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Abstract
In this paper, the problem of synchronization of a class of spatiotemporal
fractional-order partial differential systems is studied. Subject to homogeneous
Neumann boundary conditions and using fractional Lyapunov approach, nonlinear
and linear control schemes have been proposed to synchronize coupled general
fractional reaction–diffusion systems. As a numerical application, we investigate
complete synchronization behaviors of coupled fractional Lengyel–Epstein systems.
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1 Introduction
The phenomenon of synchronization has attracted the interest of many researchers from
various fields due to its potential applications in nonlinear sciences [1]. Synchronization
is the process of controlling the output of a dynamical slave system in order to force its
variables to match those of a corresponding master system in time [2]. Various kinds of
control schemes have been introduced in the past to synchronize dynamical systems such
as complete (anti-) synchronization [3], lag synchronization [4], function projective syn-
chronization [5], generalized synchronization [6], and Q-S synchronization [7]. Recently,
the topic of synchronization between dynamical systems described by fractional-order
differential equations started to attract increasing attention [8–11].

Most of the research efforts have been devoted to the study of synchronization prob-
lems in low-dimensional nonlinear dynamical systems. Synchronizing high-dimensional
systems in which state variables depend on not only the time but also the spatial position
remains a challenge. These high-dimensional systems are generally modeled in spatial-
temporal domain by partial differential systems. Recently, the search for synchronization
has moved to high-dimensional nonlinear dynamical systems [12–15]. Over the last years,
some studies have investigated synchronization of spatially extended systems demonstrat-
ing spatiotemporal chaos such as the works presented in [16–18]. Reaction–diffusion sys-
tems have shown important roles in modeling various spatiotemporal patterns that arise
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in chemical and biological systems [19, 20]. Reaction–diffusion systems can describe a
wide class of rhythmic spatiotemporal patterns observed in chemical and biological sys-
tems, such as circulating pulses on a ring, oscillating spots, target waves, and rotating
spirals. Synchronization dynamics of reaction–diffusion systems has been studied in [21,
22] using phase reduction theory. It has been shown that reaction–diffusion systems can
exhibit synchronization in a similar way to low-dimensional oscillators. The effect of time-
delay autosynchronization on uniform oscillations in a reaction–diffusion system has been
presented in [23]. Furthermore, generalized synchronization [24], an approach based on
semi-group theory [25, 26], functional spaces approach [27], the backstepping synchro-
nization approach [28], the graph-theoretic synchronization approach [29], biological sig-
nal transmission using synchronous control [30], pinning impulsive synchronization [31],
impulsive type synchronization [32], and hybrid adaptive synchronization strategy [33] for
coupled reaction–diffusion systems have been introduced. To the best of our knowledge,
the study of synchronization behaviors for fractional-order reaction–diffusion systems re-
mains to this day a new and mostly unexplored field. This has motivated us to examine
the phenomenon and develop suitable synchronization control laws.

This work presents a novel contribution to the topic of synchronization in some
class of fractional-order spatiotemporal partial differential systems. The main aim of the
present paper is to study the problem of complete synchronization in coupled fractional
reaction–diffusion systems. By using fractional Lyapunov approach, nonlinear and linear
control laws have been proposed to realize complete synchronization for general frac-
tional reaction–diffusion systems. Synchronization behaviors of coupled fractional-order
Lengyel–Epstein systems are obtained to demonstrate the effectiveness and feasibility of
the proposed control techniques. The remainder of this paper is organized as follows:
Sect. 2 illustrates some basic concepts on fractional calculus. In Sect. 3, we present two
different synchronization schemes that cover two cases: nonlinear scheme and linear
scheme. Finally, in order to show the applicability of the developed schemes, Sect. 4 con-
siders the synchronization of coupled fractional Lengyel–Epstein systems. Concluding
remarks are given in Sect. 5.

2 Basic concepts
Before delving into the main results and proofs of the study at hand, it is important to list
some key definitions and results that will be useful at later stages.

Definition 1 The Riemann–Liouville fractional integral operator of order q of the func-
tion f (t) is defined as [34]

Jqf (t) =
1

Γ (q)

∫ t

0
(t – τ )q–1f (τ ) dτ , q > 0, t > 0, (1)

where Γ is a gamma function.

Definition 2 The Caputo derivative of f (t) is defined as [35]

Dp
t f (t) = Jm–p

(
dm

dtm f (t)
)

=
1

Γ (m – p)

∫ t

0

f (m)(τ )
(t – τ )p–m+1 dτ (2)

for m – 1 < p ≤ m, m ∈N, t > 0.
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Theorem 1 ([36]) Consider the following fractional-order system:

Dp
t X(t) = F

(
X(t)

)
, (3)

where X(t) ∈R
n, 0 < p ≤ 1, Dp

t is the Caputo fractional derivative of order p, and F : Rn →
R

n. If there exists a positive definite Lyapunov function V (X(t)) such that Dp
t V (X(t)) < 0 for

all t > 0, then the trivial solution of system (3) is asymptotically stable.

Lemma 1 ([37]) ∀t > 0: 1
2 Dp

t (XT (t)X(t)) ≤ XT (t)Dp
t (X(t)).

3 Main results
Consider the master and the slave systems as follows:

Dp
t ui =

2∑
j=1

dij
∂2uj

∂x2 +
2∑

j=1

aijuj + fi(u1, u2), i = 1, 2, (4)

and

Dp
t vi =

2∑
j=1

dij
∂2vj

∂x2 +
2∑

j=1

aijvj + fi(v1, v2) + U1, i = 1, 2, (5)

where (u1(x, t), u2(x, t))T and (v1(x, t), v2(x, t))T are the corresponding states, x ∈ Ω is a
bounded domain in R

n with smooth boundary ∂Ω , (dij) ∈R
2, A = (aij) ∈R

2, fi, i = 1, 2, are
nonlinear continuous functions, and U1 and U2 are controllers to be designed. The aim of
the synchronization process is to force the error between the master (4) and slave system
(5), defined as

ei = vi – ui, i = 1, 2, (6)

to zero. This phenomenon is called complete synchronization. We assume that the diffu-
sive constants (dij) satisfy

d11, d22 ≥ 0 and d12 + d21 = 0, (7)

and the error system satisfies the homogeneous Neumann boundary conditions

∂e1

∂η
=

∂e2

∂η
= 0 for all x ∈ ∂Ω . (8)

The time partial derivatives of the error system (6) can be derived as follows:

Dp
t ei =

2∑
j=1

dij
∂2ej

∂x2 +
2∑

j=1

aijej + fi(v1, v2) – fi(u1, u2) + Ui, i = 1, 2. (9)

To realize synchronization between the master and the slave systems (4) and (5), we dis-
cuss the asymptotic stability of zero solution of the error system given in Eq. (9). That is,
in the following subsections, we find the controllers U1 and U2 in nonlinear and linear
forms, such that the solution of the error system (9) goes to 0 as t goes to +∞.
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3.1 Nonlinear control law
In this subsection, we outline the problem of controlling the coupled master and slave
systems given in Eqs. (4) and (5) using nonlinear controllers.

Theorem 2 The master system (4) and the slave system (5) are completely synchronized
under the following nonlinear control law:

U1 = –
2∑

j=1

c1j(vj – uj) + f1(u1, u2) – f1(v1, v2),

U2 = –
2∑

j=1

c2j(vj – uj) + f2(u1, u2) – f2(v1, v2),

(10)

where the control matrix C = (cij)2×2 is selected such that C – A is a positive definite matrix.

Proof Substituting the control law given in (10) into (9) yields

Dp
t e1 =

2∑
j=1

d1j
∂2ej

∂x2 +
2∑

j=1

(a1j – c1j)ej,

Dp
t e2 =

2∑
j=1

d2j
∂2ej

∂x2 +
2∑

j=1

(a2j – c2j)ej.

(11)

We may, now, construct our Lyapunov function as

V =
1
2

∫
Ω

(
e2

1 + e2
2
)
, (12)

then

Dp
t V =

1
2

∫
Ω

2∑
j=1

Dp
t e2

j ,

and by using Lemma 1

Dp
t V ≤

∫
Ω

(
e1Dp

t e1 + e2Dp
t e2

)

=
∫

Ω

[
e1

( 2∑
j=1

d1j
∂2ej

∂x2 +
2∑

j=1

(a1j – c1j)ej

)
+ e2

( 2∑
j=1

d2j
∂2ej

∂x2 +
2∑

j=1

(a2j – c2j)ej

)]

=
∫

Ω

2∑
j=1

djjej
∂2ej

∂x2 +
∫

Ω

(
d12e1

∂2e2

∂x2 + d21e2
∂2e1

∂x2

)

+
∫

Ω

[
e1

2∑
j=1

(a1j – c1j)ej + e2

2∑
j=1

(a2j – c2j)ej

]
.

By using Green’s formula, we can get

Dp
t V ≤ –

2∑
j=1

∫
Ω

djj(∇ej)2 +
∫

∂Ω

(
d12

∂e2

∂η
e1 + d21

∂e1

∂η
e2

)
dσ

–
∫

Ω

(d21 + d12)∇e1∇e2 +
∫

Ω

eT (A – C)e,
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where e = (e1, e2)T , and by using the assumption given in (7), the homogeneous Neumann
boundary conditions (8), and the fact that C – A is a positive definite matrix, we obtain

Dp
t V ≤ –

2∑
j=1

∫
Ω

djj(∇ej)2 –
∫

Ω

eT (C – A)e < 0.

From Theorem 1, we can conclude that the zero solution of error system (11) is globally
asymptotically stable; and therefore, the master system (4) and the slave system (5) are
globally completely synchronized. �

3.2 Linear control law
In the following, a linear control law is designed for the synchronization of systems (4)
and (5). In this case, we assume that

∣∣fi(v1, v2) – fi(u1, u2)
∣∣ ≤ αi|v1 – u1| + βi|v2 – u2|, i = 1, 2, (13)

where α1, α1, β1, and β2 are positive constants.

Theorem 3 There exists a suitable control matrix L = (lij)2×2 to realize complete synchro-
nization between the master system (4) and the slave system (5) under the following linear
control law:

U1 = –(α1 + 1 + l11)e1 – l12e2,

U2 = –l21e1 –
(

β2 +
(α2 + β1)2

4
– l22

)
e2.

(14)

Proof Substituting (14) into (9), the error system dynamics becomes

Dp
t e1 =

2∑
j=1

d1j
∂2ej

∂x2 +
2∑

j=1

(a1j – l1j)ej + f1(v1, v2) – f1(u1, u2) – (α1 + 1)e1,

Dp
t e2 =

2∑
j=1

d2j
∂2ej

∂x2 +
2∑

j=1

(a2j – l2j)ej + f2(v1, v2) – f2(u1, u2) –
(

β2 +
(α2 + β1)2

4

)
e2.

(15)

By taking the Lyapunov function V = 1
2
∫
Ω

eT e and using Lemma 1, Green’s formula, as-
sumption (7), and condition (8), we get

Dp
t V ≤

∫
Ω

eT Dp
t e

= –
2∑

j=1

∫
Ω

djj(∇ej)2 +
∫

Ω

eT (A – L)e

+
∫

Ω

[
e1

[
f1(v1, v2) – f1(u1, u2)

]
+ e2

[
f2(v1, v2) – f2(u1, u2)

]
– (α1 + 1)e1

–
(

β2 +
(α2 + β1)2

4

)
e2

]
.
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By using the assumption (13), we obtain

Dp
t V ≤ –

2∑
j=1

∫
Ω

djj(∇ej)2 +
∫

Ω

eT (A – L)e

+
∫

Ω

[
|e1|

∣∣f1(v1, v2) – f1(u1, u2)
∣∣ + |e2|

∣∣f2(v1, v2) – f2(u1, u2)
∣∣ – (α1 + 1)e2

1

–
(

β2 +
(α2 + β1)2

4

)
e2

2

]

≤ –
2∑

j=1

∫
Ω

djj(∇ej)2 +
∫

Ω

eT (A – L)e

+
∫

Ω

[
α1e2

1 + β1|e1||e2| + α2|e2||e1| + β2e2
2 – (α1 + 1)e2

1 –
(

β2 +
(α2 + β1)2

4

)
e2

2

]

= –
2∑

j=1

∫
Ω

djj(∇ej)2 +
∫

Ω

eT (A – L)e –
∫

Ω

[
e2

1 – (β1 + α2)|e1||e2|

+
(

β1 + α2

2

)2

e2
2

]

= –
2∑

j=1

∫
Ω

djj(∇ej)2 –
∫

Ω

eT (L – A)e –
∫

Ω

(
|e1| –

(
β1 + α2

2

)
|e2|

)2

.

The control matrix L is chosen such that A – L is a negative definite matrix. Now, we
can conclude that the master system (4) and the slave system (5) are globally completely
synchronized. �

4 Numerical applications
In this section, we give a numerical example showing the effectiveness and correctness of
our results. Consider the following pair of master–slave system:

⎧⎨
⎩

Dp
t u1(t, x) = ∂2u1

∂x2 + 5γ – u1 – 4u1u2
1+u2

1
,

Dp
t u2(t, x) = δ(d ∂2u2

∂x2 + u1 – u1u2
1+u2

1
),

(16)

and

⎧⎨
⎩

Dp
t v1(t, x) = ∂2v1

∂x2 + 5γ – v1 – 4v1v2
1+u2

1
+ U1,

Dp
t v2(t, x) = δ(d ∂2v2

∂x2 + v1 – v1v2
1+v2

1
) + U2,

(17)

where t > 0, x ∈ (0, 13.03) and (U1, U2)T is the control law to be determined. System (16)
(i.e., the uncontrolled system (17)) is called the fractional-order Lengyel–Epstein system.
When p = 0.97, (δ,γ , d) = (9.7607, 2.7034, 1.75) and the initial conditions associated to sys-
tem (16) are given by (u1(0, x), u2(0, x)) = (θ + 0.2 cos(5πx), 1 + θ2 + 0.6 cos(5πx)), the solu-
tions are shown in Figs. 1 and 2.
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Figure 1 Dynamic behavior of solution u1

Figure 2 Dynamic behavior of solution u2

Comparing with the master–slave systems given in Eqs. (4) and (5), then the constants
(dij)2×2 and A = (aij)2×2 are given by

(dij)2×2 =

(
1 0
0 δd

)
(18)

and

A = (aij)2×2 =

(
–1 0
δ 0

)
. (19)

It is clear that assumption (13) is satisfied.

4.1 Nonlinear case
According to Theorem 2, there exists a control matrix C whose complete synchronization
can be achieved between systems (16) and (17). The matrix C can be selected as

C =

(
0 0
δ 3

)
, (20)
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and so, simply, we can show that A–C is a negative definite matrix. Now, based on Eqs. (10)
and (11) and matrices (19) and (20), the controllers can be constructed as follows:

U1 =
4v1v2

1 + u2
1

–
4u1u2

1 + u2
1

,

U2 = δ(v1 – u1) + 3(v2 – u2) +
δv1v2

1 + v2
1

–
δu1u2

1 + u2
1

,
(21)

and the error system is given by

Dp
t e1 =

∂2e1

∂x2 – e1,

Dp
t e2 = δd

∂2e2

∂x2 – 3e2.
(22)

Therefore, systems (16) and (17) are globally completely synchronized and the time evo-
lution of the error system states e1 and e2 is shown in Figs. 3 and 4.

Figure 3 Time evolution of the nonlinear synchronization control error e1

Figure 4 Time evolution of the nonlinear synchronization control error e2



Ouannas et al. Boundary Value Problems         (2019) 2019:74 Page 9 of 12

4.2 Linear case
First, the assumption given in Eq. (13) for the master–slave systems (16) and (17) is satis-
fied, and one can easily verify that

∣∣f1(v1, v2) – f1(u1, u2)
∣∣ ≤ |v1 – u1| + 4|v2 – u2|,∣∣f2(v1, v2) – f2(u1, u2)
∣∣ ≤ |v1 – u1| + δ|v2 – u2|.

(23)

Now, according to Theorem 3, if we choose the control matrix L as

L =

(
1 0
δ 4

)
, (24)

then controllers U1 and U2 can be designed as

U1 = –3(v1 – u1),

U2 = –δ(u1 – v1) –
(

δ +
9
4

)
(v2 – u2).

(25)

It is easy to see that A – L is a negative definite matrix. Therefore, systems (16) and (17) are
globally completely synchronized. In this case, the error system is described as follows:

Dp
t e1 =

∂2e1

∂x2 – 4e1 +
4u1u2

1 + u2
1

–
4v1v2

1 + v2
1

,

Dp
t e2 = δd

∂2e2

∂x2 –
(

δ +
41
4

)
e2 +

δu1u2

1 + u2
1

–
δv1v2

1 + v2
1

.
(26)

The time evolution of the error states e1 and e2 is shown in Figs. 5 and 6.

5 Discussion and conclusion
The paper investigates, based on the fractional Lyapunov approach and using the master–
slave concept, the synchronization control for a class of fractional spatiotemporal partial
differential systems. First, a spatial-time coupling protocol for the synchronization is sug-
gested, then novel control methods that include nonlinear and linear controllers are pro-

Figure 5 Time evolution of the linear synchronization control error e1
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Figure 6 Time evolution of the linear synchronization control error e2

posed to realize complete synchronization between coupled fractional-order reaction–
diffusion systems. In both cases, the proposed control schemes stabilize the synchroniza-
tion error states where the zero solution of the error system becomes globally asymptoti-
cally stable.

Suitable sufficient conditions for achieving synchronization of coupled fractional Len-
gyel–Epstein systems via suitable nonlinear and linear controllers applied to the slave are
derived. As a result, from the performed numerical simulations, using the Matlab func-
tion “q-Homotopy Analysis Transform algorithm”, we can observe that the addition of the
designed nonlinear and linear controllers to the controlled fractional Lengyel–Epstein sys-
tem updates the coupled systems dynamics such that the system states become synchro-
nized. Comparing the numerical simulations shown in Figs. 3, 4, 5, and 6, we can easily
observe that the linear control scheme realizes synchronization faster than the nonlinear
case. Also, the nonlinear control scheme requires the removal of nonlinear terms from the
slave system, which may increase the cost of the controllers. So, the cost of the controllers
in the nonlinear case is higher than that in the linear case.

The study confirms that the problem of complete synchronization in coupled high-
dimensional fractional-order spatiotemporal systems can be realized using nonlinear and
linear controllers. Also, we can easily see that the research results obtained in this paper
can be extended to many other types of fractional spatiotemporal systems with reaction–
diffusion terms.
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