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Abstract
In this paper, we study an inverse initial value problem for the fractional diffusion
equation with discrete noise. This problem is ill-posed in the sense of Hadamard. We
apply the trigonometric method in a nonparametric regression associated with the
quasi-boundary value regularization method to deal with this ill-posed problem. The
corresponding convergence estimate for this method is obtained. The numerical
results show that this regularization method is flexible and stable.
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1 Introduction
In recent years, fractional differential equations have attracted worldwide attention due
to their wide applications in different research areas and engineering, such as physical [1,
2], chemical [3], biology [4], signal processing [5], mechanical engineering [6] and systems
identification [7], electrical and fractional dynamics [8–10]. However, for some practical
situations, the part of the diffusion coefficient, or initial data, or boundary data, or source
term may not be known, we need to find them using some additional measurement data,
which will lead to the inverse problem of the fractional diffusion equation, such as [11–13].
Recently, many researchers have presented results of the initial value problem and bound-
ary value problem on fractional differential equations, such as [14–16]. In [17], the authors
used the monotone iterative method to consider the existence and uniqueness of solution
of the initial value problem for a fractional differential equation. In [18], the authors used
quasi-reversible method to consider initial value problem for a time-fractional diffusion
equation. In [19], the authors used a modified quasi-boundary value method to determine
the initial data from a noisy final data in a time-fractional diffusion equation. Above these
references on identifying the initial value of fractional diffusion equations, the measurable
data is selected as a continuous function. However, in practice, the measure data is always
discrete. The discrete random data is closer to practice. To the best of our knowledge, there
were few papers for identifying the initial value of fractional diffusion equations with the
discrete random data. In [20], the authors once used the truncation regularization method
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to identify the unknown source for a time-fractional equation with the discrete random
noise, but we consider the inverse initial value problem with this special type of noise in
the data.

In this paper, we consider an inverse initial value problem for the time-fractional diffu-
sion equation as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
t u(x, t) – uxx(x, t) = F(x, t), (x, t) ∈ (0, 1) × (0, T),

u(0, t) = u(1, t) = 0, t ∈ [0, T],

u(x, T) = g(x), x ∈ [0, 1],

(1.1)

where the time-fractional derivative Dα
t is the Caputo fractional derivative with respect

to t, x and t are the space and time variables. The Caputo fractional derivative of order α

(0 < α ≤ 1) defined by [21]

Dα
t u(x, t) =

⎧
⎨

⎩

1
�(1–α)

∫ t
0

∂u(x,s)
∂s ds/(t – s)α , 0 < α < 1,

∂u(x, t)/∂t, α = 1,
(1.2)

where �(x) denotes the standard Gamma function.
In this problem (1.1), the source function F(x, t) and the final value data u(x, T) = g(x)

are known in advance. Our purpose is to obtain the initial function u(x, 0) = p(x) from
some additional data. In practical applications, the additional data g(x) used in this study
is observed at a final moment t = T , which may contain measurement errors. We assume
the measured data are given at a discrete set of points and contain errors. Therefore, we
put

xk =
2k – 1

2M
, k = 1, 2, . . . , M,

and set H = (g̃(x1), g̃(x2), . . . , g̃(xM)), which is the measure of (g(x1), g(x2), . . . , g(xM)).
We assume the random noise data H satisfies the nonparametric regression model

g̃(xk) = g(xk) + σkεk , (1.3)

where εk is unknown independent random errors. Moreover, εk ∼ N(0, 1), and σk are un-
known positive constants, bounded by a positive constant Rmax i.e., 0 < σk < Rmax for all
k = 1, 2, . . . , M. The noises εk are mutually independent.

In this paper, we extend this discrete random noise to identify the initial value problem
by the quasi-boundary value regularization method. In [22], the quasi-boundary value
method was first called non-local boundary value problem method and was used to solve
the backward heat conduction problem. Wei and Wang in [19] used the quasi-boundary
value regularization method to deal with the backward problem. Now, this method is also
studied for solving various types of inverse problems, such as parabolic equations [22–24],
hyper-parabolic equations [25], and elliptic equations [26].

The general structure of this paper is as follows: we first present some preliminary results
in Sect. 2. In Sect. 3 we develop the trigonometric method in nonparametric regression
associated with quasi-boundary value regularization method to construct the regularized
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solution. Section 4 contains the convergence estimate under an a priori assumption for
the exact solution. Some numerical results are presented in Sect. 5. Section 6 is a brief
conclusion.

2 Preliminaries
In this section, we introduce some useful definitions and preliminary results.

Definition 2.1 ([27]) The generalized Mittag–Leffler function is defined as

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, z ∈C, (2.1)

where α > 0 and β ∈R are arbitrary constants.

Lemma 2.1 ([27]) Let λ > 0, then we have

∫ ∞

0
e–pttγ +k+β–1Eγ ,β

(k)(±atγ
)

dt =
k!pγ –β

(pγ ∓ a)k+1 , Re(p) > ‖a‖ 1
γ , (2.2)

where Eγ ,β
(k)(y) := dk

dyk Eγ ,β(y).

Lemma 2.2 ([28]) Let 0 < α0 < α1 < 1, then, for all α ∈ [α0,α1], there exists a constant
C± > 0 depending on α0, α1 such that

C–

�(1 – α)
1

1 – x
≤ Eα,1(x) ≤ C+

�(1 – α)
1

1 – x
, for all x ≤ 0. (2.3)

Lemma 2.3 ([29]) For any λn satisfying λn ≥ λ1 > 0, there exist positive constants C1, C2

depending on α, T , λ1 such that

C1

λn
≤ Eα,1

(
–λnTα

)≤ C2

λn
. (2.4)

Lemma 2.4 ([30], page 144) Let n = 1, 2, . . . , M – 1, and m = 1, 2, . . . , with xk = 2k–1
2M and

ϕn(xk) =
√

2 sin(nπxk), then we have

sn,m =
M–1∑

k=1

ϕn(xk)ϕm(xk) =

⎧
⎪⎪⎨

⎪⎪⎩

M, m ± n = 2lM (l even),

–M, m ± n = 2lM (l odd),

0, otherwise.

(2.5)

If m = 1, 2, . . . , M – 1, then

sn,m =

⎧
⎨

⎩

M, m = n,

0, m 
= n,
(2.6)

and

1
M

M∑

k=1

ϕn(xk) =

⎧
⎨

⎩

0, n 
= 2lM,

(–1)l√2, n = 2lM.
(2.7)
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Lemma 2.5 Let n, M ∈N such that 1 ≤ n ≤ M – 1. Assume that g is piecewise C1 on [0, 1].
Then

(
g(x),ϕn(x)

)
=

1
M

M∑

k=1

g(xk)ϕn(xk) – Qn,M, (2.8)

where

Qn,M =
∞∑

l=1

(–1)l[(g(x),ϕn+2lM(x)
)

+
(
g(x),ϕ–n+2lM(x)

)]
. (2.9)

Proof Using the complete orthonormal basis {ϕm}∞m=1, we can infer the expansion of g as
follows:

g(xk) =
∞∑

m=1

gmϕm(xk),

where gm = (g(x),ϕm(x)). From Lemma 2.4, we get

1
M

M∑

k=1

g(xk)ϕn(xk) =
1
M

M∑

k=1

[ ∞∑

m=1

gmϕm(xk)

]

ϕn(xk)

=
1
M

M∑

k=1

[ M∑

m=1

gmϕm(xk)

]

ϕn(xk) +
1
M

M∑

k=1

[ ∞∑

m=M+1

gmϕm(xk)

]

ϕn(xk)

=
1
M

M∑

m=1

gm

M∑

k=1

ϕm(xk)ϕn(xk) +
1
M

∞∑

m=M+1

gm

M∑

k=1

ϕm(xk)ϕn(xk)

= gn +
∞∑

l=1

(–1)l[(g(x),ϕn+2lM(x)
)

+
(
g(x),ϕ–n+2lM(x)

)]
= gn + Qn,M.

So the conclusion is completed. �

Now, we will need the solution of the direct problem (1.1). Applying the separation of
variables and Laplace transform of Mittag–Leffler function [Lemma 2.1], we can get the
solution of problem (1.1) as follows:

u(x, t) =
∞∑

n=1

[
tαEα,1+α

(
–n2π2tα

)(
F(x, t),ϕn(x)

)
+ Eα,1

(
–n2π2tα

)
pn
]
ϕn(x), (2.10)

where

{
ϕn(x) =

√
2 sin(nπx) (n = 1, 2 . . .)

}
(2.11)

is an orthogonal basis in L2(0, 1), and

(
p(x),ϕn(x)

)
=

√
2
∫ 1

0
p(x) sin(nπx) dx. (2.12)
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Making use of the supplementary condition u(x, T) = g(x), we can obtain

gn =
(
g(x),ϕn(x)

)
= TαEα,α+1

(
–n2π2Tα

)
Fn(T) + Eα,1

(
–n2π2Tα

)
pn, (2.13)

where pn = (p(x),ϕn(x)), Fn(t) = (F(x, t),ϕn(x)). Using (2.13), we can get

pn =
gn – Fn(T)TαEα,α+1(–n2π2Tα)

Eα,1(–n2π2Tα)
, (2.14)

and

p(x) =
∞∑

n=1

gn – Fn(T)TαEα,α+1(–n2π2Tα)
Eα,1(–n2π2Tα)

ϕn(x). (2.15)

From Lemma 2.5, we deduce that

p(x) =
M∑

n=1

1
M
∑M

k=1 g(xk)ϕn(xk) – Qn,M – Fn(T)TαEα,α+1(–n2π2Tα)
Eα,1(–n2π2Tα)

ϕn(x)

+
∞∑

n=M+1

gn – Fn(T)TαEα,α+1(–n2π2Tα)
Eα,1(–n2π2Tα)

ϕn(x). (2.16)

3 Regularized solutions for backward problem for time-fractional diffusion
equation

In this section, we introduce the trigonometric method in nonparametric regression asso-
ciated with quasi-boundary value regularization method to solve the inverse initial value
problem of a time-fractional diffusion equation. We will do a modification of Eq. (1.1),
where a term of u(x, 0) is added as follows:

u(x, T) + μu(x, 0) = g(x). (3.1)

We can obtain the regularization solution of problem (1.1) from the solution of the fol-
lowing problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
t u(x, t) – uxx(x, t) = F(x, t), (x, t) ∈ (0, 1) × (0, T),

u(0, t) = u(1, t) = 0, t ∈ [0, T],

u(x, T) + μu(x, 0) = g̃(x), x ∈ [0, 1],

(3.2)

where μ plays the role of regularization parameter.
Using the separation of variables and Laplace transform of Mittag–Leffler function

[Lemma 2.1], we can infer the solution pμ(x) of problem (3.2) which is the regularization
solution of problem (1.1) with the exact measurable data as follows:

pμ(x) =
∞∑

n=1

gn – Fn(T)TαEα,1+α(–n2π2Tα)
μ + Eα,1(–n2π2Tα)

ϕn(x). (3.3)
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From Lemma 2.5, we can get the regularization solution p̃μ,M(x) of problem (1.1) with
noise measurable data as follows:

p̃μ,M(x) =
M∑

n=1

1
M
∑M

k=1 g̃(xk)ϕn(xk) – Qn,M – Fn(T)TαEα,1+α(–n2π2Tα)
μ + Eα,1(–n2π2Tα)

ϕn(x)

+
∞∑

n=M+1

gn – Fn(T)TαEα,1+α(–n2π2Tα)
μ + Eα,1(–n2π2Tα)

ϕn(x). (3.4)

4 Estimators and convergence results
In this section, we will give the error estimate of the quasi-boundary value regularization
method under the a priori parameter choice rule. For γ > 0, let Dγ (�) be the set of all
function ψ ∈ L2(�) defined by

‖ψ‖Dγ (�) =

( ∞∑

n=1

n2γ
∣
∣(ψ ,ϕn)

∣
∣2
) 1

2

< ∞. (4.1)

Lemma 4.1 For any q > 0, 0 < μ < 1, and n ≥ 1 > 0, we have the following inequality:

A(n) =
μn2–qπ2

C1 + μn2π2 ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (((2 – q)C1)/(π2q))1– q

2 π2qμ
q
2 , 0 < q < 2,

(π2μ)/C1, q ≥ 2, 1 < n < 1
μ

,

π2μq–1, q ≥ 2, n ≥ 1
μ

.

(4.2)

Proof For 0 < q < 2, we can easily see

lim
n→0

A(n) = 0 and lim
n→∞ A(n) = 0,

then we infer

sup
n≥1

A(n) ≤ A
(
n∗),

where n∗ is the root of A′(n) = 0, and n∗ =
√

(2–q)C1
μπ2q .

So

A(n) ≤ A
(
n∗) =

1
2

(
(2 – q)C1

π2q

)1– q
2
π2qμ

q
2 .

For q ≥ 2 and 1 < n < 1
μ

, we have

A(n) =
μn2–qπ2

C1 + μn2π2 <
π2μ

C1
.

For q ≥ 2 and n ≥ 1
μ

, we get

A(n) =
μn2–qπ2

C1 + μn2π2 < π2μq–1. �
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Lemma 4.2 For any 0 < μ < 1, and n ≥ 1, we have the following inequality:

B(n) =
n2

C1 + μn2π2 ≤ 1
μπ2 . (4.3)

The proof is very easy and we omit it here.
The main result of this section is the following.

Theorem 4.1 Assume an a priori bound is imposed as follows:

‖p‖Dq(�) ≤ E, (4.4)

where q > 0 and E > 0 are two constants. Suppose the a priori condition (4.4) and the noises
data assumption (1.3) hold. We have an estimate as follows:

E
∥
∥p̃μ,M(x) – p(x)

∥
∥2

≤ R2
max

Mμ2 +

⎧
⎪⎪⎨

⎪⎪⎩

1
4π4q2(((2 – q)C1)/(qπ2))2–qμqE2, 0 < q < 2,

(π4/C2
1)μ2E2, q ≥ 2, 1 < n < 1

μ
,

π4μ2q–2E2, q ≥ 2, n ≥ 1
μ

.

(4.5)

As 0 < μ < 1 and limM→+∞ 1
Mμ2 = 0, we obtain

E
∥
∥p̃μ,M(x) – p(x)

∥
∥2 is of order

⎧
⎪⎪⎨

⎪⎪⎩

max( 1
Mμ2 ,μq), 0 < q < 2,

max( 1
Mμ2 ,μ2), q ≥ 2, 1 < n < 1

μ
,

max( 1
Mμ2 ,μ2q–2) q ≥ 2, n ≥ 1

μ
.

(4.6)

Proof Applying (2.16) and (3.4), we can get

p̃μ,M(x) – p(x) =
M∑

n=1

1
M
∑M

k=1 εkσkEα,1(–n2π2Tα)
Eα,1(–n2π2Tα)[μ + Eα,1(–n2π2Tα)]

ϕn(x)

–
∞∑

n=1

[gn – Fn(T)TαEα,α+1(–n2π2Tα)]μ
Eα,1(–n2π2Tα)[μ + Eα,1(–n2π2Tα)]

ϕn(x). (4.7)

Using Parseval’s equality, we obtain

∥
∥p̃μ,M(x) – p(x)

∥
∥2 ≤

M∑

n=1

[ 1
M
∑M

k=1 εkσk

μ + Eα,1(–n2π2Tα)

]2

+
∞∑

n=1

[
[gn – Fn(T)TαEα,α+1(–n2π2Tα)]μ

Eα,1(–n2π2Tα)[μ + Eα,1(–n2π2Tα)]

]2

.
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We use E(εjεl) = 0 (j 
= l), and Eε2
j = 1, j = 1, 2, . . . , M. Then we obtain

E
∥
∥p̃μ,M(x) – p(x)

∥
∥2 ≤

M∑

n=1

1
M2

∑M
k=1 Eε2

kσ
2
k

(μ + Eα,1(–n2π2Tα))2

︸ ︷︷ ︸
D1

+
∞∑

n=1

[
[gn – Fn(T)TαEα,α+1(–n2π2Tα)]μ

Eα,1(–n2π2Tα)[μ + Eα,1(–n2π2Tα)]

]2

︸ ︷︷ ︸
D2

. (4.8)

From Lemma 2.3, we know that

C1

n2π2 ≤ Eα,1
(
–n2π2Tα

)≤ C2

n2π2 . (4.9)

Since σk < Rmax and Lemma 4.2, we estimate M1 as follows:

D1 ≤ R2
maxπ

4

M

(
sup
n∈N

B(n)
)2 ≤ R2

max
Mμ2 . (4.10)

By (2.14), (4.4), (4.9) and Lemma 4.1, we obtain

D2 =
∞∑

n=1

p2
n

[
μn2π2

C1 + μn2π2

]2

=
∞∑

n=1

p2
nn2qn–2q

[
μn2π2

C1 + μn2π2

]2

≤ E2
(

sup
n∈N

A(n)
)2

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4π4q2( (2–q)C1

qπ2 )2–qμqE2, 0 < q < 2,
π4

C2
1
μ2E2, q ≥ 2, 1 < n < 1

μ
,

π4μ2q–2E2, q ≥ 2, n ≥ 1
μ

.

(4.11)

Combining (4.10) and (4.11) , we can easy get the conclusion. �

Remark 4.1 By choosing μ = ( 1
M )

1
q+2 , and by (4.6), in the case 0 < q < 2, we can conclude

that

E
∥
∥p̃μ,M(x) – p(x)

∥
∥2 is of order

(
1
M

) q
q+2

.

Remark 4.2 By choosing μ = ( 1
M ) 1

4 , and by (4.6), in the case q ≥ 2, 1 < n < 1
μ

, we can con-
clude that

E
∥
∥p̃μ,M(x) – p(x)

∥
∥2 is of order

(
1
M

) 1
2

.
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Figure 1 The discrete data without noise data and
with noise data

Remark 4.3 By choosing μ = ( 1
M )

1
2q , and by (4.6), in the case q ≥ 2, n ≥ 1

μ
, we can conclude

that

E
∥
∥p̃μ,M(x) – p(x)

∥
∥2 is of order

(
1
M

) 2q–2
2q

.

5 Numerical results
In this section, we present a numerical experiment in the MATLAB programs to show the
validity of our scheme. First we display the discrete data with and without noise in Fig. 1.
Comparing with two picture in Fig. 1, we can observe the non-smoothness of curve data
in the case of random noise. And the measured data is very chaotic.

Since the analytic solution of problem (1.1) is difficult to obtain, we construct the final
data g(x) by solving the following forward problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
t u(x, t) – uxx(x, t) = F(x, t), (x, t) ∈ (0, 1) × (0, T),

u(0, t) = u(1, t) = 0, t ∈ [0, T],

u(x, T) = g(x), x ∈ [0, 1].

(5.1)

We construct the final data g(x) by solving the forward problem with the give data F(x, t)
and p(x) by a finite difference method. Let the sequence {gk}M

k=1 represent samples from
the function g(x) on an equidistant grid. Choosing M = 31, σ 2

k = σ 2 = 10–i, i = 4, 5, we have
the following nonparametric regression model of data:

g̃(xk) = g(xk) + σkεk , xk =
2k – 1

2M
, k = 1, 2, . . . , M.

where εk ∼ N(0, 1).
The relative error level is computed by

er =
√∑

(p – p̃μ,M)2
√∑

(p)2
. (5.2)

Example Choose

F(x, t) = (xt)α sin(2π t), p(x) =
(
x(1 – x)

)α
sin(πx).
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Figure 2 The comparison of the numerical effects
between the exact solution and its computed
approximations for various noise levels σ 2 = 10–4,
10–5 in the case of α = 0.2

Figure 3 The comparison of the numerical effects
between the exact solution and its computed
approximations for various noise levels σ 2 = 10–4,
10–5 in the case of α = 0.8

Figure 4 The relative errors for various noise levels
σ 2 = 10–4, 10–5 in the case of α = 0.8

Figures 2 and 3 show the comparison between the exact solution and its regularized solu-
tion for various noise levels σ 2 = 10–4, 10–5 in the case of α = 0.2, 0.8. According to these
figures, we can find that the smaller σ and α, the fitting effect between the exact solution
and regularized solution is also better. In addition, we see that the relative errors (for vari-
ous noise levels σ 2 = 10–4, 10–5 in the case of α = 0.8) are decreased when M are increased
(see Fig. 4). The results of this experiment have demonstrated the convergence results in
Remarks 4.1–4.3 and the effectiveness of our method. Tables 1 and 2 show the numerical
results of the example for different σ 2 = 10–4, 10–5 with different α.
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Table 1 Numerical results of the example for different σ 2 with α = 0.2

σ 2 = 10–4 σ 2 = 10–5

er 0.0971 0.0116
μ 5.6555e–006 5.6485e–007

Table 2 Numerical results of the example for different σ 2 with α = 0.8

σ 2 = 10–4 σ 2 = 10–5

er 0.2485 0.0249
μ 1.4683e–008 1.4697e–009

6 Conclusion
In this paper, we solve the inverse initial value problem for a time-fractional diffusion equa-
tion. The trigonometric method in nonparametric regression associated with the quasi-
boundary value regularization method is applied to solve the ill-posed problem. Specially,
the problem is dealt with the discrete random noise. The convergence estimate is pre-
sented under an a priori regularization parameter choice rule. In numerical experiments,
the computational cost is within 10 seconds and the convergence results is proved, so this
work is good. In future work, we will continue to research the other inverse problems of
this special type of noise in the data, such as identifying the source of the space-fractional
diffusion equation.

Acknowledgements
The authors would like to thanks the editor and the referees for their valuable comments and suggestions that improve
the quality of our paper.

Funding
The work is supported by the National Natural Science Foundation of China (11561045,11501272) and the Doctor Fund of
Lan Zhou University of Technology.

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by FY and YZ prepared the manuscript initially and performed all the steps of
the proofs in this research. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 March 2018 Accepted: 3 July 2018

References
1. Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Phys. A, Stat. Mech. Appl. 278(1),

107–125 (2000)
2. Autuori, G., Cluni, F., Gusella, V., Pucci, P.: Mathematical models for nonlocal elastic composite materials. Adv.

Nonlinear Anal. 6(4), 355–382 (2017)
3. Ghergu, M., Radulescu, V.D.: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics.

Springer Monographs in Mathematics, Springer, Heidelberg (2012)
4. Yuste, S.B., Lindenberg, K.: Subdiffusion-limited reactions. Chem. Phys. 284(1), 169–180 (2002)
5. Kumar, S., Kumar, D., Singh, J.: Fractional modelling arising in unidirectional propagation of long waves in dispersive

media. Adv. Nonlinear Anal. 5(4), 383–394 (2016)



Yang et al. Boundary Value Problems  (2018) 2018:108 Page 12 of 12

6. Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson., Part A, Bridg.
Educ. Res. 34(1), 16–23 (2009)

7. Duncan, T.E., Pasik-Duncan, B.: A direct approach to linear-quadratic stochastic control. Opusc. Math. 37(6), 821–827
(2017)

8. Jin, B.T., Rundell, W.: A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 31(3), 035003
(2015)

9. Marin, M., Dumitru, B.: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound.
Value Probl. 2016, 111 (2016)

10. Radulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. Variational Methods and
Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015)

11. Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the
time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)

12. Yang, F., Fu, C.L.: The quasi-reversibility regularization method for identifying the unknown source for time-fractional
diffusion equation. Appl. Math. Model. 39, 1500–1512 (2015)

13. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and
applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

14. Bachar, I., Mâagli, H., Radulescu, V.D.: Fractional Navier boundary value problems. Bound. Value Probl. 79, 14 (2016)
15. Bachar, I., Mâagli, H., Radulescu, V.D.: Positive solutions for superlinear Riemann–Liouville fractional boundary-value

problems. Electron. J. Differ. Equ. 240, 16 (2017)
16. Denton, Z., Ramírez, J.D.: Existence of minimal and maximal solutions to RL fractional integro-differential initial value

problems. Opusc. Math. 37(5), 705–724 (2017)
17. Wei, Z.L., Li, Q.D., Che, J.L.: Initial value problems for fractional differential equations involving Riemann–Liouville

sequential fractional derivative. J. Math. Anal. Appl. 367, 260–272 (2010)
18. Yang, M., Liu, J.J.: Solving a final value fractional diffusion problem by boundary condition regularization. Appl.

Numer. Math. 66, 45–58 (2013)
19. Wei, Y., Wang, J.G.: A modified quasi-boundary value method for the backward time-fractional diffusion problem.

Math. Model. Numer. Anal. 48, 603–621 (2014)
20. Tuan, N.H., Nane, E.R.: Inverse source problem for time fractional diffusion with discrete random noise. Stat. Probab.

Lett. 120, 126–134 (2017)
21. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)
22. Hao, D.N., Duc, N.V., Lesnic, D.: Regularization of parabolic equations backward in time by a non-lacal boundary value

problem method. Appl. Math. (Irvine) 75, 291–315 (2010)
23. Denche, M., Bessila, K.: A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301,

419–426 (2005)
24. Hao, D.N., Duc, N.V., Sahli, H.: A non-local boundary value problem method for parabolic equations backward in time.

J. Math. Anal. Appl. 345, 805–815 (2008)
25. Showalter, R.E.: Cauchy problem for hyper-partial differential equations. North-Holl. Math. Stud. 110, 421–425 (1985)
26. Feng, X.L., Elden, L., Fu, C.L.: A quasi-boundary-value method for the Cauchy problem for elliptic equations with

nonhomogeneous Neumann data. J. Inverse Ill-Posed Probl. 18, 617–645 (2010)
27. Podlubny, I.: Fractional Differential Equation. Academic Press, San Diego (1999)
28. Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788

(2010)
29. Wang, J.G., Zhou, Y.B., Wei, T.: A posteriori regularization parameter choice rule for the quasi-boundary value method

for the backward time-fractional diffusion problem. Appl. Math. Lett. 26(7), 741–747 (2013)
30. Eubank, R.L.: Nonparametric Regression and Spline Smoothing, 2nd edn. Statistics: Textbooks and Monographs,

vol. 157. Dekker, New York (1999)


	The quasi-boundary value regularization method for identifying the initial value with discrete random noise
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Regularized solutions for backward problem for time-fractional diffusion equation
	Estimators and convergence results
	Numerical results
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


