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Abstract
We investigate the existence of multiple solutions for perturbed nonlocal
fourth-order equations of Kirchhoff type under Navier boundary conditions. We give
some new criteria for guaranteeing that the perturbed fourth-order equations of
Kirchhoff type have at least three weak solutions by using a variational method and
some critical point theorems due to Ricceri. We extend and improve some recent
results. Finally, by presenting two examples, we ensure the applicability of our results.
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1 Introduction
In this paper we study the following perturbed nonlocal fourth-order problem of Kirchhoff
type under Navier boundary condition:

{
T(u) = λf (x, u) + μg(x, u), in �,
u = �u = , on ∂�,

(Pf ,g
λ,μ)

where � ⊂R
N (N ≥ ) is a bounded smooth domain,

T(u) = �
(|�u|p–�u

)
–

[
M

(∫
�

|∇u|p dx
)]p–

�pu + �|u|p–u,

in which p > max{, N
 }, � >  and M : [, +∞[→ R is a continuous function such that

there are two positive constants m and m with m ≤ M(t) ≤ m for all t ≥ , and λ > ,
μ ≥  and f , g : � ×R →R are two L-Carathéodory functions.

The problem (Pf ,g
λ,μ) is related to the stationary problem of a model introduced by Kirch-

hoff []. More precisely, Kirchhoff introduced a model given by the following equation:

ρ
∂u
∂t –

(
ρ

h
+

E
L

∫ L



∣∣∣∣∂u
∂x

∣∣∣∣


dx
)

∂u
∂x = , (.)
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where ρ is the mass density, ρ is the initial tension, h is the area of the cross section,
E is the Young modulus of the material and L is the length of the string, which extends
the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s
model takes into account the length changes of the string produced by transverse vibra-
tions. Nonlinear Kirchhoff model can also be used for describing the dynamics of an axi-
ally moving string. In recent years, axially moving string-like continua such as wires, belts,
chains and band-saws, have been subjects of the study of researchers (see []).

The problem (.) was developed into the form

utt – M
(∫

�

|∇u| dx
)

�u = f (x, u), (.)

where M(s) = as + b, a, b > . After that, many authors studied the following nonlocal el-
liptic boundary value problem:

–M
(∫

�

|∇u| dx
)

�u = f (x, u). (.)

Problems like (.) can be used for modeling several physical and biological systems where
u describes a process which depends on the average of itself, such as the population den-
sity, see []. There are a number of papers concerned with Kirchhoff-type boundary value
problem, for instance, see [–]. For example, in an interesting paper [], Ricceri es-
tablished the existence of at least three weak solutions to a class of Kirchhoff-type dou-
bly eigenvalue boundary value problems. In [] employing a three critical point theorem
due to Ricceri, the authors discussed the existence of at least three weak solutions for
Kirchhoff-type problems involving two parameters. In [] Molica Bisci and Rădulescu,
employing mountain pass results, obtained the existence of solutions to nonlocal equa-
tions involving the p-Laplacian. More precisely, they proved the existence of at least one
nontrivial weak solution and under additional assumptions, the existence of infinitely
many weak solutions. In [], based on an abstract linking theorem for smooth functionals,
they also established a multiplicity result on the existence of weak solutions for a nonlocal
Neumann problem driven by a nonhomogeneous elliptic differential operator. The exis-
tence and multiplicity of stationary problems of Kirchhoff type were also studied in some
recent papers via variational methods like the symmetric mountain pass theorem in []
and via a three critical point theorem in []. Moreover, in [, ] some evolutionary
higher order Kirchhoff problems, mainly focusing on the qualitative properties of solu-
tions, were treated.

We refer to [–] for related nonlocal problems concerning the variational analysis of
solutions of some classes of boundary value problems.

Fourth-order boundary value problems which describe the deformations of an elastic
beam in an equilibrium state whose both ends are simply supported have been extensively
studied in the literature. Recently, the existence of solutions to fourth-orderboundary
value problems have been studied in many papers, and we refer the reader to the pa-
pers [–] and the references therein. For example, Liu et al. in [], employing varia-
tional methods, studied the existence and multiplicity of nontrivial solutions for fourth-
order elliptic equations. In [, ], based on variational methods and critical point the-
ory, the existence of multiple solutions for (p, . . . , pn)-biharmonic systems was discussed.
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Molica Bisci and Repovs̆ in [], exploiting variational methods, investigated the existence
of multiple weak solutions for a class of elliptic Navier boundary problems involving the
p-biharmonic operator and presented a concrete example of an application.

The problem (Pf ,g
λ,μ) models the bending equilibrium of simply supported extensible

beams on nonlinear foundations. The function f represents the force that the founda-
tion exerts on the beam and M(

∫
�

|∇u|p dx) models the effects of the small changes in
the length of the beam. Recently, many researchers have paid their attention to fourth-
order Kirchhoff-type problems; we refer the reader to [–] and the references therein.
In [], using the mountain pass theorem, Wang and An established the existence and
multiplicity of solutions for the following fourth-order nonlocal elliptic problem:

{
�u – M(

∫
�

|∇u| dx)�u = λf (x, u) in �,
u = �u =  on ∂�.

In particular, in [] using variational methods and critical point theory, multiplicity re-
sults of nontrivial and nonnegative solutions for the parametric version of the problem
(Pf ,g

λ,μ) was established. In [], employing two three critical point theorems, the existence
of three distinct weak solutions for the problem (Pf ,g

λ,μ) was ensured.
Inspired by the above facts, in the present paper we are interested in looking for the

existence of at least three weak solutions for the problem (Pf ,g
λ,μ) for appropriate values of

the parameters λ and μ belonging to real intervals. Employing variational methods and
two three critical point theorems due to Ricceri [, ], we establish two existence results
for the problem (Pf ,g

λ,μ). Two examples are presented to illustrate our main results.
For more details on the subject, we also refer the reader to [, ].

2 Preliminaries
Our main tools are two three critical point theorems obtained by Ricceri [, ]. They
are as follows.

If X is a real Banach space denoted by WX , the class of all functionals � : X → R pos-
sesses the following property:

If {un} is a sequence in X converging weakly to u ∈ X and lim infn→∞ �(un) ≤ �(u), then
{un} has a subsequence converging strongly to u.

Remark . If X is uniformly convex and g : [, +∞) → R is a continuous and strictly
increasing function, then, by a classical result, the functional u → g(‖u‖) belongs to the
class WX .

Theorem . ([]) Let X be a separable and reflexive real Banach space; let � : X → R

be a coercive, sequentially weakly lower semicontinuous C-functional, belonging to WX ,
bounded on each bounded subset of X and whose derivative admits a continuous inverse
on X∗; J : X → R be a C-functional with compact derivative. Assume that � has a strict
local minimum u with �(u) = J(u) = . Finally, setting

ρ = max

{
, lim sup

‖u‖→+∞
J(u)
�(u)

, lim sup
u→u

J(u)
�(u)

}
,

σ = sup
u∈�–(,+∞)

J(u)
�(u)

,
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assume that ρ < σ . Then, for each compact interval [c, d] ⊂ ( 
σ

, 
ρ

) (with the conventions

 = ∞, 

∞ = ), there exists R >  with the following property: for every λ ∈ [c, d] and every
C-functional 
 : X → R with compact derivative, there exists γ >  such that, for each
μ ∈ [,γ ],

�′(u) = λJ ′(u) + μ
 ′(u)

has at least three solutions in X whose norms are less than R.

Theorem . ([]) Let X be a reflexive real Banach space and I ⊆ R be an interval; let
� : X →R be a sequentially weakly lower semi-continuous C-functional, bounded on each
bounded subset of X, whose derivative admits a continuous inverse on X∗; let J : X →R be
a C-functional with compact derivative. Assume that

lim‖u‖→+∞
(
�(u) – λJ(u)

)
= +∞

for all λ ∈ I , and that there exists ρ ∈ R such that

sup
λ∈I

inf
u∈X

(
�(u) + λ

(
ρ – J(u)

))
< inf

u∈X
sup
λ∈I

(
�(u) + λ

(
ρ – J(u)

))
.

Then there exist a nonempty open set A ⊆ I and a positive number R′ with the following
property: for every λ ∈ A and every C functional 
 : X →R with compact derivative, there
exists δ >  such that, for each μ ∈ [, δ], the equation �′(u) – λJ ′(u) – μ
 ′(u) =  has at
least three solutions in X whose norms are less than R′.

Proposition . ([]) Let X be a nonempty set and �, J be two real functions on X. As-
sume that there are r >  and u, u ∈ X such that

�(u) = J(u) = , �(u) > r, sup
u∈�–(–∞,r]

J(u) < r
J(u)
�(u)

.

Then, for each ρ satisfying

sup
u∈�–(–∞,r]

J(u) < ρ < r
J(u)
�(u)

,

one has

sup
λ≥

inf
u∈X

(
�(u) + λ

(
ρ – J(u)

))
< inf

u∈X
sup
λ≥

(
�(u) + λ

(
ρ – J(u)

))
.

We refer the reader to the paper [, ] in which Theorems . and . were successfully
employed to ensure the existence of at least three solutions for perturbed second-order
Hamiltonian systems with impulsive effects. We also refer the readers to [] in which
Theorems . and . were successfully employed to ensure the existence of three solutions
for perturbed Kirchhoff-type p-Laplacian discrete problems, and we refer the readers to
[] in which Theorem . was successfully employed to ensure the existence of three
solutions for impulsive perturbed elastic beam fourth-order equations of Kirchhoff type.
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Here and in the sequel, E will denote the space W ,p(�) ∩ W ,p
 (�) endowed with the

norm

‖u‖ :=
(∫

�

(∣∣�u(x)
∣∣p +

∣∣∇u(x)
∣∣p +

∣∣u(x)
∣∣p)dx

) 
p

.

Put

k = sup
u∈X\{}

maxx∈� |u(x)|
‖u‖ . (.)

For p > max{, N
 }, since the embedding E ↪→ C(�) is compact, one has k < +∞.

Let f , g : � ×R→ R be two L-Carathéodory functions and M : [, +∞[→R be a con-
tinuous function such that there are two positive constants m and m with m ≤ M(t) ≤
m for all t ≥ .

Put

F(x, t) :=
∫ t


f (x, ξ ) dξ for all (x, t) ∈ � ×R,

G(x, t) :=
∫ t


g(x, ξ ) dξ for all (x, t) ∈ � ×R

and

M̂(t) :=
∫ t



[
M(s)

]p– ds for all t ≥ .

Set

M– := min
{

, mp–
 ,�

}
and

M+ := max
{

, mp–
 ,�

}
.

We say that a function u ∈ E is a (weak) solution of the problem (Pf ,g
λ,μ) if

∫
�

|�u|p–�u�v dx +
[

M
(∫

�

|∇u|p dx
)]p– ∫

�

|∇u|p–∇u∇v dx

+ �

∫
�

|u|p–uv dx – λ

∫
�

f (x, u)v dx – μ

∫
�

g(x, u)v dx = 

for every v ∈ E.
Now, for every u ∈ E, we define

�(u) =

p

∫
�

∣∣�u(x)
∣∣pdx +


p

M̂
[∫

�

∣∣∇u(x)
∣∣pdx

]
+

�

p

∫
�

∣∣u(x)
∣∣p dx, (.)

J(u) =
∫

�

F
(
x, u(x)

)
dx (.)
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and


(u) =
∫

�

G
(
x, u(x)

)
dx. (.)

Standard arguments show that I =: � – μ
 – λJ is a Gâteaux differentiable functional
whose Gâteaux derivative at the point u ∈ E is given by

I ′(u)(v) =
∫

�

|�u|p–�u�v dx +
[

M
(∫

�

|∇u|p dx
)]p– ∫

�

|∇u|p–∇u∇v dx

+ �

∫
�

|u|p–uv dx – λ

∫
�

f (x, u)v dx – μ

∫
�

g(x, u)v dx

for all u, v ∈ E. We observe that a vector u ∈ E is a solution of the problem (Pf ,g
λ,μ) if and

only if u is a critical point of the function I .

3 Main results
In this section, we formulate our main results.

First we give the following application of Theorem . as our first main result. Let

λ = inf

{∫
�

|�u(x)|p dx + M̂[
∫
�

|∇u(x)|p dx] + �
∫
�

|u(x)|p dx
p
∫
�

F(x, u(x)) dx
:

u ∈ E,
∫

�

F
(
x, u(x)

)
dx > 

}

and λ = 
max{,λ,λ∞} , where

λ = lim sup
|u|→

p
∫
�

F(x, u(x)) dx∫
�

|�u(x)|p dx + M̂[
∫
�

|∇u(x)|p dx] + �
∫
�

|u(x)|p dx

and

λ∞ = lim sup
‖u‖→+∞

p
∫
�

F(x, u(x)) dx∫
�

|�u(x)|p dx + M̂[
∫
�

|∇u(x)|p dx] + �
∫
�

|u(x)|p dx
.

Theorem . Assume that

(A) there exists a constant ε >  such that

max

{
lim sup

u→

maxx∈� F(x, u(x))
|u|p , lim sup

|u|→+∞
maxx∈� F(x, u(x))

|u|p
}

< ε;

(A) there exists a function w ∈ E such that

Kw :=
∫

�

∣∣�w(x)
∣∣p dx + M̂

[∫
�

∣∣∇w(x)
∣∣p dx

]
+ �

∫
�

∣∣w(x)
∣∣p dx �= 

and

ε <
M– ∫

�
F(x, w(x)) dx
kpKw

.
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Then, for each compact interval [c, d] ⊂ (λ,λ), there exists R >  with the following prop-
erty: for every λ ∈ [c, d] and every L-Carathéodory function g : � × R → R, there exists
γ >  such that, for each μ ∈ [,γ ], the problem (Pf ,g

λ,μ) has at least three weak solutions
whose norms in E are less than R.

Proof Take X = E. Clearly, E is a separable and uniformly convex Banach space. Let the
functionals �, J and 
 be as given in (.), (.) and (.), respectively. The functional
� is C, and by [], Proposition ., its derivative admits a continuous inverse on X∗.
Moreover, since m ≤ K(s) ≤ m for all s ∈ [, +∞[, from (.) we have

M–

p
‖u‖p ≤ �(u) ≤ M+

p
‖u‖p (.)

for all u ∈ X, it follows lim‖u‖→+∞ �(u) = +∞, namely, � is coercive. Furthermore, � is
sequentially weakly lower semicontinuous. Moreover, let A be a bounded subset of X.
That is, there exists a constant c >  such that ‖u‖ ≤ c for each u ∈ A. Then, by (.), we
have

∣∣�(u)
∣∣ ≤ M+

p
cp.

Hence � is bounded on each bounded subset of X. Furthermore, by Remark ., � ∈WX .
The functionals J and 
 are two C-functionals with compact derivatives. Moreover, �

has a strict local minimum  with �() = J() = . In view of (A), there exist τ, τ with
 < τ < τ such that

F(x, u) ≤ ε|u|p (.)

for every x ∈ � and every u with |u| ∈ [, τ) ∪ (τ, +∞). Since F(x, u) is continuous on
� ×R, it is bounded on x ∈ � and |u| ∈ [τ, τ]. Thus we can choose η >  and υ > p such
that

F(x, u) ≤ ε|u|p + η|u|υ

for all (k, u) ∈ � ×R. So, by (.), we have

J(u) ≤ εkp‖u‖p + ηkυ‖u‖υ (.)

for all u ∈ X. Hence, from (.) we have

lim sup
|u|→

J(u)
�(u)

≤ pkpε

M– . (.)

Moreover, by using (.), for each u ∈ E \ {}, we obtain

J(u)
�(u)

=

∫
|u|≤τ

F(x, u) dx
�(u)

+

∫
|u|>τ

F(x, u) dx
�(u)

≤ supx∈�,|u|∈[,τ] F(x, u)
�(u)

+
ε‖u‖p

kp�(u)
≤ p supx∈�,|u|∈[,τ] F(x, u)

‖u‖p +
pkpε

M– .
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So, we get

lim sup
‖u‖→+∞

J(u)
�(u)

≤ pkpε

M– . (.)

In view of (.) and (.), we have

ρ = max

{
, lim sup

‖u‖→+∞
J(u)
�(u)

, lim sup
u→

J(u)
�(u)

}
≤ pkpε

M– . (.)

Assumption (A) in conjunction with (.) yields

σ = sup
u∈�–(,+∞)

J(u)
�(u)

= sup
X\{}

J(u)
�(u)

≥
∫
�

F(x, w(x))
�(w(x))

=
p
∫
�

F(x, w(x)) dx
Kw

>
pkpε

M– ≥ ρ.

Thus, all the hypotheses of Theorem . are satisfied. Clearly, λ = 
σ

and λ = 
ρ

. Then,
using Theorem ., for each compact interval [c, d] ⊂ (λ,λ), there exists R >  with the
following property: for every λ ∈ [c, d] and every L-Carathéodory function g : � × R →
R, there exists γ >  such that, for each μ ∈ [,γ ], the problem (Pf ,g

λ,μ) has at least three
solutions whose norms in X are less than R. �

Another announced application of Theorem . reads as follows.

Theorem . Assume that

max

{
lim sup

u→

maxx∈� F(x, u(x))
|u|p , lim sup

|u|→+∞
maxx∈� F(x, u(x))

|u|p
}

≤  (.)

and

sup
u∈E

M– ∫
�

F(x, u(x)) dx
kp(

∫
�

|�u(x)|p dx + M̂[
∫
�

|∇u(x)|p dx] + �
∫
�

|u(x)|p dx)
> . (.)

Then, for each compact interval [c, d] ⊂ (λ, +∞), there exists R >  with the following prop-
erty: for every λ ∈ [c, d] and every L-Carathéodory function g : � × R → R, there exists
γ >  such that for each μ ∈ [,γ ], the problem (Pf ,g

λ,μ) has at least three weak solutions
whose norms in E are less than R.

Proof In view of (.), there exist an arbitrary ε >  and τ, τ with  < τ < τ such that

F(x, u) ≤ ε|u|p

for every x ∈ � and every u with |u| ∈ [, τ) ∪ (τ, +∞). Since F(x, u) is continuous on
� ×R, it is bounded on x ∈ � and |u| ∈ [τ, τ]. Thus we can choose η >  and υ > p in a
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manner that

F(x, u) ≤ ε|u|p + η|u|υ

for all (x, u) ∈ � ×R. So, by the same process as that in the proof of Theorem ., we have
Relations (.) and (.). Since ε is arbitrary, (.) and (.) give

max

{
, lim sup

‖u‖→+∞
J(u)
�(u)

, lim sup
u→

J(u)
�(u)

}
≤ .

Then, with the notation of Theorem ., we have ρ = . By (.), we also have σ > . In this
case, clearly λ = 

σ
and λ = +∞. Thus, by using Theorem ., the result is achieved. �

Now we formulate the following applications of Theorem . as our second main result.

Theorem . Assume that

(B) there exist two positive functions ν, ξ ∈ L(�,R) and α ∈ [, p) such that

∣∣F(x, u)
∣∣ ≤ ν(x)|u|α + ξ (x) for all u ∈R and x ∈ �;

(B) there exist a positive constant r and w ∈ E such that Kw > r, where Kw is as given in
Assumption (A) in Theorem ., and

max
x∈�,|u|≤ p√ pr

M–

F(x, u) <
r
∫
�

F(x, w(x)) dx
meas(�)Kw

.

Then there exist a nonempty open set A ⊂ [, +∞) and a positive number R′ with the fol-
lowing property: for every λ ∈ A and every continuous function g : � ×R →R, there exists
δ >  such that, for each μ ∈ [, δ], the problem (Pf ,g

λ,μ) has at least three weak solutions
whose norms in E are less than R′.

Proof Take X = E. Let the functionals � and J be as given in (.) and (.), respectively.
For any λ ≥  and u ∈ E, by (B), we have

�(u) – λJ(u) =

p

∫
�

∣∣�u(x)
∣∣p dx +


p

M̂
[∫

�

∣∣∇u(x)
∣∣p dx

]

+
�

p

∫
�

∣∣u(x)
∣∣p dx – λ

∫
�

F
(
x, u(x)

)
dx

≥ M–

p
‖u‖p – λ

∫
�

(
ν(x)

∣∣u(x)
∣∣α + ξ (x)

)
dx

≥ M–

p
‖u‖p – λkα‖u‖α‖ν‖L – λ‖ξ‖L .

Since α < p, one has lim‖u‖→+∞(�(u) – λJ(u)) = +∞ for all λ ≥ . If �(u) ≤ r, we have
‖u‖ ≤ p

√
pr

M– , that is,

�–(–∞, r] ⊆
{

u ∈ X : max
x∈�

∣∣u(x)
∣∣ ≤ p

√
pr

M–

}
.
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Therefore,

sup
u∈�–(–∞,r]

J(u) ≤ max
|u|≤ p√ pr

M–

J(u)

= max
|u|≤ p√ pr

M–

∫
�

F
(
x, u(x)

)
dx

≤ meas(�) max
x∈�,|u|≤ p√ pr

M–

F(x, u). (.)

It is clear that �() = J() =  and owing to (B) and (.), �(w) > r and

sup
u∈�–(–∞,r]

J(u) < r
J(w)
�(w)

.

Thus we can fix ρ such that

sup
u∈�–(–∞,r]

J(u) < ρ < r
J(w)
�(w)

.

Now, from Proposition ., we obtain

sup
λ≥

inf
u∈E

(
�(u) + λ

(
ρ – J(u)

))
< inf

u∈E
sup
λ≥

(
�(u) + λ

(
ρ – J(u)

))
.

Therefore, by Theorem ., for each compact interval [a, b] ⊆ (λ,λ), there exists R′ > 
with the following property: for every λ ∈ [a, b] and every L-Carathéodory function g :
�×R→R, there exists δ >  such that, for each μ ∈ [, δ], �′(u) –λJ ′(u) –μ
 ′(u) =  has
at least three solutions in E. Hence, the problem (Pf ,g

λ,μ) has at least three weak solutions
whose norms are less than R′. �

Now fix x ∈ � and pick s >  such that B(x, s) ⊂ �, where B(x, s) denotes the ball with
center at x and radius of s. Put

ϑ :=
π

N


�( N
 )

∫ s

s


∣∣∣∣(N + )
s r –

N
s +

(N – )
s


r

∣∣∣∣
p

rN– dr,

ϑ :=
∫

B(x,s)\B(x, s
 )

[ N∑
i=

(
(xi – x

i )
s –

(xi – x
i )

s +
(xi – x

i )
s�

)
] p



dx,

ϑ :=
π

N


�( N
 )

[ ( s
 )N

N
+

∫ s

s


∣∣∣∣ 
s r –


s r +


s

r – 
∣∣∣∣
p

rN– dr
]

,

where � denotes the gamma function, and

L := ϑ + ϑ + ϑ. (.)

The next two theorems provide sufficient conditions for applying Theorems . and .,
which does not require to know a test function w satisfying (A) and (B), respectively.
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Theorem . Assume that Assumption (A) in Theorem . holds and there exists a pos-
itive constant d such that

(A) F(x, t) ≥  for each x ∈ B(x, s) \ B(x, s
 ), t ∈ [, d];

(A) ϑdp + M̂(ϑdp) + �ϑdp �=  and ε <
pM– ∫

B(x, s
 ) F(x,d) dx

kp(ϑdp+M̂(ϑdp)+�ϑdp) .

Then, for each compact interval [c, d] ⊂ (λ,λ), there exists R >  with the following prop-
erty: for every λ ∈ [c, d] and every L-Carathéodory function g : � × R → R, there exists
γ >  such that, for each μ ∈ [,γ ], the problem (Pf ,g

λ,μ) has at least three weak solutions
whose norms in E are less than R.

Proof We claim that all the assumptions of Theorem . are fulfilled by choosing w as
follows:

w(x) :=

⎧⎪⎨
⎪⎩

 if x ∈ � \ B(x, s),
d( 

s � – 
s � + 

s � – ) if x ∈ B(x, s) \ B(x, s
 ),

d if x ∈ B(x, s
 )

(.)

where � = dist(x, x) =
√∑N

i=(xi – x
i ) (see [, ]). We have

∂w(x)
∂xi

=

⎧⎨
⎩ if x ∈ � \ B(x, s) ∪ B(x, s

 ),

d( �(xi–x
i )

s – (xi–x
i )

s + 
s

(xi–x
i )

�
) if x ∈ B(x, s) \ B(x, s

 )

and

∂w(x)
∂x

i
=

⎧⎨
⎩ if x ∈ � \ B(x, s) ∪ B(x, s

 ),

d( 
s

(xi–x
i )+�

�
– 

s + 
s

�–(xi–x
i )

� ) if x ∈ B(x, s) \ B(x, s
 ),

and so that

N∑
i=

∂w(x)
∂x

i
=

⎧⎨
⎩ if x ∈ � \ B(x, s) ∪ B(x, s

 ),

d( l(N+)
s – N

s + 
s

N–
�

) if x ∈ B(x, s) \ B(x, s
 ).

In particular, since

∫
�

∣∣�w(x)
∣∣p dx = dp π

N


�( N
 )

∫ s

s


∣∣∣∣(N + )
s r –

N
s +

(N – )
s


r

∣∣∣∣
p

rN– dr,

∫
�

∣∣∇w(x)
∣∣p dx

=
∫

B(x,s)\B(x, s
 )

[ N∑
i=

d
(

l(xi – x
i )

s –
(xi – x

i )
s +


s

(xi – x
i )

l

)
] p



dx

= dp
∫

B(x,s)\B(x, s
 )

[ N∑
i=

(
l(xi – x

i )
s –

(xi – x
i )

s +

s

(xi – x
i )

l

)
] p



dx



Heidarkhani et al. Boundary Value Problems  (2017) 2017:86 Page 12 of 20

and

∫
�

∣∣w(x)
∣∣p dx = dp π

N


�( N
 )

( ( s
 )N

N
+

∫ s

s


∣∣∣∣ 
s r –


s r +


s

r – 
∣∣∣∣
p

rN– dr
)

.

It is easy to see that w ∈ E, and one has

dp

p
M–L ≤ 

p
(
ϑdp + mp–

 ϑdp + �ϑdp)
≤ �(w)

=

p
(
ϑdp + M̂

(
ϑdp) + �ϑdp)

≤ 
p
(
ϑdp + mp–

 ϑdp + �ϑdp)

≤ dp

p
M+L. (.)

From Assumptions (A) and (A) we observe that Assumption (A) in Theorem . is
satisfied. Hence, Theorem . follows the result. �

Theorem . Assume that Assumption (B) in Theorem . and Assumption (A) in The-
orem . hold and there exist three positive constants c, d and α with p√Ld < c, where L is
given as in (.), and α ∈ [, p) such that

(B) maxx∈�,|u|≤c F(x, u) < M–

M+meas(�)
∫

B(x, s
 ) F(x, d) dx.

Then, there exist a nonempty open set A ⊂ [, +∞) and a positive number R′ with the fol-
lowing property: for every λ ∈ A and every continuous function g : � ×R →R, there exists
δ >  such that, for each μ ∈ [, δ], the problem (Pf ,g

λ,μ) has at least three weak solutions
whose norms in E are less than R′.

Proof We claim that all the hypotheses of Theorem . are satisfied by choosing w as given
in (.) and r < LM–

p dp. We observe that

Kw =

p
(
ϑdp + M̂

(
ϑdp) + �ϑdp) ≥ LM–

p
dp > r,

where Kw is as given in Assumption (A). Owing to (B) and F(t, ) = , one has∫
B(x, s

 ) F(x, w(x)) dx > . So, by (A), (B) and (.), we have

r
∫
�

F(x, w(x)) dx
meas(�)Kw

=
LM–dp

p
p
∫
�

F(x, w(x)) dx
meas(�)(θdp + M̂(θdp) + �θdp)

>
M–

meas(�)M+

∫
B(x, s

 )
F(x, d) dx

> max
x∈�,|u|≤c

F(x, u)

> max
x∈�,|u|≤ p√ pr

M–

F(x, u).
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Thus, Assumption (B) in Theorem . holds. Therefore, by Theorem ., for each com-
pact interval [a, b] ⊆ (λ,λ), there exists R′ >  with the following property: for every
λ ∈ [a, b] and every L-Carathéodory function g : �×R →R, there exists δ >  such that,
for each μ ∈ [, δ], �′(u) – λJ ′(u) – μ
 ′(u) =  has at least three solutions in E. Hence, the
problem (Pf ,g

λ,μ) has at least three weak solutions whose norms are less than R′. �

Remark . Clearly, Theorem . gives the result of at least three solutions for the prob-
lem (Pf ,g

λ,μ) with F(x, u) being of subquadratic growth.

Remark . The statements of Theorems . and . depend upon the test function w
defined by (.). If we take the other choices of w, we have another statement. For example,
if x ∈ � and we pick s >  such that B(x, s) ⊂ �, where B(x, s) denotes the ball with center
at x and radius of s, and

ϑ ′
 :=

P+πN/dp

sp�(N/)

∫ s

s/

∣∣(N + )r – (N + )sr + Nr∣∣prN+ dr,

ϑ ′
 :=

(

s

)p ∫
B(x,s)\B(x, s

 )

[ N∑
i=

(
(s – �)(s – �)

(
xi – x

i
))

] p


dx,

ϑ ′
 :=

(

s

)p π
N


�( N
 )

( ( s
 )N

N
+

∫ s

s


∣∣r(s – r)
∣∣prN– dr

)

and where � denotes the gamma function,

L′ := ϑ ′
 + ϑ ′

 + ϑ ′
,

and we take

w(x) :=

⎧⎪⎨
⎪⎩

 if x ∈ � \ B(x, s),
 �

s (s – �)d if x ∈ B(x, s) \ B(x, s
 ),

d if x ∈ B(x, s
 )

(.)

with � = dist(x, x) =
√∑N

i=(xi – x
i ) (see []), then we have

∂w(x)
∂xi

=

{
 if x ∈ � \ B(x, s) ∪ B(x, s

 ),
d
s (s – �)(s – �)(xi – x

i ) if x ∈ B(x, s) \ B(x, s
 ),

∂w(x)
∂x

i
=

{
 if x ∈ � \ B(x, s) ∪ B(x, s

 ),
(xi–x

i )d
s ( (xi–x

i )(�–s)
�

+ s – ls + l) if x ∈ B(x, s) \ B(x, s
 )

and

N∑
i=

∂w(x)
∂x

i
=

{
 if x ∈ � \ B(x, s) ∪ B(x, s

 ),
d( (N+)�–s(N+)�+Ns

s ) if x ∈ B(x, s) \ B(x, s
 ).

It is easy to see that w ∈ E and, in particular, since

∫
�

∣∣�w(x)
∣∣p dx =

P+πN/dp

sp�(N/)

∫ s

s/

∣∣(N + )r – (N + )rs + Nr∣∣prN+ dr,
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∫
�

∣∣∇w(x)
∣∣p dx

=
∫

B(x,s)\B(x, s
 )

[ N∑
i=

(
d
s (s – �)(s – �)

(
xi – x

i
))

] p


dx

=
(

d
s

)p ∫
B(x,s)\B(x, s

 )

[ N∑
i=

(
(s – �)(s – �)

(
xi – x

i
))

] p


dx

and

∫
�

∣∣w(x)
∣∣p dx =

(
d
s

)p π
N


�( N
 )

( ( s
 )N

N
+

∫ s

s


∣∣r(s – r)
∣∣prN– dr

)
,

one has

dp

p
M–L′ ≤ 

p
(
ϑ ′

dp + mp–
 ϑ ′

dp + �ϑ ′
dp)

≤ �(w)

=

p
(
ϑ ′

dp + M̂
(
ϑ ′

dp) + �ϑ ′
dp)

≤ 
p
(
ϑ ′

dp + mp–
 ϑ ′

dp + �ϑ ′
dp)

≤ dp

p
M+L′.

Therefore, condition (A) in Theorem . takes the following form:

(A) there exists a positive constant d such that

ϑ ′
dp + M̂

(
ϑ ′

dp) + �ϑ ′
dp �=  and ε <

pM– ∫
�

F(x, w(x)) dx
kp(ϑ ′

dp + M̂(ϑ ′
dp) + �ϑ ′

dp)
,

where w is given by (.).

Moreover, the condition p√Ld < c in Theorem . becomes the condition p√L′d < c. Also,
by choosing w as given in [], Remark ., which is as follows:

w(x) :=

⎧⎪⎨
⎪⎩

 if x ∈ � \ B(x, r),
(�–r)–(r+r)(�–r

)+rr(�–r
)

(r–r)(r+r) d if x ∈ B(x, r) \ B(x, r),
d if x ∈ B(x, r),

where � = dist(x, x) =
√∑N

i=(xi – x
i ) and r, r ∈R with r > r >  (see [, ]), we have

other forms of conditions (A) and p√Ld < c.

Now, we point out some results in which the function f has separated variables. To be
precise, consider the following problem:

{
T(u) = λθ (x)f (u) + μg(x, u), in �,
u = �u = , on ∂�,

(Pf ,θ ,g
λ,μ )
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where θ : � →R is a nonnegative and nonzero function, θ ∈ L(�), f : R →R is a contin-
uous function and g : � ×R→R is as introduced in the problem (Pf ,g

λ,μ) in Introduction.
Set F(x, t) = θ (x)F(t) for every (x, t) ∈ � ×R, where

F(t) =
∫ t


f (ξ ) dξ

for all t ∈ R. The following existence results are consequences of Theorem ..

Theorem . Assume that

(A) there exists a constant ε >  such that

sup
x∈�

θ (x) · max

{
lim sup

u→

F(u)
|u|p , lim sup

|u|→∞
F(u)
|u|p

}
< ε;

(A) there exists a positive constant d such that

ϑdp + M̂
(
ϑdp) + �ϑdp �=  and ε <

pM– ∫
�

F(x, w(x)) dx
kp(ϑdp + M̂(ϑdp) + �ϑdp)

,

where w is given by (.).

Then, for each compact interval [c, d] ⊂ (λ,λ), where λ and λ are the same as λ and λ,
but

∫
�

F(x, u(x)) dx is replaced by
∫
�

θ (x)F(u(x)) dx, respectively, there exists R >  with the
following property: for every λ ∈ [c, d] and every L-Carathéodory function g : � ×R →R,
there exists γ >  such that for each μ ∈ [,γ ], the problem (Pf ,θ ,g

λ,μ ) has at least three weak
solutions whose norms in E are less than R.

Theorem . Assume that there exists a positive constant d such that

ϑdp + M̂
(
ϑdp) + �ϑdp >  and F(d) > . (.)

Moreover, suppose that

lim sup
u→

f (u)
|u|p– = lim sup

|u|→∞
f (u)
|u|p– = . (.)

Then, for each compact interval [c, d] ⊂ (λ,∞), where λ is the same as λ but
∫
�

F(x,
u(x)) dx is replaced by

∫
�

θ (x)F(u(x)) dx, there exists R >  with the following property: for
every λ ∈ [c, d] and every L-Carathéodory function g : � ×R→ R, there exists γ >  such
that for each μ ∈ [,γ ], the problem (Pf ,θ ,g

λ,μ ) has at least three weak solutions whose norms
in E are less than R.

Proof We easily observe that from (.) Assumption (A) is satisfied for every ε > .
Moreover, using (.), by choosing ε >  small enough, one can derive Assumption (A).
Hence, the conclusion follows from Theorem .. �

Remark . Our results show that no asymptotic conditions on f and g are required, and
merely the algebraic conditions on f are supposed to guarantee the existence of solutions.
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Now, we present the following example to illustrate Theorem ..

Example . Let N = , p = , � = , � = {(x, x) ∈R
; x

 + x
 < } ⊂R

, x = (, ), s = ,

M(t) =  +


cosh t
for all t ∈R,

ϑ(x) =  for all x ∈ � and

f (t) =

{
(t + sin t), if t < π ,
π + tanh(t – π ), if t ≥ π .

Thus,

S
(
x, s

)
= S

(
(, ), 

)
=

{
(x, x) ∈R

; x
 + x

 < 
} ⊂ �,

m = , m =  and f is a nonnegative and continuous function. By choosing d = , we have

w(x, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if (x, x) ∈ � \ S((, ), ),

 if (x, x) ∈ S((, ), ),



√
(x

 + x
)

– (x
 + x

) + 


√
x

 + x
 –  if (x, x) ∈ S((, ), ) \ S((, ), ).

Therefore,

ϑ = π

∫ 



(


ξ –  +


ξ 

)

ξ dξ ,

ϑ =
∫∫

S((,),)\S((,),)

[ ∑
i=

(



xi

√
x

 + x
 – xi +

xi


√

x
 + x



)
]

dx dx

and

ϑ = π

(



+
∫ 



(


ξ  – ξ  +



ξ – 

)

ξ dξ

)

are positive. So,

ϑdp + M̂
(
ϑdp) + �ϑdp > .

Moreover, we have

F(d) = F() =
∫ 


(t + sin t) dt > 

and

lim
u→

f (u)
|u| = lim

u→∞
f (u)
|u| = .
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Hence, by applying Theorem . for each compact interval [c, d] ⊂ (,∞), there exists
R >  with the following property: for every λ ∈ [c, d] and every continuous function g :
R →R, there exists γ >  such that, for each μ ∈ [,γ ], the problem

{
�(|�u|�u) – ( + 

cosh(
∫
� |∇u| dx) )�u + |u|u = λf (u) + μg(u) in �,

u = �u =  on ∂�

has at least three weak solutions whose norms in the space W,(�) ∩ W,
 (�) are less

than R.

The following existence result is a consequence of Theorem ..

Theorem . Assume that there exist five positive constants c, d, α, ν and ξ with c > p√Ld,
where L is given by (.), and α ∈ [, p) such that

(B) max|u|≤c F(u) < M–F(d)πN/

M+meas(�)�( N
 )

;
(B) F(u) >  for each u ∈R;
(B) |F(u)| ≤ ν|u|α + ξ for all u ∈R.

Then there exist a nonempty open set A ⊂ [,∞) and a positive number R′ with the follow-
ing property: for every λ ∈ A and every continuous function g : R → R, there exists δ > 
such that, for each μ ∈ [, δ], the problem (Pf ,θ ,g

λ,μ ) has at least three weak solutions whose
norms in E are less than R′.

Finally, we present the following example to illustrate Theorem ..

Example . Let N = , p = , � = , � = {(x, x) ∈ R
; x

 + x
 < 

 } ⊂ R
, x = (, ),

s = 
 ,

M(t) =  + tanh t for all t ∈ [, +∞[

and

f (t) =


 + t for all t ∈R.

Thus,

S
(
x, s

)
= S

(
(, ),




)
=

{
(x, x) ∈R

; x
 + x

 <




}
⊂ �,

m = , m = , and f is a nonnegative and continuous function. By choosing c = , d = ,
α = , ν =  and ξ = π , we have α =  ∈ [, ) = [, p), M– = , M+ =  and L = .π .
Therefore,

c =  > √.π > p√Ld,

max
|u|≤c

F(u) = max
|u|≤

F(u) = arctan() <
π


<

π


=

M–F(d)π
M+meas(�)

,

F(d) = F() = arctan() =
π


> 
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and

∣∣F(u)
∣∣ ≤ |u| + π for all u ∈R.

Hence, by applying Theorem ., there exist a nonempty open set A ⊂ [, +∞) and a posi-
tive number R′ with the following property: for every λ ∈ A and every nonnegative contin-
uous function g : � ×R →R, there exists δ >  such that, for each μ ∈ [, δ], the problem

{
�(|�u|�u) – ( + tanh(

∫
�

|∇u| dx))�u + |u|u = λ 
+u + μg(u) in �,

u = �u =  on ∂�

has at least three weak solutions whose norms in the space W,(�) ∩ W,
 (�) are less

than R.

Remark . We point out that the same statements of the above given results can be
obtained by considering the special case

M(t) = b + bt for t ∈ [ι,κ],

where b, b, ι and κ are positive numbers. In fact, we have

M̂(t) =
∫ t


(b + bξ ) dξ =

(b + bt)

b
–

b


b
for t ∈ [ι,κ],

m = b + bι and m = b + bκ .

Arguing as in the proof of Theorems . and ., three weak solutions can be obtained.

4 Concluding remarks
Kirchhoff’s model as an extension of the classical D’Alembert’s wave equation for free vi-
brations of elastic strings takes into account the changes in length of the string produced
by transverse vibrations. It received great attention only after Lions had proposed an ab-
stract framework for the problem. On the other hand, fourth-order boundary value prob-
lems which describe the deformations of an elastic beam in an equilibrium state whose
both ends are simply supported have been extensively studied in the literature. Here we
have investigated the existence of multiple solutions for perturbed nonlocal fourth-order
equations of Kirchhoff type under Navier boundary conditions. We have given some new
criteria for guaranteeing that the perturbed fourth-order equations of Kirchhoff type pos-
sess at least three weak solutions by using a variational method and some critical point
theorems due to Ricceri.
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