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Abstract
In this paper, the well-posedness for the non-autonomous reaction–diffusion
equation with infinite delays on a bounded domain is established. The existence of
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1 Introduction
Let � ⊆R

n be a smooth bounded domain. Consider the long-time behavior of the follow-
ing non-autonomous nonlinear reaction–diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – �u + λu = f (t, ut) + g(t, x), in [τ , +∞] × �,

u|∂� = 0, t > τ ,

u(t, x) = φ(t – τ , x), t ∈ (–∞, τ ], x ∈ �,

(1)

where λ ≥ 0, and we have the nonlinear term

f
(
t, ut(t, x)

)
= F

(
t, u

(
t – ρ(t), x

))
+

∫ 0

–∞
G

(
t, z, u(t + z, x)

)
dz.

Suppose there exist two positive constants k1, k2, and three positive scalar functions m0(·),
e–rγρ(t)m1(t), m2(·)e–γ z which are all in L1((–∞, 0],R+) such that the functions F ∈ C(R×
R;R), ρ ∈ C(R; [0, +∞)), and G ∈ C(R× (–∞, 0] ×R;R) satisfy

∣
∣F(t,υ)

∣
∣r ≤ |k1|r + kr

2e–rγρ(t)|υ|r , ∀t,υ ∈R, (2)
∣
∣G(t, z,υ)

∣
∣ ≤ m0(z) + m1(z)|v|, ∀t,υ ∈R, z ∈ (–∞, 0], (3)

∣
∣F(t,υ) – F(t,ν)

∣
∣ ≤ C1e–γρ(t)|υ – ν|, ∀t,υ,ν ∈ R, z ∈ (–∞, 0], (4)

∣
∣G(t, z,υ) – G(t, z,ν)

∣
∣ ≤ C2m2(z)|υ – ν|, ∀t,υ,ν ∈R, z ∈ (–∞, 0], (5)
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and the non-autonomous term g ∈ Lr
loc(R; Lr(�)) (r > 1) satisfies

sup
τ≤t

e–δτ

∫ τ

–∞

∥
∥g(s)

∥
∥r

Xeδs ds < ∞, ∀t ∈R, (6)

for each δ ∈ {α,α–L, r(δ–η)}, where α, L, δ, η will be given in Lemma 4.1, the local r-power
integral is the Bochner integral. We will denote m0 =

∫ 0
–∞ m0(s) ds, m1 =

∫ 0
–∞ e–γ sm1(s) ds,

and m2 =
∫ 0

–∞ e–γ sm2(s) ds.
Let Cγ ,X denote the Banach space C((–∞, 0]; X) endowed with the norm

‖φ‖Cγ ,X = sup
z∈(–∞,0]

eγ z∥∥φ(z)
∥
∥

X , γ > 0,

where X is Lr(�) or W 1,r(�).
Given τ ∈R, T > τ and a function u : (–∞, T] → X. For each t ∈ [τ , T], ut : (–∞, 0] → X

denotes the function defined by ut(z) = u(t + z) for z ∈ (–∞, 0]. We are interested in the
initial condition φ ∈ Cγ ,X .

Retarded differential equations have been used to research many physical systems with
non-instant transmission phenomena such as internet data transmission, other memory
processes, and specially biological motivations (e.g. species growth or incubating time on
disease models [1, 2]). For autonomous systems with delays, the existence of solutions or
global attractors has been studied widely in [3–5] and their qualitative theory has also
been well-established. For autonomous systems with variable bounded or unbounded de-
lays, the classical theory extended in [6–13] has been applied to deal with the existence of
solution and special attractors. In fact, autonomous systems with variable delays are non-
autonomous in essence. Except that time-periodic equations can be dealt with classic the-
ory relatively straightforward manner, the qualitative properties or asymptotic behavior of
many general non-autonomous systems are analyzed by new ideas and methods. In recent
years, non-autonomous diffusion equations have attracted much attention in mathemat-
ical literature. Duong [14] considered a class of flux-limited diffusions with external force
and established the comparison and maximum principles. Jung et al. [15] considered the
nonlinear singularly perturbed reaction–diffusion problems in the polygonal domain and
proposed a boundary layer analysis which fits a domain with corners.

For the reaction–diffusion systems with finite delays, there are also a sires of work [11,
16, 17]. More recently, Wang et al. [10] proved the existence of pullback attractors in the
weighted space Cγ ,H1(�) for the multi-value process generated by (1) based on the concept
of the Kuratowski measure of the noncompactness of a bounded set, where the growth of
nonlinear term F(x, v) and G(x, s, v) are both linear, and the non-autonomous term g(t, x) ∈
L2

loc(R; L2(�)) satisfies

sup
τ≤t

e–ητ

∫ τ

–∞

∥
∥g(s)

∥
∥2

L2(�)e
ηs ds < +∞, ∀η ∈R,η > 0. (7)

In the present paper, we will prove the existence of solution and the pullback attractors of
(1) in the bounded domain of Cγ ,Lr(�) or Cγ ,W 1,r(�) under the conditions (2)–(6) for r ≥ 2.

The main work of this paper contains three issues. Since the space Lr(�) (r > 2) loses the
inner product and orthogonality, canonical projector and approximation methods [10] are
both ineffective to prove the existence of solutions and pullback attractors of (1). In order
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to overcome this difficulty, we adopt the idea of [17] and decompose (1) into two equations
to separate the non-autonomous term to establish well-posedness (see Theorem 3.7 and
Theorem 3.10). In addition we investigate the existence of pullback absorbing set by using
the approximation technique of [9, 10] to overcome difficulties stemming from infinite
delays and infinite dimensions. Consequently, for verifying the asymptotic compactness
of (1) in Cγ ,Lr(�) (r > 2), we employ the weak continuous semigroup theory and finite di-
mensional approximation method in [16, 18] to construct compact embedding results (see
Theorem 5.6). Moreover, by improving smooth effect of the semigroup eAt , we prove the
dissipativity and the existence of pullback attractors for (1) in Cγ ,W 1,r(�) (see Lemma 6.1).

The paper is organized as follows. Section 2 gives some preliminaries concerning the
definitions of processes and the pullback attractors of non-autonomous dynamical sys-
tems. We also give the definition of ω-limit compact and a suitable non-autonomous
frameworks for the discussion of attractors in the future. In Sect. 3, we consider the well-
posedness of (1) in Cγ ,Lr(�) and CW 1,r (�), respectively. In Sects. 4 and 6, we prove the exis-
tence of bounded absorbing sets in both spaces above. In Sects. 5 and 7, the existence of
pullback attractors in Cγ ,Lr(�) and Cγ ,W 1,r(�) is proved.

2 Preliminaries
Let X be a complete metric space with metric dX(·, ·). Denote by H∗

X(·, ·) the Hausdorff
semi-distance between two nonempty subsets of a complete metric space X, which is de-
fined by

H∗
X(A, B) = sup

a∈A
inf
b∈B

dX(a, b).

Definition 2.1 A mapping U(t, τ ) : X → X, t > τ in R, is called a process if
(1) U(τ , τ )x = x, ∀τ ∈R, x ∈ X ;
(2) U(t, s)U(s, τ )x = U(t, τ )x, ∀τ ≤ s ≤ t ∈R, x ∈ X .

Definition 2.2 The Kuratowski measure k(A) of noncompactness of the set A is defined
by

k(A) = inf{δ > 0 | A admits a finite cover by sets whose diameter ≤ δ}.

Definition 2.3 Let {U(t, τ )} be a process on X. We say that {U(t, τ )} is
(1) pullback dissipative, if there exists a family of bounded sets D = {D(t)}t∈R in X so

that, for any bounded set B ⊂ X and each t ∈R, there exists a S0 = S0(B, t) ∈ R
+ such

that

U(t, t – s)B ⊂ D(t), ∀s ≥ S0;

(2) D-pullback ω-limit compact with respect to each t ∈ R, if, for any ε > 0, there exists
a S1 = S1(D, t, ε) ∈R

+ such that

k
(⋃

s≥S1

U(t, t – s)D(t – s)
)

≤ ε.
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Proposition 2.4 If the process {U(t, τ )} is D-pullback ω-limit compact in X, then {U(t, τ )}
is pullback ω-limit compact for any bounded subset B of X.

It follows from Theorem 3 of [10].

Definition 2.5 A family of nonempty compact subsets A = {A(t)}t∈R of X is called to be a
pullback attractor for the process {U(t, τ )} if

(1) A = {A(t)}t∈R is invariant, i.e.,

U(t, τ )A(t) = A(t), ∀t ≥ τ , τ ∈R;

(2) A is pullback attracting, i.e., for every bounded set B of X and any fixed t ∈R,

lim
s→+∞ H∗

X
(
U(t, t – s)B, A(t)

)
= 0.

Definition 2.6 Let {U(t, τ )} be a process on X. We say that U(t, τ )ζ is norm-to-weak
continuous in ζ for any fixed t ≥ τ , τ ∈ R, if there exists a sequence ζn → ζ in X and
tn → t such that U(tn, τ )ζn ⇀ U(t, τ )ζ (weak convergence).

The general existence of pullback attractors has been given as follows [10].

Proposition 2.7 Let X be a Banach space, and let {U(t, τ )} be a process on X. Let U(t, τ )ζ
is norm-to-weak continuous in x for fixed t ≥ τ , τ ∈ R. If, for any fixed t ∈ R, ∀T ∈ R

+,
⋃

t≥T D(t) is bounded, the process {U(t, τ )} is pullback dissipative and D-pullback ω-limit
compact with respect to each t ∈ R, then {U(t, τ )} possesses a pullback attractor in A =
{A(t)}t∈R in X given by

A(t) =
⋂

T∈R+

⋃

s≥T

U(t, t – s)D(t – s) ⊂ D(t).

3 Existence of solutions
By a solution u ∈ C((–∞, T]; X1) of (1), we mean that, for any T > 0, z ∈ (–∞, 0], τ < t ≤ T ,

u(t) = e�(t–τ )u(τ ) +
∫ t

τ

e�(t–s)[–λu + f (x, us) + g(x, s)
]

ds,

= e�(t–τ )u(τ ) +
∫ t

τ

e�(t–s)[–λu + f
(
x, u(s + z)

)
+ g(x, s)

]
ds, (8)

where u(t) = φ(t – τ , x), u(τ ) = φ(0, x), t ∈ (–∞, τ ].
Let A = �. Xα is the fractional power space associated to the operator �. The lin-

ear operator A = � with Dirichlet boundary conditions in a bounded and smooth do-
main � can be seen as an unbounded operator in Lr(�), 1 < r < ∞, with domain D(A) =
W 2,r(�) ∩ W 1,r

0 (�). In this situation, –A = –� is a sectorial operator and generates an
analytic semigroup eAt in Lr(�). Denote by {Eα

r }α∈R the fractional power spaces asso-
ciated to A with the norm ‖u‖Eα

r = ‖(–A)αu‖Lr (�), u ∈ Eα
r . Notice that E0

r = Lr(�) and
E1

r = W 2,r(�) ∩ W 1,r
0 (�). It follows from [19] that the semigroup eAt has the following

smooth effect:

∥
∥eAtx

∥
∥

Eβ
r

≤ t–(β–α)‖x‖Eα
r , x ∈ Eβ

r , t > 0, 0 ≤ α ≤ β . (9)
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Since the embedding E1
r ↪→ E0

r is compact, we know from Remark 6.1 of [20] that the
resolvent of –A is compact, and the embedding Eα

r ↪→ Eβ
r is continuous and compact for

∀α > β .

3.1 Local existence of solutions for (1) in Cγ ,Lr (�) (1 < r < ∞)
In order to apply Theorem 1 [18] to prove the existence of a solution for (1), we decom-
pose system (1) into a linear system and a non-autonomous nonlinear system as follows,
respectively:

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t – �v = g(t, x) in [τ , +∞] × �,

v|∂� = 0, t > τ ,

v(t, x) = 0, τ ∈R, t ∈ (–∞, τ ], x ∈ �,

(10)

and
⎧
⎪⎪⎨

⎪⎪⎩

∂w
∂t – �w = f̃ (x, wt) + f1(w) in [τ , +∞] × �,

w|∂� = 0, t > τ ,

w(t, x) = φ(t – τ , x), τ ∈R, t ∈ (–∞, τ ], x ∈ �,

(11)

where f̃ (x, wt) = f (x, wt + vt), f1(w) = –λ(w + v), ut = vt + wt .

Lemma 3.1 ([21]) For any τ ≤ t1 < t2, 1
p + 1

q = 1,

∥
∥
∥
∥

∫ t2

t1

eA(t2–s)g(x, s) ds
∥
∥
∥
∥

Lr (�)
≤ ∥

∥g(x, t)
∥
∥

Lp
loc(R;Lr (�))(t2 – t1)

1
q .

Furthermore, Eq. (10) has a unique solution v(t) in the sense of (8) such that

v(t) ∈ C
(
[τ , T0 + τ ]; Lr(�)

)

satisfies

v(t) =
∫ t

τ

eA(t–s)g(x, s) ds, (12)

where T0 is chosen in Lemma 3.6 later.

Proof
∥
∥
∥
∥

∫ t2

t1

eA(t2–s)g(x, s) ds
∥
∥
∥
∥

Lr (�)

≤
∫ t2

t1

∥
∥g(x, t)

∥
∥

Lp
loc(R;Lr(�)) ds

≤
(∫ t2

t1

ds
) 1

q
(∫ t2

t1

∥
∥g(x, t)

∥
∥

Lp
loc(R;Lr (�)) ds

) 1
p

≤ ∥
∥g(x, t)

∥
∥

Lp
loc(t1,t2;Lr (�))(t2 – t1)

1
q .

Note that we can choose 0 < t2 – t1 ≤ 1. �
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Lemma 3.2 Assuming (2)–(5) hold, we have

∥
∥f̃ (t, wt) + f1(w)

∥
∥

X1 ≤ C3(λ + 1)
(
1 + ‖wt‖Cγ ,Lr (�)

)
, (13)

∥
∥f̃ (t, wt) – f̃ (t,νt) + f1(w) – f1(ν)

∥
∥

X1 ≤ C4(λ + 1)‖wt – νt‖Cγ ,Lr (�) , (14)

where w,ν ∈ C((–∞, T0 + τ ]; Lr(�)), t ∈ (τ , T0 + τ ].

Proof Denote Xα
r := Eα–1

r , α ∈ R. Especially, X1
r := Lr(�). For any u,ψ ∈ C((–∞, T0 +

τ ]; Lr(�)) and any t ∈ (τ , T0 + τ ] we get

∥
∥F(t, ut)

∥
∥

X1 ≤ C5
(∥
∥k1 + k2e–γρ(t)ut

∥
∥

X1
)

≤ C5
(
k1|�| + k2‖ut‖Cγ ,Lr (�)

)

≤ C5
(
1 + ‖ut‖Cγ ,Lr (�)

)
(15)

and
∥
∥
∥
∥

∫ 0

–∞
G

(
t, z, u(t + z)

)
dz

∥
∥
∥
∥

Lr(�)

≤
∥
∥
∥
∥

∫ 0

–∞

(∣
∣m0(z)

∣
∣ + m1(z)

∣
∣u(t + z)

∣
∣
)

dz
∥
∥
∥
∥

Lr(�)

≤ m0|�| + m1‖ut‖Cγ ,Lr (�)

≤ C6
(
1 + ‖ut‖Cγ ,Lr (�)

)
. (16)

Combining with (15) and (16), for any u,ψ ∈ C((τ , T0 + τ ]; X1), we have

∥
∥f (t, ut)

∥
∥

X1 ≤ C3
(
1 + ‖ut‖Cγ ,Lr (�)

)
. (17)

By (4) and (5), we find

∥
∥f (t, ut) – f (t,ψt)

∥
∥

X1

≤ C1e–γρ(t)∥∥u
(
t – ρ(t)

)
– v

(
t – ρ(t)

)∥
∥

Lr (�) + C2

∥
∥
∥
∥

∫ 0

–∞
m1(z)|ut – ψt|dz

∥
∥
∥
∥

Lr(�)

≤ C3‖ut – ψt‖Cγ ,Lr (�) , (18)

where C3 and C4 depend on (k1, k2, m0, m1, m2). From (17) and (18), we obtain

∥
∥f̃ (t, wt)

∥
∥

X1 ≤ C′
3
(‖wt‖Cγ ,Lr (�) + 1

)
, (19)

and

∥
∥f̃ (t, wt) – f̃ (t,νt)

∥
∥

Lr (�) =
∥
∥f (t, wt + νt) – f (t, wt + νt)

∥
∥

Lr(�)

≤ C′
4‖wt – νt‖Cγ ,Lr (�) . (20)

Hence, (13) and (14) are obvious. �
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Lemma 3.3 If u ∈ C((–∞, T0 + τ ], Lr(�)), then, for all t ∈ (τ , T0 + τ ], z ∈ (–∞, 0], we have

∥
∥
∥
∥

∫ t

τ

eA(t–s)(f1(w) + f̃ (t, ws)
)

ds
∥
∥
∥
∥

Lr(�)
≤ C(λ + 1)(t – τ )

(
ω(t) + 1

)
, (21)

where

ω(t) =
(
‖φ‖Cγ ,Lr (�) + sup

θ∈(τ ,t]

∥
∥w(θ ) + v(θ )

∥
∥

Lr (�)

)
.

Proof By (9), it is not difficult to see that

∥
∥
∥
∥

∫ t

τ

eA(t–s) f̃ (t, ws) ds
∥
∥
∥
∥

Lr (�)

≤ C(λ + 1)
∫ t

τ

(
1 + ‖ws + vs‖Cγ ,Lr (�)

)
ds

≤ C(λ + 1)
∫ t

τ

(
‖φ‖Cγ ,Lr (�) + sup

θ∈(τ ,s]

∥
∥w(θ ) + v(θ )

∥
∥

Lr(�)

)
ds + C(λ + 1)(t – τ )

≤ C(λ + 1)(t – τ )ω(t) + C(λ + 1)(t – τ ). (22)
�

Lemma 3.4 For any t ∈ (τ , T0 + τ ], z ∈ (–∞, 0] and any w,ν ∈ C((–∞, T0 + τ ], Lr(�)) be
such that (t – τ )‖wt‖Cγ ,Lr (�) ≤ μ, (t – τ )‖νt‖Cγ ,Lr (�) ≤ μ, for some μ > 0. Then we have

∥
∥
∥
∥

∫ t

τ

eA(t–s)[(f̃ (s, ws) – f̃ (s,νs)
)

+
(
f1

(
w(s)

)
– f1

(
ν(s)

))]
ds

∥
∥
∥
∥

Lr (�)

≤ C(1 + λ)(t – τ ) sup
θ∈(τ ,t]

∥
∥w(θ ) – ν(θ )

∥
∥

Lr (�). (23)

Proof

∥
∥
∥
∥

∫ t

τ

eA(t–s)[(f̃ (s, ws) – f̃ (s,νs)
)

+
(
f1

(
w(s)

)
– f1

(
ν(s)

))]
ds

∥
∥
∥
∥

Lr (�)

≤ C(1 + λ)
∫ t

τ

‖ws – νs‖Cγ ,Lr (�) ds

≤ C(1 + λ)(t – τ ) sup
θ∈(τ ,t]

∥
∥w(θ ) – ν(θ )

∥
∥

Lr (�). (24)
�

Lemma 3.5 ([22]) Assume u : (–∞, T0) → X is continuous and uτ = φ. If there exists a
nondecreasing function m(t) ≥ 0 such that

∥
∥u(t)

∥
∥

X ≤ ∥
∥φ(τ )

∥
∥

X + m(t), for all – ∞ < t ≤ T0,

then

sup
z∈(–∞,0]

eγ z∥∥u(t + z)
∥
∥

X ≤ sup
z∈(–∞,0]

eγ z∥∥φ(t + z)
∥
∥

X + m(t), –∞ < t ≤ T0. (25)
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Lemma 3.6 Assume (2)–(6) hold. Let 1 < r < ∞, z ∈ (–∞, 0]. For any χτ ∈ C((–∞, 0];
Lr(�)), there exist R(χτ ) > 0 and T0 = T0(χτ ) with the property that, for any φ ∈
BCγ ,Lr (�) (χτ , R), there exists a continuous function w(·;φ(0)) with wτ = φ:

w ∈ C
(
[τ , T0 + τ ]; Lr(�)

)
(26)

such that, for any t ∈ [τ , T0 + τ ], w is the unique solution of Eq. (11) in the sense of (8). This
solution is a classical solution and for any t ∈ (τ , T0 + τ ], satisfies

wt ∈ C
(
(–∞, 0]; Lr(�)

)
(27)

and

lim
t→τ+

(t – τ ) sup
z∈(–∞,0]

eγ z∥∥w(t + z,φ)
∥
∥

Lr (�) = 0, (28)

and, moreover, if φ1,φ2 ∈ BCγ ,Lr (�) (χτ , R) then

sup
z∈(–∞,0]

eγ z∥∥w(t + z,φ1) – ν(t + z,φ2)
∥
∥

Lr (�) ≤ M1eM2(t–τ )‖φ1 – φ2‖Cγ ,Lr (�) . (29)

Furthermore, the time of existence is uniform on any bounded set (respectively, compact
set) S of Cγ ,Lr(�).

Proof Fix μ > 0 and for any τ ∈ R, ∀t ∈ (–∞, τ ], let ‖φ‖Cγ ,Lr (�) ≤ μ. We will use the con-
traction mapping principle to establish the existence of a solution for (11).

Let

K(T0) =
{

w ∈ C
(
(–∞, T0 + τ ]; Lr(�)

)
, t ∈ (τ , T0 + τ ] : sup

t∈(τ ,T0+τ ]

∥
∥w(t)

∥
∥

Lr (�) ≤ μ + 1
}

,

with the norm

‖w‖K (T0) = sup
t∈(τ ,T0+τ ]

∥
∥w(t)

∥
∥

Lr (�),

where T0 is determined later. So that (K ,‖ · ‖) is a nonempty complete metric space. For
each t ∈ (τ , T0 + τ ], we introduce the mapping

� : K(T0) → C
(
(–∞, T0 + τ ]; X1),

�(w)(t) =

⎧
⎨

⎩

e�(t–τ )w(τ ) +
∫ t
τ

e�(t–s)[f1(w) + f̃ (s, ws)] ds, t > τ ,

w(t, x) = φ(t – τ , x), t ∈ (–∞, τ ].

(30)

Let us first prove that � is a well-defined map and �(K(T0)) ⊂ K(T0). We start by showing
that

if w ∈ K(T0), then �(w) ∈ C
(
(–∞, T0 + τ ]; Lr(�)

)
. (31)
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Fixing t2 ∈ (τ , T0 + τ ], and letting T0 + τ ≥ t1 > t2, then we have

∥
∥(�w)(t1) – (�w)(t2)

∥
∥

Lr (�)

≤ ∥
∥
(
e–A(t1) – e–A(t2))w(τ )

∥
∥

Lr (�) +
∥
∥
∥
∥

∫ t1

t2

eA(t1–s) f̃ (s, ws) ds
∥
∥
∥
∥

Lr(�)

+
∥
∥
∥
∥

∫ t1

t2

eA(t1–s)f1
(
w(s)

)
ds

∥
∥
∥
∥

Lr (�)
+

∥
∥
∥
∥

[
I – e–A(t1–t2)]

∫ t2

τ

eA(t2–s) f̃ (s, ws) ds
∥
∥
∥
∥

Lr(�)
.

In the above, the first and fourth term trivially go to zero as t1 → t2. Let us consider the
second term. For this term we have

∥
∥
∥
∥

∫ t1

t2

eA(t1–s) f̃ (s, ws) ds
∥
∥
∥
∥

Lr(�)

≤ C
∫ t1

t2

(
1 + ‖ws + vs‖Cγ ,Lr (�)

)
ds

≤ C
(
‖φ‖Cγ ,Lr (�) + sup

s∈(τ ,t1]

∥
∥w(s) + v(s)

∥
∥

Lr(�)

)
(t1 – t2) + C(t1 – t2)

≤ Cω(t)(t1 – t2) + C(t1 – t2),

which goes to zero as t1 → t+
2 . Similarly, the third term also goes to zero as t1 → t+

2 . The
case t1 < t2 is similar.

Let us now show that ‖�(w)(t)‖Lr(�) ≤ μ + 1, for all t ∈ (τ , T0 + τ ]. For χτ ∈ C((–∞, 0];
Lr(�)) fixed, choose r � 1 and T0 ≤ 1–r

C(λ+1)(1+ω(t)) such that, for any t ∈ (τ , T0 + τ ], by (9),
we have ‖eA(t–τ )χτ‖Lr(�) ≤ μ, and ‖eA(t–τ )r‖Lr (�) ≤ r.

Based on the above fact, we have

∥
∥�(w)(t)

∥
∥

Lr (�)

≤ ∥
∥e–A(t–τ )w(τ )

∥
∥

Lr (�) + C(λ + 1)(t – τ ) + C(1 + λ)(t – τ )
∫ t

τ

‖ws‖CLr (�) ds

≤ ∥
∥e–A(t–τ )r

∥
∥

Cγ ,Lr (�)
+

∥
∥e–A(t–τ )χτ

∥
∥

Cγ ,Lr (�)
+ C(λ + 1)(t – τ )

(
1 + ω(t)

)

≤ r + ‖χτ‖Cγ ,Lr (�) + C(λ + 1)(t – τ )
(
1 + ω(t)

)

≤ μ + r + C(λ + 1)(t – τ )
(
1 + ω(t)

)
.

On the other hand, it follows from Lemma 3.3 that � is a strict contraction in K(T0) and
that

∥
∥�(w) – �(ν)

∥
∥

K (T0) ≤ C(λ + 1)(t – τ )ω(t)‖w – ν‖K (T0), t ∈ [τ , T0 + τ ].

The simple computations above suggest that we can choose T0 small enough so that the
map � is contraction from K(T0) into itself. By the Banach contraction principle we see
that � has a unique fixed point in K(T0). We will denote this fixed point by w(t,φ) for
t ∈ (τ , T0 + τ ], φ ∈ C((–∞, 0], Lr(�)), and it is defined for ‖φ – χτ‖Cγ ,Lr (�) ≤ ρ . Note that
from (31) w(t,φ) ∈ C((–∞, T0 + τ ]; Lr(�)).

Let us prove that (t – τ )‖wt‖Cγ ,Lr (�) → 0 as t → τ+.
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From Lemma 3.3,

(t – τ )
∥
∥w(t)

∥
∥

Lr(�)

≤ (t – τ )
∥
∥eA(t–τ )φ(0)

∥
∥

Lr (�) + (t – τ )
∫ t

τ

∥
∥eA(t–s)(f1(w) + f̃ (s, ws)

)∥
∥

Lr (�) ds

≤ (t – τ )
∥
∥φ(0)

∥
∥

Lr (�) + C(1 + λ)(t – τ )
∫ t

τ

(
1 + ‖ws‖Cγ ,Lr (�)

)
ds

+ C(1 + λ)(t – τ )‖vs‖Cγ ,Lr (�) .

By Lemma 3.5, we obtain

(t – τ )‖wt‖Cγ ,Lr (�)

≤ (t – τ )‖φ‖Cγ ,Lr (�) + C(1 + λ)(t – τ )
∫ t

τ

‖ws‖Cγ ,Lr (�) + C(1 + λ)(t – τ ).

Thus by the Gronwall inequality, we have

(t – τ )‖wt‖Cγ ,Lr (�)

≤ (t – τ )‖φ‖Cγ ,Lr (�) + C(1 + λ)(t – τ )

+
(‖φ‖Cγ ,Lr (�) + C(1 + λ)

)
(t – τ )C(1 + λ)

∫ t

τ

exp
(
C(1 + λ)

)
(t – s) ds

≤ (‖φ‖Cγ ,Lr (�) + C(1 + λ)
)
(t – τ )

+ C(1 + λ)
(‖φ‖Cγ ,Lr (�) + C(1 + λ)

)
(t – τ )2 exp

(
C(1 + λ)(t – τ )

) t→τ+→ 0.

Moreover, if ∀φ1,φ2 ∈ BCγ ,Lr (�) (χτ , r), taking into account the estimates of Lemma 3.3
and our choice of T0, we have

∥
∥w

(
t,φ1(0)

)
– ν

(
t,φ2(0)

)∥
∥

Lr(�)

≤ ∥
∥eA(t–τ )(φ1(0) – φ2(0)

)∥
∥

Lr (�)

+
∥
∥
∥
∥

∫ t

τ

eA(t–s)[f̃ (s, ws) – f̃ (s,νs) + f1(w) – f1(ν)
]

ds
∥
∥
∥
∥

Lr(�)

≤ ∥
∥(φ1 – φ2)

∥
∥

Cγ ,Lr (�)
+ C(1 + λ)

∫ t

τ

‖ws – νs‖CLr (�) ds

≤ ∥
∥(φ1 – φ2)

∥
∥

Cγ ,Lr (�)
+ C(1 + λ)(t – τ )

∥
∥(φ1 – φ2)

∥
∥

Cγ ,Lr (�)

+ C(1 + λ)
∫ t

τ

sup
θ∈(τ ,s]

∥
∥w(θ ) – ν(θ )

∥
∥

Lr (�) ds.

By Lemma 3.5, we have

sup
θ∈(τ ,t]

∥
∥w

(
t,φ1(0)

)
– ν

(
t,φ2(0)

)∥
∥

Lr (�)

≤ (
1 + C(1 + λ)(t – τ )

)
eC(1+λ)(t–τ )∥∥(φ1 – φ2)

∥
∥

Cγ ,Lr (�)
.
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Furthermore,

∥
∥wt(·,φ1) – νt(·,φ2)

∥
∥

Cγ ,Lr (�)

≤ (
1 + C(1 + λ)(t – τ )

)∥
∥(φ1 – φ2)

∥
∥

Cγ ,Lr (�)
eC(1+λ)(t–τ )

≤ M1(t – τ )
∥
∥(φ1 – φ2)

∥
∥

Cγ ,Lr (�)
eM1(t–τ ),

where M1 = 1 + C(1 + λ).
This concludes the existence of the theorem. Notice that, from the existence part, we see

that, for any φ ∈ BCγ ,Lr (�) (χτ , R), there exists a unique solution in the sense of (8), defined
in [τ , T0 + τ ]. The uniqueness of solutions for Eq. (11) is proved. �

Theorem 3.7 Assume (2)–(6) hold. Let 1 < r < ∞, g ∈ Lr
loc(R; Lr(�)) (r > 1), z ∈ (–∞, 0]. If

ντ ∈ C((–∞, 0]; Lr(�)), there exist 0 < R(ντ ) ≤ R(χτ ) and T0(ντ ) ≤ T0(χτ ) with the property
that, for any φ ∈ BCγ ,Lr (�) (ντ , R), there exists a continuous function u(·;φ(0)) with uτ = φ:

u ∈ C
(
[τ , T0 + τ ]; Lr(�)

)
, (32)

which is the unique solution of (1) in the sense of (8). This solution is a classical solution
and ∀t ∈ (τ , T0 + τ ] it satisfies

ut ∈ C
(
(–∞, 0]; Lr(�)

)
(33)

and

lim
t→τ+

(t – τ ) sup
z∈(–∞,0]

eγ z∥∥u(t + z,φ)
∥
∥

Lr (�) = 0; (34)

if ∀φ1,φ2 ∈ Bγ ,Lr(�)(υτ , r), then

sup
z∈(–∞,0]

eγ z∥∥u1(t + z,φ1) – u2(t + z,φ2)
∥
∥

Lr(�) ≤ M1(t – τ )eM1(t–τ )‖φ1 – φ2‖Cγ ,Lr (�) . (35)

Furthermore, the time of existence is uniform on any bounded set (respectively, compact
set) S of Cγ ,Lr(�).

Proof By Lemma 3.1 and Lemma 3.6, Eq. (1) has a unique solution u ∈ C((–∞, T0]; Lr(�))
satisfying (33)–(35). �

3.2 Local existence of solutions of (1) in Cγ ,W1,r (�) (1 < r < N)
Lemma 3.8 ([21]) For any t1 < t2, 0 < 1

q – 1
2 , where 1

r + 1
q = 1, we have

∥
∥
∥
∥

∫ t2

t1

eA(t2–s)g(x, s) ds
∥
∥
∥
∥

W 1,r (�)

≤
(

1
1 – q

2

) 1
q ∥
∥g(x, t)

∥
∥

Lr
b(t1,t2;Lr(�))(t2 – t1)

1
q – 1

2 .
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Furthermore, Eq. (10) has a unique solution v(t) in the sense of (8) such that

v(t) ∈ C
(
[τ , T0]; W 1,r(�)

) ∩ C
(
[τ , T0 + τ ]; W 2,r(�)

)

satisfies

v(t) =
∫ t

τ

eA(t–s)g(x, s) ds. (36)

Proof We have

∥
∥
∥
∥

∫ t2

t1

eA(t2–s)g(x, s) ds
∥
∥
∥
∥

W 1,r (�)

≤
∥
∥
∥
∥

∫ t2

t1

(t2 – s)– 1
2 g(x, s) ds

∥
∥
∥
∥

Lr(�)

≤
(∫ t2

t1

(t2 – s)– q
2 ds

) 1
q
(∫ t2

t1

∥
∥g(x, s)

∥
∥r

Lr
b(R;Lr(�)) ds

) 1
r

≤
(

1
1 – q

2

) 1
q ∥
∥g(x, t)

∥
∥

Lr
loc(t1,t2;Lr (�))(t2 – t1)

1
q – 1

2 . �

Lemma 3.9 Assume (2)–(6) hold. Let 1 < r < N , z ∈ (–∞, 0]. If χτ ∈ C((–∞, 0]; W 1,r(�)),
there exist R(χτ ) > 0 and T0(χτ ) > 0 with the property that ∀t ∈ (–∞, τ ) for any φ ∈
BC

γ ,W 1,r (�)
(χτ , R), there exists a continuous function w(·;φ(0)) with wτ = φ:

w ∈ C
(
[τ , T0 + τ ]; W 1,r(�)

)
, (37)

which is the unique solution of (11) in the sense of (8). This solution is a classical solution
and ∀t ∈ (τ , T0 + τ ], z ∈ (–∞, 0], satisfies

wt ∈ C
(
(–∞, 0]; W 1,r(�)

)
(38)

and

lim
t→τ+

(t – τ ) sup
z∈(–∞,0]

eγ z∥∥w(t + z,φ)
∥
∥

W 1,r (�) = 0, (39)

and if φ1,φ2 ∈ BC
γ ,W 1,r (�)

(χτ , R), then

sup
z∈(–∞,0]

eγ z∥∥w(t + z,φ1) – ν(t + z,φ2)
∥
∥

W 1,r (�) ≤ M1T0eM1(t–τ )‖φ1 – φ2‖C
γ ,W 1,r (�)

. (40)

Furthermore, the time of existence is uniform on any bounded set (respectively, compact
set) S of Cγ ,W 1,r(�).

Proof For ∀t ∈ (τ , T0 + τ ], z ∈ (–∞, 0] and any w,ν ∈ C((–∞, T0 + τ ]; W 1,r(�)), using
(2),(3), we obtain (13) and (14). The remaining part of the proof is similar to Lemma 3.6.

�
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Theorem 3.10 Assume (2)–(6) hold. Let 1 < r < ∞, r > 1, z ∈ (–∞, 0]. If ντ ∈ C((–∞, 0];
W 1,r(�)), there exist 0 < R(ντ ) ≤ R(χτ ) and T0(ντ ) ≤ T0(χτ ) with the property that for any
φ ∈ BC

γ ,W 1,r (�)
(ντ , R), there exists a continuous function u(·;φ(0)) with uτ = φ:

u ∈ C
(
[τ , T0 + τ ]; W 1,r(�)

)
, (41)

which is the unique solution of (11) in the sense of (8). This solution is a classical solution
and ∀t ∈ [τ , T0 + τ ] it satisfies

ut ∈ C
(
(–∞, 0]; W 1,r(�)

)
, lim

t→τ+
(t – τ ) sup

z∈(–∞,0]
eγ z∥∥u(t + z,φ)

∥
∥

W 1,r (�) = 0, (42)

and if φ1,φ2 ∈ BC
γ ,W 1,r (�)

(ντ , R), then

sup
z∈(–∞,0]

eγ z∥∥u(t + z,φ1) – u(t + z,φ2)
∥
∥

W 1,r (�)

≤ M1(t – τ )eM1(t–τ )‖φ1 – φ2‖C
γ ,W 1,r (�)

. (43)

Furthermore, the time of existence is uniform on any bounded set (respectively, compact
set) S of Cγ ,W 1,r(�).

Proof It follows from Lemmas 3.8 and 3.9. The proof is similar to Theorem 3.7. Here we
omit the details. �

4 Uniform estimates in Cγ ,Lr (�)

Lemma 4.1 Assume that (2), (3), and (6) hold, g ∈ Lr
loc(R; Lr(�)), and there exists a positive

constant α such that

(
λ – (ε2 + m1 + ε4)(r – 1) – α

)
> 0 (44)

and

L :=
(

m1 +
2rkr

2
λ(r–1)

)

< α ≤ rγ . (45)

Then, for any initial data φ ∈ Cγ ,Lr(�), any solution ut of Eq. (1) satisfies

‖ut‖r
Cγ ,Lr (�)

≤ reατ e–αt‖φ‖r
Cγ ,Lr (�)

+
α

α – L
C� + ε

–(r–1)
4 e–αt

∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr (�) ds

+ re(α–L)τ e(L–α)t‖φ‖r
Cγ ,Lr (�)

+ ε
–(r–1)
4 e(L–α)t

∫ t

–∞

(
e(α–L)s∥∥g(s)

∥
∥r

Lr (�)

)
ds, (46)

where ε2, ε4 will be determined later on.

Proof Multiplying (1) by |u(t)|r–2u(t) and integrating by parts, we get

1
r

d
dt

∥
∥u(t)

∥
∥r

Lr (�) +
4(r – 1)

r2

∫

�

∣
∣∇(∣

∣u(t)
∣
∣

r
2
)∣
∣2 dx +

∫

�

λ
∣
∣u(t)

∣
∣r dx
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=
∫

�

F
(
t, u

(
x, t – ρ(t)

))∣
∣u(t)

∣
∣r–2u(t) dx +

∫

�

∫ 0

–∞
G

(
t, s, u(t + s)

)∣
∣u(t)

∣
∣r–2u(t) ds dx

+
∫

�

g(t, x)
∣
∣u(t)

∣
∣r–2u(t) dx. (47)

We fix two positive parameters ε1 and ε4 that will be chosen later. Then, by assumptions
(2), (6) and Young’s inequality, we have

∫

�

F
(
t, u

(
x, t – ρ(t)

))|u|r–2u dx

≤
∫

�

∣
∣F

(
t, u

(
x, t – ρ(t)

))∣
∣
∣
∣u(t)

∣
∣(r–1) dx

≤ 2rε
–(r–1)
1
r

|k1|r|�|r +
2rε

–(r–1)
1
r

kr
2‖ut‖r

Cγ ,Lr (�)
+ ε1

(
r – 1

r

)
∥
∥u(t)

∥
∥r

Lr (�) (48)

and
∫

�

g(t, x)
∣
∣u(t)

∣
∣r–2u(t) dx ≤

∫

�

∣
∣g(t, x)

∣
∣
∣
∣u(t)

∣
∣(r–1) dx

≤ ε
–(r–1)
4

r
∥
∥g(t)

∥
∥r

Lr(�) + ε4

(
r – 1

r

)
∥
∥u(t)

∥
∥r

Lr(�). (49)

Therefore

d
dt

∥
∥u(t)

∥
∥r

Lr (�) +
4(r – 1)

r

∫

�

∣
∣∇(∣

∣u(t)
∣
∣

r
2
)∣
∣2 dx +

(
rλ – (ε1 + ε4)(r – 1)

)∥
∥u(t)

∥
∥r

Lr (�) dx

≤ ε
–(r–1)
1

(
k1|�|r + kr

2‖ut‖r
Cγ ,Lr (�)

)
+ r

∫

�

∫ 0

–∞
G

(
t, s, u(t + s)

)∣
∣u(t)

∣
∣r–2u(t) ds dx

+ ε
–(r–1)
4

∥
∥g(t)

∥
∥r

Lr(�). (50)

Let α > 0, it will also be determined later. Then

d
dt

(
eαt∥∥u(t)

∥
∥r

Lr (�)

)

= αeαt∥∥u(t)
∥
∥r

Lr(�) + eαt d
dt

∥
∥u(t)

∥
∥r

Lr (�)

≤ –
4(r – 1)

r
eαt

∫

�

∣
∣∇(∣

∣u(t)
∣
∣

r
2
)∣
∣2 dx –

(
rλ – (ε1 + ε4)(r – 1) – α

)
eαt∥∥u(t)

∥
∥r

Lr (�)

+ ε
–(r–1)
1 eαt|k1|r|�|r + ε

–(r–1)
1 eαtkr

2‖ut‖r
Cγ ,Lr (�)

+ ε
–(r–1)
4 eαt∥∥g(t)

∥
∥r

Lr(�)

+ reαt
∫

�

∫ 0

–∞
G

(
t, s, u(t + s)

)∣
∣u(t)

∣
∣r–2u(t) ds dx. (51)

Integrating from τ to t, we have

eαt∥∥u(t)
∥
∥r

Lr(�)

≤ eατ
∥
∥u(τ )

∥
∥r

Lr (�) –
∫ t

τ

(
rλ – (ε1 + ε4)(r – 1) – α

)
eαs∥∥u(s)

∥
∥r

Lr (�) dx
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+ ε
–(r–1)
1 |k1|r|�|r eαt

α
+ ε

–(r–1)
1 kr

2

∫ t

τ

eαs‖ut‖r
Cγ ,Lr (�)

ds

+ r
∫ t

τ

eαs
∫

�

∫ 0

–∞
G

(
s, z, u(s + z)

)∣
∣u(s)

∣
∣r–2u(s) dz dx ds

+ ε
–(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr(�) ds. (52)

By assumption (3), (6) and Young’s inequality, we obtain

r
∣
∣
∣
∣

∫ t

τ

eαs
∫

�

∫ 0

–∞
G

(
s, z, u(s + z)

)∣
∣u(s)

∣
∣r–2u(s) dz dx ds

∣
∣
∣
∣

≤ r
∫ t

τ

eαs
∫

�

∫ 0

–∞

∣
∣G

(
s, z, u(s + z)

)∣
∣
∣
∣u(s)

∣
∣r–1 dz dx ds

≤ ε
–(r–1)
2 mr

0|�|r
∫ t

τ

eαs ds + ε2(r – 1)
∫ t

τ

eαs∥∥u(s)
∥
∥r

Lr (�) ds

+ ε
–(r–1)
3 m1

∫ t

τ

eαs‖us‖r
Cγ ,Lr (�)

ds + ε3(r – 1)m1

∫ t

τ

eαs∥∥u(s)
∥
∥r

Lr(�) ds

≤ ε
–(r–1)
2 mr

0‖�‖r
Lr (�)

eαt

α
+ ε2(r – 1)

∫ t

τ

eαs∥∥u(s)
∥
∥r

Lr (�) ds

+ ε
–(r–1)
3 m1

∫ t

τ

eαs‖us‖r
Cγ ,Lr (�)

ds + ε3(r – 1)m1

∫ t

τ

eαs∥∥u(s)
∥
∥r

Lr(�) ds, (53)

where ε2 and ε3 are other positive constants to be determined later.
Combining (52)–(53) we conclude that

eαt∥∥u(t)
∥
∥r

Lr(�)

≤ eατ
∥
∥u(τ )

∥
∥r

Lr (�) +
(

k1|�|r
ε

(r–1)
1 α

+
mr

0|�|r
ε

(r–1)
2 α

)

eαt

–
(
rλ – (ε1 + ε2 + ε3m1 + ε4)(r – 1) – α

)
∫ t

τ

eαs∥∥u(s)
∥
∥r

Lr (�) ds

+
(

m1

ε
(r–1)
3

+
kr

2

ε
(r–1)
1

)∫ t

τ

eαs‖us‖r
Cγ ,Lr (�)

ds +
1

ε
(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr (�) ds. (54)

Choosing ε1 = λ, ε3 = 1, we now can choose positive constants ε2 and ε4 small enough
such that (λ – (ε2 + m̄1 + ε4)(r – 1) – α) > 0. Then

eαt∥∥u(t)
∥
∥r

Lr(�)

≤ eατ
∥
∥u(τ )

∥
∥r

Lr (�) +
(

k1|�|r
λ(r–1)α

+
mr

0|�|r
ε

(r–1)
2 α

)

eαt

+
(

m1 +
kr

2
λ(r–1)

)∫ t

τ

eαs‖us‖r
CLr (�)

ds + ε
–(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr(�) ds. (55)
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Now set t + θ instead of t, where θ ∈ (–∞, 0]. By the assumption (45), we have α ≤ rγ .
Multiplying (55) by e–α(t+θ ) and erγ θ e–rγ θ , it follows that

sup
θ∈(τ–t,0]

erγ θ
∥
∥u(t + θ )

∥
∥r

Lr(�) ≤ e–αteατ‖φ‖r
Cγ ,Lr (�)

+ C� +
e–αt

ε
(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr(�) ds

+
(

m1 +
kr

2
λ(r–1)

)

e–αt
∫ t

τ

eαs‖us‖r
Cγ ,Lr (�)

ds, (56)

where

C� =
(

k1|�|r
λ(r–1)α

+
mr

0|�|r
ε

(r–1)
2 α

)

. (57)

Note that

erγ θ
∥
∥u(t + θ )

∥
∥r

Lr (�) = erγ θ
∥
∥φ(t + θ – τ )

∥
∥r

Lr (�) = e–rγ (t–τ )erγ (t+θ–τ )∥∥φ(t + θ – τ )
∥
∥r

Lr (�)

≤ e–rγ (t–τ )‖φ‖r
Cγ ,Lr (�)

≤ e–α(t–τ )‖φ‖r
Cγ ,Lr (�)

, ∀θ ∈ (–∞, τ – t].

Let L := m1 + 2rkr
2

λ(r–1) < α. Then it yields

eαt‖ut‖r
Cγ ,Lr (�)

≤ reατ‖φ‖r
Cγ ,Lr (�)

+ C�eαt + ε
–(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr (�) ds

+
(

m1 +
2rkr

2
λ(r–1)

)∫ t

τ

eαs‖us‖r
Cγ ,Lr (�)

ds

≤ reατ‖φ‖r
Cγ ,Lr (�)

+ C�eαt + ε
–(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr (�) ds

+ L
∫ t

τ

eαs‖us‖r
Cγ ,Lr (�)

ds.

By Fubini’s theorem and Grownwall’s lemma, we find that

eαt‖ut‖r
Cγ ,Lr (�)

≤ reατ‖φ‖r
Cγ ,Lr (�)

+ ε
–(r–1)
4

∫ t

τ

eαs∥∥g(s)
∥
∥r

Lr(�) ds

+ re(α–L)τ eLt‖φ‖r
Cγ ,Lr (�)

+
α

α – L
C�eαt

+ ε
–(r–1)
4 eLt

∫ t

τ

(
e(α–L)s∥∥g(s)

∥
∥r

Lr (�)

)
ds. (58)

Hence, (6) and condition (45) imply that

‖ut‖r
Cγ ,Lr (�)

≤ Cre–αt‖φ‖r
Cγ ,Lr (�)

+
α

α – L
C� + ε

–(r–1)
4 e–αt

∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr(�) ds

+ re(α–L)τ e(L–α)t‖φ‖r
Cγ ,Lr (�)

+ ε
–(r–1)
4 e(L–α)t

∫ t

–∞

(
e(α–L)s∥∥g(s)

∥
∥r

Lr (�)

)
ds

�= R1,Cγ ,Lr (�) (t,φ, g,α, L). (59)
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For each t ∈R, let

BR1,Cγ ,Lr (�)
(t) =

{
u ∈ Cγ ,Lr(�) | ‖u‖r

Cγ ,Lr (�)
≤ R1,Cγ ,Lr (�) (t,φ, g,α, L)

}
, (60)

which implies that the family of bounded sets B = {BR1,Cγ ,Lr (�)
(t)}t∈R is pullback absorbing

for the process {U(t, τ )} on Cγ ,Lr(�). �

5 Existence of the pullback attractors in Cγ ,Lr (�) (r > 2)
In this section, we will discuss the case where the external forcing term g belongs only to
Lr

loc(R, Lr(�)). Inspired by the idea for proving the existence of global attractors in Lr(�),
we modify Theorem 5.11 [18] to prove the existence of the pullback attractors in Cγ ,Lr(�).

Lemma 5.1 Hypotheses (2), (3), (6) hold, and g ∈ C(R; L2(�)). Then there exists a pullback
attractor {AC

γ ,L2(�)
(t)}t∈R for the processes {U(t, τ )} on Cγ ,L2(�) generated by the solution of

Eq. (1).

Proof By Theorem 13 [10], the processes {U(t, τ )} on Cγ ,H1(�) associated with Eq. (1) has
a pullback attractor AC

γ ,H1(�)
. From the Sobolev embedding theorem H1(�) ↪→↪→ L2(�)

and Cγ ,H1(�) ⊆ Cγ ,L2(�), AC
γ ,H1(�)

is a pullback attractor for the processes {U(t, τ )} on
Cγ ,L2(�). �

Lemma 5.2 Let {U(t, τ )} associated with Eq. (1) be an evolution process on Cγ ,Lr(�) with
a pullback absorbing set D = {D(t)}t∈R on Cγ ,Lr(�). Then, for each t ∈ R, for any ε > 0, and
any pullback absorbing set D ⊂ Cγ ,Lr(�), there exist T = T(D, t, ε) > 0, M = M(ε) > 0 such
that

m
(
�·

t
(∣
∣U(t, t + z)u0(t + z)

∣
∣ ≥ M

)) ≤ ε, for any – z ≤ T , and u0
t (·) ∈D,

where m(e) denotes the Lebesgue measure of e ⊂ � and �·
t(|ut(z)| ≥ M) �=

⋃
z∈(–∞,0]{x ∈ � |

|u(t + z, x)| ≥ M}.

Proof From the assumption that {U(t, τ )} has a pullback absorbing set in Cγ ,Lr(�), we know
that there exists a positive constant M0, such that, for each t ∈ R and for any pullback
absorbing set D of Cγ ,Lr(�), we can find a positive constant T which depends on D, such
that

∥
∥U(t, t + z)u0(t + z)

∥
∥r

Cγ ,Lr (�)
≤ M0, for any – z ≥ T , and u0

t (·) ∈D.

So, we have

2M0 ≥ 2 sup
z∈(–∞,0]

eγ z
∫

�

∣
∣U(t, t + z)u0(t + z)

∣
∣r dx

≥ sup
z∈(–∞,–T1]

eγ z
∫

�·
t ({|u(t+z)|≥M1})

∣
∣U(t, t + z)u0(t + z)

∣
∣r dx

+ sup
z∈(–T1,0]

eγ z
∫

�·
t ({|u(t+z)|≥M1})

∣
∣U(t, t + z)u0(t + z)

∣
∣r dx
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≥ e–γ T1

(∫

�·
t ({|U(t,t+z)u0(t+z)|≥M1})

Mr
1 dx +

∫

�·
t ({|U(t,t+z)u0(t+z)|≥M1})

Mr
1 dx

)

≥ 2e–γ T1 Mr
1m

(
�

({∣
∣U(t, t + z)u0(t + z)

∣
∣ ≥ M1

}))
.

This inequality implies that m(�·
t({|U(t, t + z)u0(t + z)| ≥ M1})) ≤ ε, if we choose M1 large

enough such that M1 ≥ ( M0
e–γ T1 ε

) 1
r . �

Lemma 5.3 For each t ∈ R, any ε > 0, the pullback absorbing set D of process {U(t, τ )}
associated with Eq. (1) on Cγ ,Lr(�) (r > 0) has a finite ε-net in Cγ ,Lr(�), if there exists a positive
constant M = M(ε) which depends on ε, such that

(i) D has a finite (3M)(2–r)/2( ε
2 ) r

2 -net in Cγ ,L2(�),
(ii) (

sup
z∈(–∞,0]

eγ z
∫

�z
t ({|u(t+z)|≥M})

∣
∣u(t + z)

∣
∣r dx

) 1
r

< 2–(2r+2)/rε, for any ut(·) ∈D. (61)

Proof For each t ∈ R, any fixed ε > 0, it follows from the assumptions that D has a finite
(3M)(2–r)

2εr/2 -net in Cγ ,L2(�), that is, there exist u1
t , . . . , uk

t ∈ D, such that, for each ut(·) ∈ D, we
can find some ui

t (1 ≤ i ≤ k) satisfying

∥
∥u(t + z) – ui(t + z)

∥
∥2

L2(�) ≤ sup
z∈(–∞,0]

eγ z∥∥u(t + z) – ui(t + z)
∥
∥2

L2(�)

= sup
z∈(–∞,0]

eγ z∥∥ut – ui
t
∥
∥2

L2(�) < (3M)(2–r)
(

ε

2

)r

. (62)

Then, obviously, we have

∥
∥ut – ui

t
∥
∥r

Cγ ,Lr (�)

≤ sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)–ui(t+z)|≥3M)

∣
∣u(t + z) – ui(t + z)

∣
∣r dx

+ sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)–ui(t+z)|≤3M)

∣
∣u(t + z) – ui(t + z)

∣
∣r dx (63)

and

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)–ui(t+z)|≤3M)

∣
∣u(t + z) – ui(t + z)

∣
∣r dx

≤ (3M)r–2 sup
z∈(–∞,0]

eγ z
∫

�z
t (|ut–uit |≤3M)

∣
∣ut – ui

t
∣
∣2 dx,

≤ (3M)r–2(3M)2–r
(

ε

2

)r

=
(

ε

2

)r

. (64)

On the other hand, set

�z
1 = �z

t

(
∣
∣u(t + z)

∣
∣ ≥ 3M

2

)

∩ �z
t

(
∣
∣ui(t + z)

∣
∣ ≤ 3M

2

)

,
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�z
2 = �z

t

(
∣
∣u(t + z)

∣
∣ ≤ 3M

2

)

∩ �z
t

(
∣
∣ui(t + z)

∣
∣ ≥ 3M

2

)

,

�z
3 = �z

t

(
∣
∣u(t + z)

∣
∣ ≥ 3M

2

)

∩ �z
t

(
∣
∣ui(t + z)

∣
∣ ≥ 3M

2

)

,

then we have

�z
t
(∣
∣u(t + z)

∣
∣ ≥ 3M

) ⊂ �z
1 ∪ �z

2 ∪ �z
3.

From the simple facts that |u(t + z) – ui(t + z)| ≤ 2|u(t + z)| in �z
1 and |u(t + z) – ui(t + z)| ≤

2|ui(t + z)| in �z
2, combining with (61), we have

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)–ui(t+z)|≥3M)

∣
∣u(t + z) – ui(t + z)

∣
∣r dx

≤ sup
z∈(–∞,0]

eγ z
∫

�z
1

∣
∣u(t + z) – ui(t + z)

∣
∣r dx + sup

z∈(–∞,0]
eγ z

∫

�z
2

∣
∣u(t + z) – ui(t + z)

∣
∣r dx

+ sup
z∈(–∞,0]

eγ z
∫

�z
3

∣
∣u(t + z) – ui(t + z)

∣
∣r dx

≤ 2r sup
z∈(–∞,0]

eγ z
(∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z)

∣
∣r dx +

∫

�z
t (|ui(t+z)|≥M)

∣
∣ui(t + z)

∣
∣r dx

+
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z)

∣
∣r dx +

∫

�z
t (|ui(t+z)|≥M)

∣
∣ui(t + z)

∣
∣r dx

)

≤ 2r+2 · 2(2r+2)εr =
(

ε

2

)r

. (65)

Substituting (64) and (65) into (63), we can deduce that

sup
z∈(–∞,0]

eγ z∥∥u(t + z) – ui(t + z)
∥
∥

Lr (�) ≤ ε

2
+

ε

2
= ε,

which means that D has a finite ε-net in Cγ ,Lr(�). �

Lemma 5.4 Let D be a pullback absorbing set in Cγ ,Lr(�) (r ≥ 1). If D has a finite ε-net
in Cγ ,Lr(�) (r ≥ 1) then there exists a positive M = M(B, ε), such that, for any ut(·) ∈ D,
z ∈ (–∞, 0], we can find

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z)

∣
∣r dx ≤ 2r+1εr .

Proof Since D has a finite ε-net in Cγ ,Lr(�) (r ≥ 1), for each t ∈R, we know that there exist
u1

t , . . . , uk
t ∈D, such that, for any ut(·) ∈D, we can find some ui

t (1 ≤ i ≤ k) satisfying

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z) – ui(t + z)

∣
∣r dx ≤ εr . (66)

Simultaneously, for the fixed ε > 0, there exists a δ > 0, such that, for each ui
t , 1 ≤ i ≤ k, we

have

sup
z∈(–∞,0]

eγ z
∫

e

∣
∣ui(t + z)

∣
∣r dx ≤ εr , (67)

provided that m(e) < δ (e ⊂ �).
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On the other hand, since D is bounded in Cγ ,Lr(�) (r ≥ 1), for the fixed δ > 0 above, there
exists M > 0, such that m(�·

t(|u(t +z)| ≥ M)) < δ holds for each ut ∈ B. So, m(�z
t (|u(t +z)| ≥

M)) < δ also holds for each ut ∈ B.
Therefore,

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z)

∣
∣r dx

= sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z) – ui(t + z) + ui(t + z)

∣
∣r dx

≤ 2r sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z) – ui(t + z)

∣
∣r dx

+ 2r sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣ui(t + z)

∣
∣r dx

≤ 2r+1εr . (68)
�

Lemma 5.5 For each t ∈ R, for any ε > 0 and any pullback absorbing set D ∈ Cγ ,L2(�), there
exist two positive constants T3 = T3(B, ε) = max{T1, T2} and M = M(ε), such that

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|≥M)

∣
∣u(t + z)

∣
∣r dx < Cε, for any – z ≥ T3, u0

t (·) ∈D, (69)

where the constant C is independent of ε and D.

Proof For each t ∈ R, any fixed ε > 0, there exists δ > 0 such that if e ⊂ � and m(e) ≤ δ,
then

∫

e

∣
∣φ(x)

∣
∣r dx ≤ Cε, (70)

where φ(x), g(x) ∈ Lr(�). Moreover, from Lemmas 5.1, 5.2 and 5.4, we know that there
exist T = T(D, ε) > 0 and M = M(ε), for each –z ≥ T , ut(·) ∈ D, we have

m
(
�z

t
(∣
∣u(t + z)

∣
∣ ≥ M

))
< min{ε, δ}, for each t ∈R, (71)

and

sup
z∈(–∞,0]

eγ z
∫

�z
t (|u(t+z)|)≥M

∣
∣u(t + z)

∣
∣2 < 8ε. (72)

Thus, we also have
∫

�0
t (|u(t)|≥M)

∣
∣u(t)

∣
∣2 < 8ε, for t ∈ [T , +∞]. (73)

Multiplying (1) by (u – M)r–1
+ and integrating over �0

t = �0
t (u > M), we have

∫

�0
t (u>M)

∂u
∂t

(u – M)r–1
+ dx –

∫

�0
t (u>M)

�u(u – M)r–1
+ dx
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+
∫

�0
t (u>M)

λu(u – M)r–1
+ dx

=
∫

�0
t (u>M)

f (t, ut)(u – M)r–1
+ dx +

∫

�0
t (u>M)

g(t, x)(u – M)r–1
+ dx. (74)

After integrating over �0
t (u > M), (74) becomes

1
r

d
dt

∥
∥(u – M)+

∥
∥r

Lr (�) –
∫

�0
t (u>M)

�u(u – M)r–1
+ dx + λ

∫

�0
t (u>M)

u(u – M)r–1
+ dx

=
∫

�0
t (u>M)

F
(
t, u

(
x, t – ρ(t)

))
(u – M)r–1

+ dx +
∫

�0
t (|u|>M)

g(t, x)(u – M)r–1
+ dx

+
∫

�0
t (u>M)

∫ 0

–∞

∣
∣G

(
s, z, u(s + z)

)∣
∣(u – M)r–1

+ dz dx, (75)

where

(u – M)+ =

⎧
⎨

⎩

u – M, u ≥ M,

0, u ≤ M.

Let �0
1,t = �0

t (u > M), then we have

1
r

d
dt

∥
∥(u – M)+

∥
∥r

Lr (�) –
∫

�0
1,t

�u(u – M)r–1
+ dx + λ

∫

�0
1,t

u(u – M)r–1
+ dx

=
∫

�0
1,t

F
(
t, u

(
x, t – ρ(t)

))
(u – M)r–1

+ dx +
∫

�0
1,t

g(t, x)(u – M)r–1
+ dx

+
∫

�0
1,t

∫ 0

–∞
G

(
s, z, u(s + z)

)
(u – M)r–1

+ dz dx.

We now estimate every term of (75). First, we obtain

–
∫

�0
1,t

�u(u – M)r–1
+ dx = (r – 1)

∫

�0
1

∇u
∣
∣(u – M)+

∣
∣r–2∇u dx ≥ 0 (76)

and

λ

∫

�0
1,t

u(u – M)r–1
+ dx ≥ λ

∥
∥(u – M)+

∥
∥r

Lr (�). (77)

By the assumption (2), (3), (6) and Young’s inequality, we have

∫

�0
1,t

F
(
t, u

(
x, t – ρ(t)

))
(u – M)r–1

+ dx

≤ ε
–(r–1)
1

r

∫

�0
1,t

∣
∣F

(
x, u

(
x, t – ρ(t)

))∣
∣r dx +

(r – 1)ε1

r

∫

�0
1,t

(u – M)r
+ dx

≤ ε
–(r–1)
1

r

∫

�0
1,t

|k1|r dx +
kr

2ε
–(r–1)
1
r

∫

�0
1,t

e–rγρ(t)∣∣u
(
x, t – ρ(t)

)∣
∣r dx
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+
(r – 1)ε1

r

∫

�0
1,t

(u – M)r
+ dx

≤ ε
–(r–1)
1

r
|k1|r|Lr (�0

1,t ) +
kr

2ε
–(r–1)
1
r

‖ut‖r
C

γ ,Lr (�0
1)

+
(r – 1)ε1

r
∥
∥(u – M)+

∥
∥r

Lr(�0
1,t ), (78)

∫

�0
1,t

∫ 0

–∞
G

(
x, z, u(s + z)

)
(u – M)r–1

+ dz dx

≤
∫

�0
1,t

∫ 0

–∞

∣
∣m0(z)

∣
∣
∣
∣(u – M)+

∣
∣r–1 dz dx +

∫

�0
1,t

∫ 0

–∞
m1(z)|u(t + z)(u – M)r–1

+ dz dx

≤ ε
–(r–1)
2

r

∫

�0
1,t

|m0|r dx +
(r – 1)ε2

r

∫

�1

(u – M)r
+ dx

+
m̄1ε

–(r–1)
3
r

∫

�0
1,t

∣
∣u(t + z)

∣
∣r dx +

m̄1(r – 1)ε3

r

∫

�0
1,t

(u – M)r
+ dx

≤ ε
–(r–1)
2

r
|m0|rLr (�0

1,t ) +
(r – 1)ε2

r
∥
∥(u – M)+

∥
∥r

Lr(�0
1,t )

+
m̄1(r – 1)ε3

r
∥
∥u(t + z)

∥
∥r

Lr(�0
1,t ), (79)

and
∫

�0
1,t

g(t, x)(u – M)r–1
+ dx ≤

∫

�0
1,t

∣
∣g(t, x)

∣
∣(u – M)r–1

+ dx

≤ ε
–(r–1)
4

r

∫

�0
1,t

∣
∣g(t, x)

∣
∣r dx +

(r – 1)ε4

r

∫

�0
1,t

(u – M)r
+ dx

≤ ε
–(r–1)
4

r
∥
∥g(t, x)

∥
∥r

Lr (�0
1,t ) +

(r – 1)ε4

r
∥
∥(u – M)+

∥
∥r

Lr(�0
1,t ). (80)

Combining with (76)–(80), we can conclude that

d
dt

∥
∥(u – M)+

∥
∥r

Lr (�) + r(r – 1)
∫

�0
1,t

∇u(u – M)r–2
+ ∇u dx

+ rλ
∫

�0
1,t

u(u – M)r–1
+ dx

≤ ε
–(r–1)
1

∫

�0
1,t

|k1|r dx + ε
–(r–1)
2

∫

�0
1,t

|m0|r dx

+ (r – 1)(ε1 + ε2 + m1ε3 + ε4)
∫

�0
1,t

(u – M)r
+ dx

+ kr
2ε

–(r–1)
1 e–rγρ(t)

∫

�0
1,t

∣
∣u

(
x, t – ρ(t)

)∣
∣r dx

+ m1ε
–(r–1)
3

∫

�0
1,t

eγ z∣∣u(t + z)
∣
∣r dx + ε

–(r–1)
4

∫

�0
1,t

∣
∣g(t, x)

∣
∣r dx. (81)

We also have

d
dt

∥
∥(u – M)+

∥
∥r

Lr (�)

≤ –rλ
∥
∥(u – M)+

∥
∥r

r + ε
–(r–1)
1 |k1|rLr (�0

1,t ) + ε
–(r–1)
2 |m0|rLr (�0

1,t )
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+ (r – 1)(ε1 + ε2 + m1ε3 + ε4)
∥
∥(u – M)+

∥
∥r

Lr(�0
1,t ) + kr

2ε
–(r–1)
1 ‖ut‖r

C
γ ,Lr (�0

1,t )

+ m1ε
–(r–1)
3 ‖ut‖r

C
γ ,Lr (�0

1,t )
+ ε

–(r–1)
4

∥
∥g(t, x)

∥
∥r

Lr(�0
1,t ). (82)

Let α > 0, which will also be determined later. Then

d
dt

eαt∥∥(u – M)+
∥
∥r

Lr (�)

= αeαt∥∥(u – M)+
∥
∥r

r + eαt d
dt

∥
∥(u – M)+

∥
∥r

r

≤ –
(
rλ – α – (r – 1)(ε1 + ε2 + m1ε3 + ε4)

)
eαt∥∥(u – M)+

∥
∥r

Lr(�)

+
(
ε

–(r–1)
1 |k1|rLr (�0

1,t ) + ε
–(r–1)
2 |m0|rLr (�0

1,t )

)
eαt + ε

–(r–1)
4 eαt∥∥g(t, x)

∥
∥r

Lr (�0
1,t )

+
(
kr

2ε
–(r–1)
1 + m1ε

–(r–1)
3

)
eαt‖ut‖r

C
γ ,Lr (�0

1,t )
. (83)

Let A = (rλ – α – (r – 1)(ε1 + ε2 + m1ε3 + ε4)). By Gronwall’s inequality, we have

eαt∥∥(u – M)+
∥
∥r

Lr (�1
t,0)

≤ e–A(t–τ )eατ
∥
∥
(
u(τ ) – M

)

+

∥
∥r

Cγ ,Lr (�)
+ ε

–(r–1)
4 e–At

∫ t

–∞
e(A+α)s∥∥g(s, x)

∥
∥r

Lr(�0
1,t ) ds

+
(
kr

2ε
–(r–1)
1 + m1ε

–(r–1)
3

)
e–At

∫ t

τ

e(A+α)s‖us‖r
C

γ ,Lr (�0
1,t )

ds

+
(
ε

–(r–1)
1 |k1|rLr (�0

1,t ) + ε
–(r–1)
2 |m0|rLr (�0

1,t )

) eαt

A + α
. (84)

Thanks to (46), and letting α1 > α ≥ α∗, we can deduce that

(
kr

2ε
–(r–1)
1 + m1ε

–(r–1)
3

)
e–At

∫ t

τ

e(A+α)s‖us‖r
C

γ ,Lr (�1
t,0)

ds

≤ (
kr

2ε
–(r–1)
1 + m1ε

–(r–1)
3

)
(

reατ

A
‖φ‖r

C
γ ,Lr (�1

t,0)
+

αC�1
t,0

eαt

(A + α)(α – L)

+ ε
–(r–1)
4

1
A

∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr (�1
t,0) ds +

re(α–L)τ eLt

(A + L)
‖φ‖r

C
γ ,Lr (�1

t,0)

+ ε
–(r–1)
4

eLt

(A + L)

∫ t

–∞

(
e(α–L)s∥∥g(s)

∥
∥r

Lr (�1
t,0)

)
ds

)

. (85)

Multiplying (84) by e–αt , we have

∥
∥(u – M)+

∥
∥r

Lr(�1
t,0)

≤ e–A(t–τ )eατ e–αt∥∥
(
u(τ ) – M

)

+

∥
∥r

C
γ ,Lr (�0

1,t )
+

ε
–(r–1)
1 |k1|rLr (�0

1,t )

A + α

+ ε
–(r–1)
4 e–(A+α)t

∫ t

–∞
e(A+α)s∥∥g(s, x)

∥
∥r

Lr (�0
1,t ) ds +

ε
–(r–1)
2 |m0|rLr(�0

1,t )

A + α
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+
(
kr

2ε
–(r–1)
1 + m1ε

–(r–1)
3

)
(

reατ e–αt

A
‖φ‖r

C
γ ,Lr (�0

1,t )
+

αC�0
1,t

(A + α)(α – L)

+ ε
–(r–1)
4

1
A

e–αt
∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr (�0
1,t ) ds +

re(α–L)τ e–(α–L)t

(A + L)
‖φ‖r

C
γ ,Lr (�0

1,t )

+ ε
–(r–1)
4

e–(α–L)t

(A + L)

∫ t

–∞

(
e(α–L)s∥∥g(s)

∥
∥r

Lr (�0
1,t )

)
ds

)

≤ eατ e–αt∥∥(φ – M)+
∥
∥r

C
γ ,Lr (�0

1,t )
+ Ce–(A+α)t

∫ t

–∞
e(A+α)s∥∥g(s, x)

∥
∥r

Lr (�0
1,t ) ds

+ Cm
(
�0

1,t
)

+ Ceατ e–αt‖φ‖r
C

γ ,Lr (�0
1,t )

+ CC�0
1,t

+ Ce–αt
∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr (�0
1,t ) ds + Ce(α–L)τ e–(α–L)t‖φ‖r

C
γ ,Lr (�0

1,t )

+ Ce–(α–L)t
∫ t

–∞

(
e(α–L)s∥∥g(s)

∥
∥r

Lr (�0
1,t )

)
ds. (86)

Now replacing t by t + z, similar to the arguments in Lemma 4.1, in view of (45), we have

erγ z∥∥(ut – M)+
∥
∥r

Lr (�z
1,t )

≤ eατ e–αte(rγ –α)z∥∥(φ – M)+
∥
∥r

Cγ ,Lr (�z
1,t )

+ Ce–(A+α)t
∫ t

–∞
e(A+α)s∥∥g(s, x)

∥
∥r

Lr (�z
1,t ) ds

+ Cm
(
�z

1,t
)
e(rγ –α)z + Ceατ e–αt‖φ‖r

Cγ ,Lr (�z
1,t )

+ CC�z
1,t

+ Ce–αte(rγ –α)z
∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr (�z
1,t ) ds + Ce(α–L)τ e–(α–L)te(rγ +L–α)z‖φ‖r

Cγ ,Lr (�z
1,t )

+ Ce–(α–L)te(rγ +L–α)z
∫ t

–∞

(
e(α–L)s∥∥g(s)

∥
∥r

Lr(�z
1,t )

)
ds. (87)

Furthermore, by (57) and (70), we have

∥
∥(ut – M)+

∥
∥r

Cγ ,Lr (�z
1,t )

≤ eατ e–αtε + Cεe–(A+α)t
∫ t

–∞
e(A+α)s ds + Cε + Ceατ e–αtε + Cε

+ Ce–αtε

∫ t

–∞
eαs ds + Ce(α–L)τ e–(α–L)tε + Ce–(α–L)tε

∫ t

–∞
e(α–L)s ds

≤ eατ e–αtε + Cε + Cε + Ceατ e–αtε + Cε + Cε + Ce(α–L)τ e–(α–L)tε + Cε

≤ Cε, (88)

where α > L. Repeating the same steps above, just taking (u(t + z) – M)– instead of (u(t +
z) – M)+, we deduce that

∥
∥
(
u(t + z) – M

)

–

∥
∥r

Cγ ,Lr (�z
1,t )

≤ Cε. (89)

From (88), (89) and Lemma 5.1, we know the hypotheses of Lemma 5.3 are all satisfied.
Therefore the process {U(t, τ )} generated by Eq. (1) is D-pullback ω-limit compact. �
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Theorem 5.6 Suppose in addition to the hypotheses in Lemma 4.1 that g ∈ C(R, Lr(�)).
Then the processes {U(t, τ )} on Cγ ,Lr(�) generated by the solution of Eq. (1) with u0 ∈ Cγ ,Lr(�)

has the D-pullback attractors {ACγ ,Lr (�) (t)}t∈R.

Proof From Theorem 7.1, Lemmas 4.1, 5.1 and 5.5, now for every bounded subset B in
Cγ ,Lr(�), the process generated by Eq. (1) has the pullback attractors in Cγ ,Lr(�). �

6 Uniform estimates in Cγ ,W1,r (�)

Let semigroup eAt has the following higher smooth effect [19]:

∥
∥eAtx

∥
∥

Eβ
r

≤ Mt–(β–α)e–δt‖x‖Eα
r , x ∈ Eβ

r , t > 0, 0 ≤ α ≤ β , 0 < δ < λ1. (90)

Lemma 6.1 Suppose the conditions of Lemma 4.1 hold and

α < r(δ – η) ≤ rγ , r > 2, (91)

holds, the family of processes {Ug(t, τ )} is uniformly dissipative in Cγ ,W 1,r(�), where g(x, t) ∈
Lr

loc(R; Lr(�)), η > 0 will be determined later.

Proof Choosing α1 with α < α1 and using (46), we obtain

∫ t

τ

e–α1(t–s)‖us‖r
CLr (�)

ds

≤
∫ t

τ

e–α1(t–s)
(

reατ e–αs‖φ‖r
Cγ ,Lr (�)

+
α

α – L
C�

+ ε
–(r–1)
4 e–αs

∫ s

–∞
eαl∥∥g(l)

∥
∥r

Lr (�) dl + re(α–L)τ e(L–α)s‖φ‖r
Cγ ,Lr (�)

+ ε
–(r–1)
4 e(L–α)s

∫ s

–∞
e(α–L)l∥∥g(l)

∥
∥r

Lr(�) dl
)

ds

≤ C
α1 – α

eατ‖φ‖r
Cγ ,Lr (�)

+ C +
C

α1 – α
e–αt

∫ t

–∞
eαs∥∥g(s)

∥
∥r

Lr(�) ds

+
Ce(α–L)τ e(L–α)t

α1 – α + L
‖φ‖r

Cγ ,Lr (�)
+

Ce(L–α)t

α1 – α + L

∫ t

–∞
e(α–L)s∥∥g(s)

∥
∥r

Lr(�) ds

�= Q(α1,α, L, τ ,φ, g0, t). (92)

It is obvious that Q(α1,α, L, τ ,φ, g0, t) is bounded, as τ → –∞. From the well-posedness
of (1), we know that the solution of (1) satisfies

u(t) = eA(t–τ )u(τ ) +
∫ t

τ

eA(t–s)[–λu + f (x, us) + g(x, s)
]

ds. (93)

Therefore, using (90) and choosing α1 > 0, η > 0, q = r
r–1 < 2, r > 2 such that 0 < α < r(δ –

η) = α1 < rγ , for each t ≥ τ we obtain

∥
∥u(t)

∥
∥

W 1,r (�) =
∥
∥
∥
∥eA(t–τ )u(τ ) +

∫ t

τ

eA(t–τ )[–λu + f (x, us) + g(x, s)
]

ds
∥
∥
∥
∥

W 1,r (�)
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≤ ∥
∥eA(t–τ )u(τ )

∥
∥

W 1,r (�) + λ

∫ t

τ

∥
∥eA(t–s)u

∥
∥

W 1,r (�) ds

+
∫ t

τ

∥
∥eA(t–s)f (x, us)

∥
∥

W 1,r (�) ds +
∫ t

τ

∥
∥eA(t+z–s)g(x, s)

∥
∥

W 1,r (�) ds

≤ M1e–δ(t–τ )∥∥u(τ )
∥
∥

W 1,r (�) + λM2

∫ t

τ

(t – s)– 1
2 e–δ(t–s)‖u‖Lr (�) ds

+ M3

∫ t

τ

(t – s)– 1
2 e–δ(t–s)∥∥F

(
s, u

(
s – ρ(s)

))∥
∥

Lr(�) ds

+ M4

∫ t

τ

(t – s)– 1
2 e–δ(t–s)

∥
∥
∥
∥

∫ 0

–∞
G

(
s, z, u(s + z)

)
dz

∥
∥
∥
∥

Lr (�)
ds

+ M5

∫ t

τ

(t – s)– 1
2 e–δ(t–s)∥∥g(x, s)

∥
∥

Lr (�) ds. (94)

Then, by (46), (92), Hold’s inequality and Young’s inequality, we have

λM2

∫ t

τ

(t – s)– 1
2 e–δ(t–s)‖u‖Lr (�) ds

≤ λM2

(∫ t

τ

(t – s)– 1
2 qe–qη(t–s) ds

) 1
q

×
(∫ t

τ

e–r(δ–η)(t–s)‖u‖r
Lr (�)

) 1
r

≤ λM2

q

(∫ t

τ

(t – s)– 1
2 qe–qη(t–s) ds

)

+
λM2

r

(∫ t

τ

e–r(δ–η)(t–s)‖u‖r
Lr (�) ds

)

≤ λM2�(1 – q
2 )

q2– 1
2 qη1– 1

2 q
+

λM2

r

(∫ t

τ

e–r(δ–η)(t–s)‖u‖r
Lr (�) ds

)

≤ λM2�(1 – q
2 )

q2– 1
2 qη1– 1

2 q
+

λM2

r
Q

(
r(δ – η), τ ,φ, g0, t

)

�=
λM2�(1 – q

2 )

q2– 1
2 qη1– 1

2 q
+ R2,W 1,r(�)

(
r(δ – η), τ ,φ, g0, t

)
. (95)

Similarly, combining (2), (3), and (6), we have

M3

∫ t

τ

(t – s)– 1
2 e–δ(t–s)∥∥F

(
x, u

(
s – ρ(s)

))∥
∥

Lr (�) ds

≤ M3

(∫ t

τ

(t – s)– 1
2 qe–qη(t–s) ds

) 1
q

×
(∫ t

τ

e–r(δ–η)(t–s)‖F‖r
Lr (�)

) 1
r

≤ M3

q

(∫ t

τ

(t – s)– 1
2 qe–qη(t–s) ds

)

+
M3

r

(∫ t

τ

e–r(δ–η)(t–s)‖F‖r
Lr (�) ds

)

≤ M3�(1 – q
2 )

q2– 1
2 qη1– 1

2 q
+

M3

r

∫ t

τ

e–r(δ–η)(t–s)(kr
1‖�‖r

Lr(�) + kr
2e–rγρ(t)∥∥u

(
s – ρ(s)

)∥
∥r

Lr(�)

)
ds

≤ M3�(1 – q
2 )

q2– 1
2 qη1– 1

2 q
+

M3kr
1|�|rLr (�)

r2(δ – η)
+

kr
2M3

r
Q

(
r(δ – η), τ ,φ, g0, h, t

)

�=
M3�(1 – r

2 )

q2– 1
2 qη1– 1

2 q
+

M3kr
1|�|rLr (�)

r2(δ – η)
+ R3,W 1,r(�)

(
r(δ – η), τ ,φ, g0, t

)
, (96)
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M4

∫ t

τ

(t – s)– 1
2 e–δ(t–s)

∥
∥
∥
∥

∫ 0

–∞
G

(
s, z, u(s + z)

)
dz

∥
∥
∥
∥

Lr(�)
ds

≤ M4

(∫ t

τ

(t – s)– 1
2 qe–qη(t–s) ds

) 1
q

×
(∫ t

τ

e–r(δ–η)(t–s)
∥
∥
∥
∥

∫ 0

–∞

(
m0(z) + m1(z)

∣
∣u(s + z0)

∣
∣
)

dz
∥
∥
∥
∥

r

Lr (�)

) 1
r

≤ M4�(1 – q
2 )

q2– 1
2 qη1– 1

2 q
+

M4

r

(

mr
0|�|r

∫ t

τ

e–r(δ–η)(t–s) ds + mr
1

∫ t

τ

e–r(δ–η)(t–s)‖us‖r
Cγ ,Lr (�)

ds
)

�=
M4�(1 – q

2 )

q2– 1
2 qη1– 1

2 q
+

2r–1M4mr
0|�|r

r2(δ – η)
+ R4,W 1,r(�)

(
r(δ – η), τ ,φ, g0, t

)
, (97)

and

∫ t

τ

∥
∥eA(t–s)g(x, s)

∥
∥

W 1,r (�) ds

≤ M5

∫ t

τ

(t – s)– 1
2 e–δ(t–s)‖g‖Lr (�) ds

≤ M5

∫ t

τ

(t – s)– 1
2 e–(δ–η)(t–s)e–δ(t–s)‖g‖Lr (�) ds

≤ M5

(∫ t

τ

(t – s)– 1
2 e–qδ(t–s) ds

) 1
q

×
(∫ t

τ

e–r(δ–η)(t–s)‖g‖r
Lr (�) ds

) 1
r

≤ M5

q

(∫ t

τ

(t – s)– 1
2 e–qδ(t–s) ds

)

+
M5

r

(∫ t

–∞
e–r(δ–η)(t–s)‖g‖r

Lr (�) ds
)

�=
M5�(1 – q

2 )

q2– 1
2 qη1– 1

2 q
+ R5,W 1,r(�)

(
r(δ – η), τ , q, g, t

)
. (98)

Similar to the arguments in Lemma 4.1, for each t ∈R, we can conclude that by (91)

sup
z∈[–∞,0]

e–rγ z∥∥u(t + z)
∥
∥

W 1,r (�)

≤ M1e–δ(t–τ )∥∥u(τ )
∥
∥

W 1,r (�) +
(λM2 + M3 + M4 + M5)�(1 – r

2 )

r2– 1
2 rη1– 1

2 r

+ R2,W 1,r(�)
(
r(δ – η), τ ,φ, g0, t

)
+

M3kr
1|�|r

r2(δ – η)

+ R3,W 1,r
(
r(δ – η),φ, τ , g0, t

)
+

2r–1M4mr
0|�|r

r2(δ – η)

+ R4,W 1,r
(
r(δ – η), τ ,φ, g0, t

)
+ R5,W 1,r(�)

(
r(δ – η), τ , q, g, t

)

�= R6,W 1,r(�)
(
r(δ – η), τ , r,φ, g0, t

)
, for each t ∈R. (99)

Hence, we can see that supz∈[–∞,0] e–rγ z‖u(t + z)‖W 1,r (�) is bounded, for each t ∈ R, z ∈
(–∞, 0], as τ → –∞, which implies the process {U(t, τ )} has pullback absorbing sets in
Cγ ,W 1,r(�). �
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7 Existence of the pullback attractors in Cγ ,W1,r (�)

Theorem 7.1 Suppose in additional to the hypotheses in Lemma 6.1 and g(s) ∈ C(R,
W 1,r(�)), F ∈ C1(R × R;R), G ∈ C1(R × R × R;R), ∂F

∂x , ∂G
∂x are both bounded. Then the

processes {U(t, τ )} on Cγ ,W 1,r(�) generated by the solution of Eq. (1) with φ ∈ Cγ ,W 1,r(�) has
the pullback attractors AC

γ ,W 1,r (�)
.

Proof We divide the proof into three steps.
Step 1. Taking gradient operator ∇ to act on (1), we can obtain

∂∇u
∂t

– �∇u + λ∇u =
∂F
∂x

+
∂F
∂u

∇u
(
t – ρ(t), x

)
+

∫ 0

–∞
∂G
∂x

dz

+
∫ 0

–∞
∂G
∂u

∇u(t + z, x) dz + ∇g(t, x). (100)

Multiplying (100) by |∇u|r–2∇u and integrating by parts, we get

1
r

d
dt

∥
∥∇u(t)

∥
∥r

Lr (�) +
4(r – 1)

r2

∫

�

∣
∣∇(∣

∣∇u(t)
∣
∣

r
2
)∣
∣2 dx +

∫

�

λ
∣
∣∇u(t)

∣
∣r dx

=
∫

�

∂F
∂x

∣
∣∇u(t)

∣
∣r–2∇u(t) dx +

∫

�

∂F
∂u

∇u
(
t – ρ(t), x

)|∇u|r–2∇u dx

+
∫

�

∫ 0

–∞
∂G
∂x

∣
∣∇u(t)

∣
∣r–2∇u(t) dz dx +

∫

�

∫ 0

–∞
∂G
∂u

∇u(t + z, x)|∇u|r–2∇u dz dx

+
∫

�

∇g(t, x)
∣
∣∇u(t)

∣
∣r–2∇u(t) dx. (101)

By the same arguments as Lemma 4.1, we also obtain the process {U(t, τ )} generating by
(100) has pullback absorbing sets in Cγ ,W 1,r(�).

Step 2. According to Theorem 15 [10], Eq. (1) has a pullback attractor AC
γ ,H1(�)

. Hence,
by the same arguments as Theorem 5.6, we also obtain the process {U(t, τ )} generating by
Eq. (100) on Cγ ,L2(�) is ω-limit compact.

Step 3. Combining step 1, step 2, and Lemma 6.1, as the proof of Theorem 5.6, we find
that the process {U(t, τ )} generated by Eq. (100) on Cγ ,W 1,r(�) has pullback absorbing sets
and isD pullback ω-limit compact. Thus, we know from Theorem 5.6 the process {U(t, τ )}
generating by Eq. (1) has the pullback attractors AC

γ ,W 1,r (�)
. �
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