aNP

1+ahN ,
dP
dT = caNP

1+ahN – mP
(1.1)
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under positive initial conditions N(0) > 0, P(0) > 0. The average growth rate of a typical
prey species is assumed to be a logistic model

g(N) = R
(

1 –
N
K

)

,

where N is the prey population density, P is the predator population density, K is the en-
vironmental capacity, a is the prey capture rate, h is the capture time, m is the predator’s
intrinsic mortality, and c denotes the conversion efficiency of ingested prey into the preda-
tor. When the predator density is low, the prey density increases, the individual’s predation
rate is the largest. For more details on the background about system (1.1), we can see [6].

Let

x =
N

RK
, y =

P
hKR2 , t = RT ,

system (1.1) is dimensionless to

⎧
⎨

⎩

x′ = x(1 – x) – xy
x+α

,

y′ = rxy
x+α

– σy
(1.2)

with

α =
1

ahkR
, σ =

m
R

, r =
c

hR
.

2 Preliminary analysis
In this section, we are concerned with the preliminary analysis of system (1.2), namely the
boundedness of the solutions and the stability of each nonnegative equilibrium point of
system (1.2). Note that the Jacobian of (1.2) is

J =

[
–2x + 1 – ya

–(x+2)2 – x
x+α

ryα
(x+α)2

rx
x+α

– σ

]

.

We cannot find the diagonal matrix L, so that LJ + JT L = 0 is established, so system (1.2)
is not conservative. Due to the boundedness of the functional response, we can find that

lim
(x,y)→(0,0)

dx
dt

= lim
(x,y)→(0,0)

dy
dt

= 0.

Assume

dx
dt

(0, 0) =
dy
dt

(0, 0) = 0,

then these functions

(x, y) ∈R
2
+ :=

{
(x, y) ∈R

2 : x > 0, y > 0
}

.

In fact, direct calculations indicate that system (1.2) satisfies the Lipschitz condition.
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2.1 Boundedness of solution
Theorem 2.1 All the solutions of system (1.2) are uniformly bounded on R

2
+.

Proof We define a function

τ = rx + y,

then

dτ

dt
= r

dx
dt

+
dy
dt

.

For each η < σ ,

dτ

dt
+ ητ = rx(1 – x) –

rxy
x + α

+
rxy

x + α
– σy + η(rx + y)

= rx(1 + η – x) + y(η – σ )

≤ r(1 + η)2

4
.

Upon that we can find ϕ > 0 such that

dτ

dt
+ ητ = ϕ.

Through the above equation, we have dτ
dt + ητ ≤ ϕ, which implies that

τ (t) ≤ e–ηtτ (0) +
ϕ

η

(
1 – e–τ t) ≤ max

{

τ (0),
ϕ

η

}

= M.

Moreover, we have

lim
t→∞ τ (t) ≤ M. �

2.2 Stability analysis
In this section, we analyze the stability of the nonnegative equilibrium points for system
(1.2). It is easy to get the nonnegative equilibrium points of system (1.2): E0(0, 0), E1(1, 0),
and E∗(x∗, y∗) with x∗ = σα

r–σ
, y∗ = (1 – x∗)(x∗ + α), and r > σ (α + 1) ensures system (1.2) has

a unique positive equilibrium point E∗(x∗, y∗).

2.2.1 Stability analysis of the equilibrium E0(0, 0)
Theorem 2.2 The equilibrium E0(0, 0) is unstable.

Proof The Jacobi matrix of (1.2) at E0(0, 0) is

J0 =

[
1 0
0 –σ

]

.
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Then the characteristic equation of J0 is

μ2 – Pμ + Q = 0

with

P = 1 – σ , Q = –σ .

Clearly, E0(0, 0) is a saddle point which is unstable. �

2.2.2 Stability analysis of the equilibrium E1(1, 0)
Theorem 2.3

(1) The equilibrium E1(1, 0) is locally asymptotically stable if r < (1 + α)σ .
(2) System (1.2) enters into transcritical bifurcation around r = (1 + α)σ .
(3) The equilibrium E1(1, 0) is globally asymptotically stable if r < σ – 1.

Proof (1) The Jacobian of (1.2) at E1(1, 0) is

J1 =

[
–1 – 1

1+α

0 r
1+α

– σ

]

.

Then the characteristic equation of J1 is

μ2 – Pμ + Q = 0

with

P =
r

1 + α
– σ – 1, Q = σ –

r
1 + α

.

If r < (1+α)σ , we have P < 0 and Q > 0. Therefore, the equilibrium point E1(1, 0) is locally
asymptotically stable.

(2) The one of eigenvalues of J1 will be 0 if det J1 = 0, which gives r = (1 +α)σ . If Ω and Φ

denote the eigenvectors corresponding to the eigenvalue 0 of the matrices J1 and JT
1 , re-

spectively.
Let

Ω = (Ψ1,Ψ2)T , Φ = (0,
2)T ,

where Ψ1 = – 1
1+α

Ψ2, and Ψ2, 
2 are two nonzero numbers.
Now

ΦT[
Fr(X1, r)

]
= 0,

where X1 = (1, 0). According to Sotomayor’s theory in [9], system (1.2) does not attain any
saddle-node bifurcation around E1(1, 0).
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Again

ΦT[
DFr(X1, r)Ω

]
=

Ψ2
2

1 + α
�= 0

and

ΦT[
D2Fr(X1, r)(Ω ,Ω)

] �= 0,

where

[
DFr(X1, r)

]
=

[
0 0
0 1

1+α

]

,

and

D2F(X, r) =

[
	 ∂F1

∂x 	 ∂F2
∂x

	 ∂F1
∂y 	 ∂F2

∂y

]

∈R
2×2×2

with

	∂Fi

∂x
=

(
∂2Fi

∂x2 ,
∂2Fi

∂x∂y

)T

, 	∂Fi

∂y
=

(
∂2Fi

∂x∂y
,
∂2Fi

∂y2

)T

for i = 1, 2. Then, according to the same theorem [9], system (1.2) experiences transcritical
bifurcation at r = (1 + α)σ around the axial equilibrium E1(1, 0).

(3) Let (x, y) ∈R
2
+ := {(x, y) ∈R

2 : x > 0, y > 0} and consider the function V : R2
x →R,

V (x, y) =
1
2

(x – 1)2 +
1
2

y2 + y. (2.1)

The derivative of (2.1) along system (1.2) is

dV
dt

= (x – 1)x′ + yy′ + y′

= (x – 1)
[

x(1 – x) –
xy

x + α

]

+ y
(

rxy
x + α

– σy
)

+
(

rxy
x + α

– σy
)

= –(1 – x)2x –
(x – 1)xy

x + α
+

rxy2

x + α
– σy2 +

rxy
x + α

– σy

≤ xy
x + α

+ ry2 – σy2 + ry – σy ≤ y(1 + r – σ ) + y2(r – σ ),

if σ > 1 + r, then dV
dt < 0, and E1(1, 0) is globally asymptotically stable. �

2.2.3 Stability analysis of the positive equilibrium E∗(x∗, y∗)
The Jacobi matrix of (1.2) at E∗(x∗, y∗) is

J∗ =

[
σ r–σ 2–σ (r+σ )α

(r–σ )r – σ
r

r – σα – σ 0

]

.
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Then the characteristic equation of J∗ is

μ2 + Pμ + Q = 0 (2.2)

with

P = –
σ r – σ 2 – σ (r + σ )α

(r – σ )r
, Q =

σ r – σ 2(α + 1)
r

.

If r > σ (α + 1), we have Q > 0, by simple calculations, we get the following theorem.

Theorem 2.4 Let α < 1. If r > σ (1+α)
1–α

, then the eigenvalue of Eq. (2.2) has a pair of negative
real parts, that is, the positive equilibrium point E∗(x∗, y∗) is locally asymptotically stable.
If σ (α + 1) < r < σ (1+α)

1–α
, then E∗(x∗, y∗) is unstable.

3 The analysis of the Hopf bifurcation
In this section, we consider the Hopf bifurcation of system (1.2) at (x∗, y∗) by setting the
parameter of bifurcation as r. Define r0 = σ (1+α)

1–α
. Let μ = δ(r) ± ω(r)i be the two roots of

Eq. (2.2), by calculating, we can get

δ(r) =
σ r – σ 2 – σ (r + σ )α

2(r – σ )r
,

ω(r) =
α

2

√
σ r – σ 2 – σ (r + σ )α

(r – σ )r
–

4(σ r – σ 2 – σα)
r

.

According to Mainul’s theory in [2], we know that if tr J∗ = 0, then both eigenvalues of
Eq. (2.2) will be purely imaginary provided det J∗ > 0. Therefore, the implicit function theo-
rem implies that a Hopf bifurcation occurs where a periodic orbit is created as the stability
of the equilibrium point E∗ changes. Now, let tr J∗ = 0, we have

det J∗ =
σ (1 + α2)

1 + α
.

Obviously, det J∗ > 0, which should be positive in order to get a Hopf bifurcation. In order
to obtain more details of the Hopf bifurcation at (x∗, y∗), we need to do a further analysis
to system (1.2). Let x̃ = x – x∗, ỹ = y – y∗, we transform the equilibrium (x∗, y∗) of system
(1.2) to (0, 0) of a new system. For the sake of simplicity, we denote x̃, ỹ by x, y, respectively.
Thus, system (1.2) is transformed to

⎧
⎨

⎩

x′ = (x∗ + x)(1 – x – x∗) – (x+x∗)(y+y∗)
(x+x∗)+α

,

y′ = r(x+x∗)(y+y∗)
(x+x∗)+α

– σ (y + y∗).
(3.1)

Rewrite system (3.1) as

(
x′(t)
y′(t)

)

= J
(

x
y

)

+
(

f (x, y, r)
g(x, y, r)

)

, (3.2)
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where

f (x, y, r) = A1x2 + A2xy + A3y2 + A4x3 + A5x2y + A6xy2 + A7y3

+ o
(|x|4 + |x|3|y| + |x|2|y|2 + |x|3|y|),

g(x, y, r) = B1x2 + B2xy + B3y2 + B4x3 + B5x2y + B6xy2 + B7y3

+ o
(|x|4 + |x|3|y| + |x|2|y|2 + |x|3|y|)

with

A1 =
(r – σ – σ r)(r – σ )α

σ 2α
– 1, A2 =

(r – σ )2

2σ 2α
,

A4 =
(r – σ – σ r)(r – σ )2

σ 2α
, A5 =

(r – σ )3

3σ 3α2 ,

B1 = –
r(r – σ – σ r)(r – σ )

σ 2α
, B2 =

r(r – σ )2

2σ 2α
,

B4 =
r(r – σ – σ r)(r – σ )2

σ 3α2 , B5 = –
r(r – σ )3

3σ 3α2 ,

A3 = A6 = A7 = B3 = B6 = B7 = 0.

Define

T =

[
1 0

T1 T2

]

with

T1 =
σ r – σ 2 – σ (r + σ )α

2(r – σ )α
,

T2 =
α

2

√
σ r – σ 2 – σ (r + σ )α

(r – σ )r
–

4(σ r – σ 2 – σα)
r

.

If

[
1

T1 – T2i

]

μ = δ(r) ± ω(r)i,

and

T–1 =

[
1 0

– T1
T2

1
T2

]

.

Through further transform, we have

[
X
Y

]

= T–1

[
x
y

]

,
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namely

[
x
y

]

=

[
X

T1X + T2Y

]

.

Thus, system (3.2) can be transformed into

[
X ′(t)
Y ′(t)

]

= T–1JT + T–1

[
F(X, T1X + T2Y , r)
G(X, T1X + T2Y , r)

]

with

F(X, Y , r) = C1X2 + C2XY + C3Y 2 + C4X3 + C5X2Y + C6XY 2 + C7Y 3

+ o
(|X|4 + |X|3|Y | + |X|2|Y |2 + |X|3|Y |),

G(X, Y , r) = D1X2 + D2XY + D3Y 2 + D4X3 + D5X2Y + D6XY 2 + D7Y 3

+ o
(|X|4 + |X|3|Y | + |X|2|Y |2 + |X|3|Y |),

where

C1 =
(

(r – σ – σ r)(r – σ )α
σ 2α

– 1
)

(
1 + T1 + T2

1
)
, C2 =

(r – σ )2(T2 + 2T1T2)
2σ 2α

,

C4 =
(r – σ – σ r)(r – σ )2(1 + T1 + T2

1 + T3
1 )

σ 2α
, C5 =

(r – σ )3(T2 + 2T1T2 + 3T2
1 T2)

3σ 3α2 ,

D1 = –
T1

T2
C1 +

r(r – σ – σ r)(1 + T1 + T1)
T2ασ 2 , D2 = –

T1

T2
C2 +

(r – σ )2r(1 + 2T1)
2σ 2α

,

D4 = –
T1

T2
C4 +

r(r – σ – σ r)(r – σ )2(1 + T1 + T2
1 + T3

1 )
T2σ 3α2 ,

D5 = –
T1

T2
C5 –

r(r – σ )3(1 + 2T1 + 3T2
1 )

3σ 3α2 ,

C3 = C6 = C7 = D3 = D6 = D7 = 0.

Performing polar transformation on system (1.2) according to the technique in [6], we
have

ρ ′(r) = δ(r)ρ + a(r)ρ3 + · · · ,

θ ′(r) = ω(r) + b(r)ρ2 + · · · .

The Taylor expansion of equations above at r = r0 are

ρ ′ = δ(r0)(r – r0)ρ + a(r0)ρ3 + o
(
(r – r0)2ρ, (r – r0)ρ3,ρ5),

θ ′ = ω(r0) + ω(r0)(r – r0) + b(r0)ρ2 + o
(
(r – r0), (r – r0)r2, r4).
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In order to investigate the stability of the periodic solution, we need to calculate the sign
of the coefficient a(r0), which is given by

a(r0) =
1

16
[
F ′

XXX + F ′
XYY + G′

XXX + G′
YYY

]

+
1

16ω0

[
F ′

XY
(
F ′

XX + F ′
YY

)
– G′

XY
(
G′

XX + G′
YY

)
– F ′

XXG′
XX + F ′

YY G′
YY

]
.

Calculate the partial derivative of the bifurcation at (X, Y , r) = (0, 0, r0) when ω0 = ω(r0),
we have

a(r0) =
1
8

[

3C4 + C6 + D5 – 3
T10

T20
C7

]

+
1

8ω0

[
C2(C1 + C3) – D2(D1 + D3) – 2C2

1D2
1 + 2C2

3D2
3
]
.

The explicit calculation of a(r0) can be found in [3]. According to Poincare–Andronow’s
Hopf bifurcation theory and the above calculations of a(r0), we get the further result.

Theorem 3.1 Set r > σ (α + 1) and α < 1 hold. If a(r0) < 0, the periodic solution of the
Hopf bifurcation from (x∗, y∗) is asymptotically stable, the Hopf bifurcation is subcritical.
If a(r0) > 0, the periodic solution of the bifurcation is unstable, and the Hopf bifurcation is
supercritical.

4 Numerical simulations
In this section, we perform numerical simulations about system (1.2). Figure 1 shows that
E0(0, 0) is a saddle point which is unstable and E1(1, 0) is also a saddle point when we set
r = 0.4, α = 0.2, σ = 0.3. We also can observe that E∗(x∗, y∗) is locally asymptotically stable
when α < 1 and r > σ (1+α)

1–α
.

The equilibrium point E1(1, 0) is globally asymptotically stable. In order to make sure
σ > r

1+α
, we set r = 0.4, α = 0.2, σ = 0.35, as shown in Fig. 2.

Let α = 0.2, σ = 0.3, we have r0 = 0.45. When r = 0.45, system (1.2) emits a Hopf bifurca-
tion at (x∗, y∗). And by further calculation, we have a(r0) ≈ –1.833 < 0, the Hopf bifurcation
is subcritical and the periodic solution of the Hopf bifurcation at (x∗, y∗) is asymptotically
stable, see Fig. 3.

Figure 1 E0(0, 0) is a saddle point
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Figure 2 E1(1, 0) is globally asymptotically stable

Figure 3 Hopf bifurcation at r0 = 0.45
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