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Abstract
In this paper, the time and norm optimal control problems of controlled heat
equations with a weight function are considered. For the time optimal problems, we
study the following two cases: one is for equations with multi-domain control under
null controllability, and the other is for equations under approximate null
controllability. We prove the solvability, and obtain the bang-bang principle of the
time optimal controls for aforementioned both cases. For the norm optimal control
problems, we focus on equations with multi-time and multi-domain control, and
present the solvability of these problems.
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1 Introduction
Let T be a positive number and � be an open bounded domain with smooth boundary
in R

N , N ≥ . Let K ∈ Z
+, {Ei} ≡ {Ei}K

i= be a sequence of Lebesgue measurable subsets
of (, T) and {ωi} ≡ {ωi}K

i= be a sequence of positive Lebesgue measurable subsets of �

with ωi ∩ ωj = ∅, for all i, j ∈ {, , . . . , K} and i �= j. Denote by χEi , χωi the characteristic
function of Ei, ωi, respectively, for each i ∈ {, , . . . , K}. Consider the following controlled
heat equation with a weight function:

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)
∑K

i= χEi (t)χωi (x)ui(x, t), in � × (, T),

y(x, t) = , on ∂� × (, T),

y(x, ) = y(x), in �,

(.)

where ρ ∈ L(�) is a weight function satisfying  < ρ(x) ≤  for a.e. x ∈ �, and  �=
y ∈ L(�) is a given function. We denote the solution to (.) by y(·, ·; {χEiχωi ui}, y).
For simplicity, when Ei = (, T) for all i ∈ {, , . . . , K}, we write y(·, ·; {χωi ui}, y) for
y(·, ·; {χEiχωi ui}, y); furthermore, when K = , write ω, y(·, ·;χωu, y) for ωi, y(·, ·; {χωi ui},
y), respectively.

The weight function ρ in equation (.) is meaningful, which stands for the different
influence of the control function in different location.

As is well known, optimization is one of the most important problems in control theory
and there exist some work on this topic (see, e.g., [–]). Roughly speaking, the goal of op-
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timization is to improve a variable in order to maximize a benefit (or minimize a cost). The
time and norm optimal control problems are important and interesting branches of opti-
mization. For the deterministic systems, the reader can refer [] to obtain recent results
and find open problems. The reader can also refer [–] for controlled heat equations.
For the stochastic ones, the norm optimal control problems were considered in [, ] for
controlled stochastic ordinary differential equations, and in [] for controlled stochastic
heat equations.

In this paper, we shall consider the time and norm optimal control problems of heat
equations with a weight function. In Section , we consider two kind time optimal control
problems: one is for equations with multi-domain control under null controllability, and
the other is for equations under approximate null controllability. We obtain the bang-bang
principle of the time optimal controls for these two problems. In Section , we consider
the norm optimal problems with multi-time and multi-domain control, and we obtain the
solvability of these problems.

2 Time optimal control problems
In this section, we first state two time optimal control problems, and then study the solv-
ability of these problems, obtain the bang-bang property of the time optimal controls.
Throughout this section, for all i ∈ {, , . . . , K}, Ei = (, T), and

ui ∈ U i
ad ≡ {

u ∈ L∞(
, +∞; L(�)

) | ∥∥u(t)
∥
∥

L(�) ≤ Mi a.e. t ∈ (, +∞)
}

. (.)

When K = , for simplicity, we write Uad for U i
ad.

In the following, we consider the following two time optimal control problems subject
to (.):

Problem (TP)

T∗ = inf
{

T | y
(·, T ; {χωi ui}, y

)
= , ui ∈ U i

ad for all i ∈ {, , . . . , K}}.

Problem (TP) For K = ,

T∗
ε = inf

{
T | y(·, T ;χωu, y) ∈ B̄(, ε), u ∈ Uad

}
.

Here and in what follows, we denote by B(u, r) the open ball in L(�) with center u ∈ L(�)
and radius r > , and by B̄(u, r) the closed ball in L(�) with center u ∈ L(�) and radius
r > .

In order to obtain the solvability of Problem (TP), we assume that there exists a constant
M >  such that

Mi ≤ M for all i ∈ {, , . . . , K}. (.)

Notice that the hypothesis (.) is reasonable: for a single control system

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)χω(x)u(x, t), in � × (, +∞),

y(x, t) = , on ∂� × (, +∞),

y(x, ) = y(x), in �,



Liu et al. Boundary Value Problems  (2017) 2017:148 Page 3 of 16

its optimal time

T∗ ≡ inf
{

T | y(·, T ;χωu, y) = , u ∈ Uad
} → 

as M → ∞.
It is obvious that Problem (TP) is related to null controllable problem of (.), while

Problem (TP) is related to approximately controllable problem of (.). It is well known
that, when K =  and ρ ≡ , the system (.) is null controllable for the measurable control
domain ω (see []), even if the characteristic function χω can be relaxed by a measurable
function β ∈ L(�) with  ≤ β ≤  for a.e. x ∈ � and

∫

�
β(x) dx = α|�| (see []). Here

α ∈ (, ) is a given constant and |�| is the Lebesgue measure of �. It is natural that there
exist a positive constant T and a control u ∈ L∞(, T ; L(�)) such that y(x, T ; u, y) =  (see
[, ]).

The following result is related to the solvability of Problem (TP).

Theorem . Let {Mi} be a given positive real number sequence satisfying (.). Then there
exists T∗ > , such that T∗ is the solution to Problem (TP). Moreover, for each i = , , . . . , K ,
there exists a unique u∗

i ∈ L∞(, T∗; L(�)), such that

∥
∥u∗

i
∥
∥

L(�) = Mi for a.e. t ∈ (
, T∗) with Mi ≤ M for all i ∈ {, , . . . , K}, (.)

i.e., the time optimal controls sequence of Problem (TP) has the bang-bang property.

The following lemma is needed in proving Theorem ., which comes from [, ].

Lemma . Let E ⊂ [, T] and ω ⊂ � be two positive measurable sets. Then, for each
y ∈ L(�), there is a bounded control function u(·) ∈ L∞(, T ; L(�)) with

‖u‖L∞(,T ;L(�)) ≤ C‖y‖L(�),

such that the solution to the equation

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)χE(t)χω(x)u(x, t), in � × (, T),

y(x, t) = , on ∂� × (, T),

y(x, ) = y(x), in �,

satisfies y(·, T ; u, y) = . Here C = C(�, T , |E|, |ω|) is a constant.

We are now in the position to prove Theorem ..

Proof of Theorem . Since the proof is long, we separate it into two steps.
Step . For fixed i ∈ {, , . . . , K}, consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)χωi
(x)ui (x, t), in � × (, +∞),

y(x, t) = , on ∂� × (, +∞),

y(x, ) = y(x), in �.
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By Lemma . of [], we know that there exist a control ui ∈ U i
ad and T , such that

y(·, T ,χωi
ui , y) = . we also know that  �= y ∈ L(�) is a given function. Therefore,

 < T∗ ≡ inf
{

T | y
(·, T ; {χωi ui}, y

)
= , ui ∈ U i

ad for all i ∈ {, , . . . , K}}

≤ inf
{

T | y(·, T ;χωi
ui , y) = , ui ∈ U i

ad
}

< ∞.

Hence, there exists a sequence {Tn}, such that {Tn} is a monotone decreasing sequence
with y(·, Tn; {χωi u

n
i }, y) =  and

Tn → T∗ ≡ inf
{

T | y
(·, T ; {χωi ui}, y

)
= , ui ∈ U i

ad for all i ∈ {, , . . . , K}}.

Without loss of generality, we assume that Tn ≤ T∗ +  for all n ∈ N. Then yn ≡
y(·, ·; {χωi u

n
i }, y) is a solution to the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂tyn(x, t) – �yn(x, t) = ρ(x)
∑K

i= χωi (x)un
i (x, t), in � × (, Tn),

yn(x, t) = , on ∂� × (, Tn),

yn(x, ) = y(x), yn(x, Tn) = , in �.

Now, denote

ũn
i (x, t) =

⎧
⎨

⎩

un
i (x, t), (x, t) ∈ � × (, Tn),

, (x, t) ∈ � × [Tn, +∞).

Then

ỹn(x, t) =

⎧
⎨

⎩

yn(x, t), (x, t) ∈ � × (, Tn),

, (x, t) ∈ � × [Tn, +∞),

solves the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t ỹn(x, t) – �ỹn(x, t) = ρ(x)
∑K

i= χωi (x)ũn
i (x, t), in � × (, +∞),

ỹn(x, t) = , on ∂� × (, +∞),

ỹn(x, ) = y(x), in �,

ỹn(x, t) = , in � × [Tn, +∞).

Moreover, by the definition of ỹn, it is easy to see that ỹn solves the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t ỹn(x, t) – �ỹn(x, t) = ρ(x)
∑K

i= χωi (x)ũn
i (x, t), in � × (, T∗ + ),

ỹn(x, t) = , on ∂� × (, T∗ + ),

ỹn(x, ) = y(x), in �,

ỹn(x, t) = , in � × [Tn, T∗ + ).
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Note that ‖ũn
 ‖L(�) ≤ M for all n ∈N. Then there exist a subsequence {ũn

 } ⊂ L∞(, T∗ +
; L(�)) of {ũn

 } and ũ
 ∈ L∞(, T∗ + ; L(�)) such that

ũn
 → ũ

 weakly∗ in L∞(
, T∗ + ; L(�)

)
as n → ∞.

Similarly, since ‖un
 ‖L(�) ≤ M for all n ∈N, there exist a subsequence {ũn

 } of {ũn
 } and

ũ
 ∈ L∞(, T∗ + ; L(�)) such that

ũn
 → ũ

 weakly∗ in L∞(
, T∗ + ; L(�)

)
as n → ∞.

By inductive argument, for each i ∈ {, , . . . , K}, there exist a subsequence {ũni
i } of {ũni–

i }
and ũ

i ∈ L∞(, T∗ + ; L(�)) such that

ũni
i → ũ

i weakly∗ in L∞(
, T∗ + ; L(�)

)
as ni → ∞.

By the diagram argument, for all i ∈ {, , . . . , K}, we can abstract a subsequence {ũnn
i } of

{ũn
i } such that

ũnn
i → ũ

i weakly∗ in L∞(
, T∗ + ; L(�)

)
as n → ∞.

Since ωi ∩ ωj = ∅ for all i, j ∈ {, , . . . , K} with i �= j, one can get

ρ(x)
K∑

i=

χωi ũ
nn
i → ρ(x)

K∑

i=

χωi ũ

i weakly∗ in L∞(

, T∗ + ; L(�)
)

as n → ∞.

On the other hand, ỹnn is the solution to the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t ỹnn (x, t) – �ỹnn (x, t) = ρ(x)
∑K

i= χωi (x)ũnn
i (x, t), in � × (, T∗ + ),

ỹnn (x, t) = , on ∂� × (, T∗ + ),

ỹnn (x, ) = y(x), in �,

ỹnn (x, t) = , in � × [Tnn , T∗ + ).

Then there exist a subsequence of {ỹnn}, still so denoted, and ỹ such that

ỹnn → ỹ weakly in L(� × (
, T∗ + 

))
as n → ∞

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t ỹ(x, t) – �ỹ(x, t) = ρ(x)
∑K

i= χωi (x)ũ
i (x, t), in � × (, T∗ + ),

ỹ(x, t) = , on ∂� × (, T∗ + ),

ỹ(x, ) = y(x), in �.

Note that ỹnn =  in � × [Tnn , T∗ + ). Since for n ∈N, one has ỹnn =  in � × [Tnn , T∗ + ),

ỹnn → ỹ in L(� × (
, T∗ + 

))
as n → ∞.
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We get ỹ =  in �× [Tnn , T∗ + ). We get ỹ =  in [T∗, T∗ + ) since Tnn → T∗ as n → ∞.
Take

u
i = ũ

i |�×(,T∗), and y = ỹ|�×(,T∗).

By the fact that ỹ ∈ C((, T]; L(�)), y is the solution to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)
∑K

i= χωi (x)u
i (x, t), in � × (, T∗),

y(x, t) = , on ∂� × (, T∗),

y(x, ) = y(x), y(x, T∗) = , in �,

which implies that {u
i } are the desired controls respect to the optimal time T∗.

Step . In the following, we shall show that the time optimal control of Problem (TP)
has the bang-bang property. Otherwise, we suppose that there exist i ∈ {, , . . . , K} and
a subset E ⊂ [α, T∗ – α] with positive measure for some α >  and a positive number ε,
such that

u∗
i ∈ U i

ad and Mi –
∥
∥u∗

i

∥
∥

L(�) ≥ ε, for each t in the set E,

where u∗
i is the time optimal control respect to T∗. It is obvious that the solution to (.)

satisfies

y
(·, T∗;

{
χωi u

∗
i
}

, y
)

= ,

and, for each t ∈ E, B(u∗
i (t), ε

 ) ⊂ B(, Mi ).
We denote by e�t the semigroup generated by � with the Dirichlet boundary condition.

Set

hδ =
∫ δ


e�(δ–σ )ρ

K∑

i=

χωi u
∗
i (σ ) dσ +

(
e�δ – I

)
y. (.)

Considering the following system:

⎧
⎪⎪⎨

⎪⎪⎩

zδ
t (x, t) – �zδ(x, t) = ρ(x)χE

δ
(t)χωi

(x)wδ(x, t), in � × (, T∗ – δ),

z(x, t) = , on ∂� × (, T∗ – δ),

z(x, ) = –hδ(x), in �,

(.)

where E
δ is the set {t | t + δ ∈ E}. By Lemma ., there exist positive constants δ and

L = L(�, T , |E|, |ωi |), such that, for each δ with  < δ ≤ δ, there is a control wδ in the
space L∞(, T∗ – δ; L(�)) with the estimate

‖wδ‖L∞(,T∗–δ;L(�)) ≤ L‖hδ‖L(�),

and the solution to (.) satisfies

zδ
(·, T∗ – δ;ωδ , –hδ

)
= . (.)
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On the other hand, by (.), there exists a positive number δ such that, for each positive
number δ with δ ≤ δ, one has

‖hδ‖L(�) ≤ ε

L
.

Therefore, for each δ ≤ δ ≡ min{δ, δ}, there exists a control wδ satisfying

‖wδ‖L∞(,T∗–δ;L(�)) ≤ ε


, (.)

and the corresponding solution to (.) satisfies (.).
Set

vi(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u∗
i (x, δ + t) + wδ(x, t), for i = i and (x, t) ∈ � × E

δ ,

u∗
i (x, δ + t), for i = i and (x, t) ∈ � × ((, T∗ – δ) – E

δ ),

u∗
i (x, δ + t), for i �= i and (x, t) ∈ � × (, T∗ – δ),

, otherwise.

It is obvious that vi ∈ U i
ad for all i ∈ {, , . . . , K}. Consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

yt(x, t) – �y(x, t) = ρ(x)
∑K

i= χωi (x)vi(x, t), in � × (, +∞),

y(x, t) = , on ∂� × (, +∞),

y(x, ) = y(x), in �.

(.)

For any  < δ < min{T∗
 , δ}, it is easy to check that the solution to above equation satisfies

y
(·, T∗ – δ; {vi}, y

)
= e�(T∗–δ)y + ρ(x)

K∑

i=

∫ T∗–δ


e�(T∗–δ–σ )χωi vi(σ ) dσ

= e�(T∗–δ)y +
K∑

i=

∫ T∗–δ


e�(T∗–δ–σ )ρ(x)χωi u

∗
i (δ + σ ) dσ

+
∫ T∗–δ


e�(T∗–δ–σ )ρ(x)χE

δ
χωi

wδ(σ ) dσ

= e�(T∗–δ)y +
K∑

i=

∫ T∗

δ

e�(T∗–σ )ρ(x)χωi u
∗
i (σ ) dσ + e�(T∗–δ)hδ

= e�(T∗–δ)y +
K∑

i=

∫ T∗

δ

e�(T∗–σ )ρ(x)χωi u
∗
i (σ ) dσ

+
∫ δ


e�(T∗–σ )ρ(x)

K∑

i=

χωi u
∗
i (σ ) dσ + e�T∗

y – e�(T∗–δ)y

= e�T∗
y +

∫ T∗


e�(T∗–σ )ρ(x)

K∑

i=

χωi u
∗
i (σ ) dσ

= , (.)
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which shows that {vi} are the desired controls such that y(·, T∗ – δ; {χωi vi}, y) = . It con-
tradicts the definition of T∗ and we have proved the theorem. �

Remark . There are some relations between the optimal control problem of (.) and
shape design problem. For more about shape design problem see [, –].

Before stating the results on Problem (TP), we define the following reachable set:

R(T) =
{

y(·, T ;χωu, y) | u ∈ Uad
}

(.)

for each T ∈ (, +∞).

Theorem . For any given positive constant ε, Problem (TP) has a solution T∗
ε , and

R(T∗
ε ) ∩ B̄(, ε) has only one point belonging to the boundary of B(, ε). Moreover, the cor-

responding time optimal control u∗
ε is unique and has the bang-bang property.

Proof Since the proof is long, we separate it into the following several steps.
Step . We shall show that there exists at least one time optimal control, i.e., there exists

at least one u∗ ∈ Uad such that y(·, T∗
ε ; u∗, y) ∈ B̄(, ε).

Let {Tn} be a monotone decreasing sequence such that Tn → T∗
ε as n → +∞, then there

exists a sequence {un} ⊂ Uad such that y(·, Tn;χωun, y) ∈ B̄(, ε). Set

ũn(t) =

⎧
⎨

⎩

un(t), t ∈ (, Tn),

, t ∈ [Tn, T).

Since M ∈ L∞(, T; L(�)), {ũn} is a bounded sequence in L∞(, T; L(�)). Then there
exist ũ∗ ∈ L∞(, T; L(�)) and a subsequence of {un}, still so denoted, such that un → u∗

weakly∗ in L∞(, T; L(�)). Moreover,

ρχωũn → ρχωũ∗ weakly∗ in L∞(
, T; L(�)

)
as n → ∞.

Therefore the solution yn(·, ·;χωũn, y) to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂tyn(x, t) – �yn(x, t) = ρ(x)χω(x)ũn(x, t), in � × (, T),

yn(x, t) = , on ∂� × (, T),

yn(x, ) = y(x), in �,

satisfies yn(·, t;χωũn, y) ∈ B̄(, ε) for t ≥ Tn. Denote by y∗ the solution to the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ty∗(x, t) – �y∗(x, t) = ρ(x)χω(x)ũ∗(x, t), in � × (, T),

y∗(x, t) = , on ∂� × (, T),

y∗(x, ) = y(x), in �.



Liu et al. Boundary Value Problems  (2017) 2017:148 Page 9 of 16

Then

yn → y∗ weakly in L(, T ; H
(�)

) ∩ H(, T ; L(�)
)
,

strongly in C
(
[, T]; L(�)

)
as n → ∞,

for any δ > . Since yn(·, t;χωũn, y) ∈ B̄(, ε) for t ≥ Tn, y∗(·, t;χωũ∗, y) ∈ B̄(, ε) for all
t ≥ Tn and n ∈ N. Hence y∗(·, T∗

ε ;χωũ∗, y) ∈ B̄(, ε). Set

u∗(t) = ũ∗(t), t ∈ [
, T∗

ε

]
.

Then y∗ satisfies the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ty∗(x, t) – �y∗(x, t) = ρ(x)χω(x)u∗(x, t), in � × (, T),

y∗(x, t) = , on ∂� × (, T),

y∗(x, ) = y(x), in �,

and y∗(·, T∗
ε ;χωu∗, y) ∈ B̄(, ε).

Claim: ‖u∗(t)‖L(�) ≤ M(t) for a.e. t ∈ [, T∗
ε ]. Indeed, let {ζk}k∈N be the countable density

subset of L(�). Denote by L the Lebesgue point of 〈un(t), ζk〉, t ∈ [, T∗
ε ], where 〈·, ·〉 is the

inner product of un(t) and ζk in L(�). Since 〈un(t), ζk〉, 〈u∗(t), ζk〉 ∈ L∞(, T∗
ε ), for each

t ∈ E ≡
∞⋂

n,k=

L
(〈un, ζk〉

) ∩
∞⋂

k=

L
(〈

u∗, ζk
〉)

,

we have

lim
δ→


δ

∫ t+δ

t–δ

〈
un(t), ζk

〉
dt =

〈
un(t), ζk

〉
,

lim
δ→


δ

∫ t+δ

t–δ

〈
u∗(t), ζk

〉
dt =

〈
u∗(t), ζk

〉
.

By virtue of


δ

∫ t+δ

t–δ

〈
un(t), ζk

〉
dt → 

δ

∫ t+δ

t–δ

〈
u∗(t), ζk

〉
dt as n → ∞,

un → u∗ weakly∗ in L∞(, T∗
ε ; L(�)), and the arbitrary of δ > , we get

〈
un(t), ζk

〉
= lim

δ→


δ

∫ t+δ

t–δ

〈
un(t), ζk

〉
dt →

lim
δ→


δ

∫ t+δ

t–δ

〈
u∗(t), ζk

〉
dt =

〈
u∗(t), ζk

〉
as n → ∞.

Since {ζk} is dense in L(�), we have

〈
un(t), ζ

〉 → 〈
u∗(t), ζ

〉
as n → ∞
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for each ζ ∈ L(�). That implies un(t) → u∗(t) weakly in L(�), and hence ‖u∗(t)‖L(�) ≤
lim infn→∞ ‖un(t)‖L(�) ≤ M. Applying

|E| = T∗
ε ,

we obtain ‖u∗(t)‖L(�) ≤ M for a.e. t ∈ [, T∗
ε ]. That proves the claim.

Step . We show that R(T∗
ε )∩ B̄(, ε) has only one point. If so, it is obvious that this point

belongs to the boundary of B(, ε).
In Step  we getR(T∗

ε )∩ B̄(, ε) �= ∅. By contradiction, we assume thatR(T∗
ε )∩ B̄(, ε) has

at least two points, i.e., there exist y ≡ y(·, T∗
ε ;χωu∗

 , y), y ≡ y(·, T∗
ε ;χωu∗

, y) ∈ R(T∗
ε ) ∩

B̄(, ε) with y �= y. It is obvious that u∗
 �= u∗

 in Uad. Define

û ≡ u∗
 + u∗




.

Since û ∈ Uad, and B(, ε) is strongly convex in L(�), we get ŷ ≡ y(·, T∗
ε ;χωû, y) = 

 y + 
 y

is an inner point of B(, ε), i.e., there exists γ >  such that B(ŷ,γ ) ⊂ B(, ε).
For any ξ > , define

hξ ≡ ŷ – y
(·, T∗

ε – ξ ;χωû, y
)
.

It is easy to check that

hξ = e�(T∗
ε –ξ )[e�ξ – I

]
y +

∫ T∗
ε –ξ



[
e�ξ – I

]
e�(T∗

ε –ξ–σ )ρχωû(σ ) dσ

+
∫ T∗

ε

T∗
ε –ξ

e�(T∗
ε –σ )ρχωû(σ ) dσ .

Hence, ξ can be chosen small enough such that ‖hξ‖L(�) ≤ γ . Therefore, we can get
y(·, T∗

ε – ξ ;χωû, y) ∈ B̄(, ε). This contradicts the optimal time T∗
ε . Subsequently, the set

R(T∗
ε ) ∩ B̄(, ε) has only one point, and this point belongs to the boundary of B(, ε).

Step . The time optimal control u∗ has the bang-bang property.
Since R(T∗

ε ) ∩ B̄(, ε) has only one point (denote this point by y∗ = y(·, T∗
ε ;χωu∗, y)),

and R(T∗
ε ) and B̄(, ε) are two convex sets, by hyperplane separation theorem, there exists

η∗ ∈ L(�) such that

sup
y∈R(T∗

ε )

〈
y,η∗〉 ≤ inf

z∈B̄(,ε)

〈
z,η∗〉 ≤ 〈

y∗,η∗〉. (.)

Notice that y ∈R(T∗
ε ) can be written by

y
(·, T∗

ε ;χωu, y
)

= e�T∗
ε y +

∫ T∗
ε


e�(T∗

ε –σ )ρχωu(σ ) dσ .

Then (.) can be written as

sup
ū∈U

∫ T∗
ε



〈
e�(T∗

ε –σ )ρχωMū(σ ),η∗〉dσ ≤
∫ T∗

ε



〈
e�(T∗

ε –σ )ρχωMū∗(σ ),η∗〉dσ .
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Here

ū∗ ∈ U ≡ {
ū ∈ L∞(

, T∗
ε ; L(�)

) | ∥∥ū(t)
∥
∥

L(�) ≤  for a.e. t ∈ [
, T∗

ε

]}
,

and

u∗(t) = Mū∗(t) for all t ∈ [
, T∗

ε

]
. (.)

Hence, we have

sup
ū∈U

∫ T∗
ε



〈
ū(σ ), e�(T∗

ε –σ )ρχωMη∗〉dσ ≤
∫ T∗

ε



〈
ū∗(σ ), e�(T∗

ε –σ )ρχωMη∗〉dσ .

For given t ∈ E, choosing

ū(t) =

⎧
⎨

⎩

ū∗(t), for t ∈ (, T∗
ε ) \ (t – λ, t + λ),

ζ , for t ∈ (t – λ, t + λ) ⊂ (, T∗
ε ),

where ζ ∈ L(�), we get

sup
ζ∈L(�)

〈
ζ , e�(T∗

ε –t)ρχωMη∗〉 ≤ 〈
ū∗(t), e�(T∗

ε –t)ρχωMη∗〉,

i.e.,

∥
∥e�(T∗

ε –t)ρχωη∗∥∥
L(�) = sup

ζ∈L(�)

〈
ζ , e�(T∗

ε –t)ρχωη∗〉

≤ 〈
ū∗(t), e�(T∗

ε –t)ρχωη∗〉

≤ ∥
∥ū∗(t)

∥
∥

L(�)

∥
∥e�(T∗

ε –t)ρχωη∗∥∥
L(�).

This implies that

∥
∥ū∗(t)

∥
∥

L(�) =  (.)

by ū∗ ∈ U. Equation (.), together with (.) and |E| = T∗
ε , yields

∥
∥u∗(t)

∥
∥

L(�) = M for a.e. t ∈ [
, T∗

ε

]
.

From the above, we get the time optimal control’s bang-bang property. That completes the
proof. �

3 Norm optimal control problems with multi-time and multi-domain controls
In this section, let T ∈ R

+, K ∈ Z
+ be given finite constants, and �K be time partition of

[, T] defined by

�K :  = t ≤ t ≤ t ≤ · · · ≤ tK = T . (.)
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For any i ∈ {, , . . . , K}, set Ii = (ti–, ti]. Taking Ei = Ii, we can rewrite (.) as

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)
∑K

i= χIi (t)χωi (x)ui(x, t), in � × (, T),

y(x, t) = , on ∂� × (, T),

y(x, ) = y(x), in �.

(.)

It is obvious that the system is null controllable (see [, ]). For any given partition �K ,
by standard minimizing sequence method, there exists a solution to the following norm
optimal control problem:

N(�K ) ≡ inf

{ K∑

i=

‖ρχIiχωi ui‖L∞(,T ;L(�))

∣
∣
∣
∣ y

(·, T ; {χIiχωi ui}, y
)

= ,

{ui}K
i= ⊂ L∞(

, T ; L(�)
)
}

. (.)

We are interested in the partition’s existence of the following norm optimal control prob-
lem:

Problem (NP)

N∗
K ≡ inf

{
N(�K ) | �K is defined by partition (.)

}
.

We have the following solvability result on Problem (NP).

Theorem . For any K > , there exists at least one solution to Problem (NP).

Proof It is obviously that N∗
K < ∞. Let {�n

K } be the partition sequence such that

N
(
�n

K
) → N∗

K as n → ∞.

Then there exists a control sequence {un
 , un

, . . . , un
K }∞n=, such that

⎧
⎪⎪⎨

⎪⎪⎩

∂tyn(x, t) – �yn(x, t) = ρ(x)
∑K

i= χIn
i

(t)χωi (x)un
i (x, t), in � × (, T),

yn(x, t) = , on ∂� × (, T),

yn(x, ) = y(x), yn(x, T) = , in �,

with
∥
∥
∥
∥
∥
ρ

K∑

i=

χIn
i
χωi u

n
i

∥
∥
∥
∥
∥

L∞(,T ;L(�))

= N
(
�n

K
)

for all n ∈N.

Since {tn
 } ⊂ [, T] is a bounded sequence, there exist a subsequence of {tn

 }, still so de-
noted, and t

 such that tn
 → t

 as n → ∞. Also, there exist a subsequence of {tn
 }, still

so denoted, and t
 satisfying tn

 → t
 as n → ∞. Moreover, since tn

 ≤ tn
 for all n ∈ N, we

have t
 ≤ t

 . By the same line, we can get {t
i }K

i= satisfying

 = t
 ≤ t

 ≤ t
 ≤ · · · ≤ t

K = T . (.)
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Denote the above partition by �
K . We also can define I

i for each i ∈ {, , . . . , K}. Naturally,
one has

∣
∣In

i �I
i
∣
∣ →  as n → ∞. (.)

Here and in what follows, we define In
i �I

i ≡ (In
i – I

i ) ∪ (I
i – In

i ) for all i, n.
On the other hand, since {un

 , un
, . . . , un

K }∞n= is bounded, {un
i }∞n= is also a bounded se-

quence in L∞(, T ; L(�)) for all i = , . . . , K . Then, for each i = , . . . , K , there exist a sub-
sequence of {un

i }∞n=, still so denoted, and u
i ∈ L∞(, T ; L(�)) such that

un
i → u

i weakly∗ in L∞(
, T ; L(�)

)
as n → ∞. (.)

For each v ∈ L(, T ; L(�)), we have

∫ T



∫

�

ρ
(
χIn

i
χωi u

n
i – χI

i
χωi u


i
)
v dx dt

=
∫ T



∫

�

ρ
(
χIn

i
χωi u

n
i – χI

i
χωi u

n
i
)
v dx dt

+
∫ T



∫

�

ρ
(
χI

i
χωi u

n
i – χI

i
χωi u


i
)
v dx dt

=
∫ T



∫

�

ρ(χIn
i

– χI
i

)χωi u
n
i v dx dt

+
∫ T



∫

�

ρ
(
un

i – u
i
)
χI

i
χωi v dx dt. (.)

By (.), we get

∫ T



∫

�

(
un

i – u
i
)
ρχI

i
χωi v dx dt →  as n → ∞. (.)

By (.) and the absolutely continuity of v ∈ L(, T ; L(�)), we have

∣
∣
∣
∣

∫ T



∫

�

ρ(χIn
i

– χI
i

)χωi u
n
i v dx dt

∣
∣
∣
∣

≤ ∥
∥un

i
∥
∥

L∞(,T ;L(�))

∥
∥ρ(χIn

i
– χI

i
)χωi v

∥
∥

L(,T ;L(�))

=
∥
∥un

i
∥
∥

L∞(,T ;L(�))

∫

In
i �I

i

(∫

�

|ρχωi v| dx
) 


dt

≤ ∥
∥un

i
∥
∥

L∞(,T ;L(�))

∫

In
i �I

i

(∫

�

|v| dx
) 


dt

→  as n → ∞. (.)

Equation (.), together with (.) and (.), yields

∫ T



∫

�

ρ
(
χIn

i
χωi u

n
i – χI

i
χωi u


i
)
v dx dt →  as n → ∞.
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That implies, for all i ∈ {, . . . , K},

ρχIn
i
χωi u

n
i → ρχI

i
χωi u


i weakly∗ in L∞(

, T ; L(�)
)

as n → ∞.

Therefore, one gets

ρ

K∑

i=

χIn
i
χωi u

n
i → ρ

K∑

i=

χI
i
χωi u


i weakly∗ in L∞(

, T ; L(�)
)

as n → ∞ (.)

and

∥
∥
∥
∥
∥
ρ

K∑

i=

χI
i
χωi u


i

∥
∥
∥
∥
∥

L∞(,T ;L(�))

≤ lim inf
n→∞

∥
∥
∥
∥
∥
ρ

K∑

i=

χIn
i
χωi u

n
i

∥
∥
∥
∥
∥

L∞(,T ;L(�))

= N∗
K . (.)

Let y be the solution to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)
∑K

i= χI
i

(t)χωi (x)u
i (x, t), in � × (, T),

y(x, t) = , on ∂� × (, T),

y(x, ) = y(x), in �.

(.)

By (.) we get

yn → y weakly in L(, T ; H
(�)

) ∩ H(, T ; L(�)
)
,

strongly in C
(
[δ, T]; L(�)

)
,

for every δ > . Since yn(T) = , immediately we have

y(T) = . (.)

Combining (.), (.) and (.), we complete the proof. �

Now, let us consider an alteration of system (.):

⎧
⎪⎪⎨

⎪⎪⎩

∂ty(x, t) – �y(x, t) = ρ(x)
∑K

i= χIi (t)χωσ (i) (x)ui(x, t), in � × (, T),

y(x, t) = , on ∂� × (, T),

y(x, ) = y(x), in �,

where

σ : {, . . . , K} → {, . . . , K} is a map. (.)
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By the aforementioned discussion, this system is null controllable, and for given parti-
tion �K and map σ , there exists at least a solution to the following norm optimal control
problem:

N(σ ) ≡ inf

{ K∑

i=

‖ρχIiχωσ (i) ui‖L∞(,T ;L(�))

∣
∣
∣
∣ y

(·, T ; {χIiχωσ (i) ui}, y
)

= ,

{ui}K
i= ⊂ L∞(

, T ; L(�)
)
}

.

Let us consider the solvability of the following norm optimal control problem:

N ≡ inf
{

N(σ ) | σ is defined by (.)
}

. (.)

Since the number of σ is finite, it is obvious that there exists σ ∗ satisfying N∗ = N(σ ∗).
Hence, we obtain the following result.

Proposition . Let {Ii}K
i=, {ωk}K

k= be defined as before. Then there exists at least a solution
to the problem (.).

Acknowledgements
The authors are grateful to the anonymous referees for helpful comments and suggestions, which greatly improved the
presentation of this paper.

Competing interests
The authors declare that there are no competing interests regarding the publication of this article.

Authors’ contributions
All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 April 2017 Accepted: 22 September 2017

References
1. Fattorini, HO: Infinite-Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and Its

Applications, vol. 62. Cambridge University Press, Cambridge (1999)
2. Lü, Q, Zhang, X: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution

Equations in Infinite Dimensions. SpringerBriefs in Mathematics. Springer, Cham (2014)
3. Yong, J, Zhou, XY: Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics (New

York), vol. 43. Springer, New York (1999)
4. Fattorini, HO: Time and norm optimal controls: a survey of recent results and open problems. Acta Math. Sci. Ser. B

Engl. Ed. 31, 2203-2218 (2011)
5. Apraiz, J, Escauriaza, L, Wang, G, Zhang, C: Observability inequalities and measurable sets. J. Eur. Math. Soc. 16,

2433-2475 (2014)
6. Guo, B-Z, Xu, Y, Yang, D-H: Optimal actuator location of minimum norm controls for heat equation with general

controlled domain. J. Differ. Equ. 261, 3588-3614 (2016)
7. Guo, B-Z, Yang, D-H, Zhang, L: On optimal location of diffusion and related optimal control for null controllable heat

equation. J. Math. Anal. Appl. 433, 1333-1349 (2016)
8. Guo, B-Z, Yang, D-H: Optimal actuator location for time and norm optimal control of null controllable heat equation.

Math. Control Signals Syst. 27, 23-48 (2015)
9. Wang, G: L∞-null controllability for the heat equation and its consequences for the time optimal control problem.

SIAM J. Control Optim. 47, 1701-1720 (2008)
10. Wang, G, Xu, Y, Zhang, Y: Attainable subspaces and the bang-bang property of time optimal controls for heat

equations. SIAM J. Control Optim. 53, 592-621 (2015)
11. Wang, Y, Yang, D-H, Yong, J, Yu, Z: Exact controllability of linear stochastic differential equations and related problems.

Math. Control Relat. Fields 7(2), 305-345 (2017)
12. Wang, Y, Zhang, C: The norm optimal control problem for stochastic linear control systems. ESAIM Control Optim.

Calc. Var. 21, 399-413 (2015)



Liu et al. Boundary Value Problems  (2017) 2017:148 Page 16 of 16

13. Yang, D-H, Zhong, J: Observability inequality of backward stochastic heat equations for measurable sets and its
applications. SIAM J. Control Optim. 54, 1157-1175 (2016)

14. Guo, B-Z, Yang, D-H: On convergence of boundary Hausdorff measure and application to a boundary shape
optimization problem. SIAM J. Control Optim. 51, 253-273 (2013)

15. Guo, B-Z, Yang, D-H: Some compact classes of open sets under Hausdorff distance and application to shape
optimization. SIAM J. Control Optim. 50, 222-242 (2012)

16. Yang, D-H: Shape optimization of stationary Navier-Stokes equation overclasses of convex domains. Nonlinear Anal.
71, 6202-6211 (2009)

17. Zuazua, E: Controllability of partial differential equations. Manuscript (2006)


	Some optimal control problems of heat equations with weighted controls
	Abstract
	MSC
	Keywords

	Introduction
	Time optimal control problems
	Norm optimal control problems with multi-time and multi-domain controls
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


