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Abstract
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1 Introduction
In this paper, we consider the boundary value problem

–y′′(t) +
[
q(t) – λ

]
y(t) = , (.)

y′(a) =
(
cλ + dλ + e

)
y(a), (.)

by(b) + by′(b) = λ
[
b′

y(b) + b′
y′(b)

]
, (.)

where λ is real parameter; q(t) is a real-valued function and q(t) ∈ L[a, b]; a, b, b, b, b′
, b′

,
c, d, e ∈R and c �= . This problem is different from the usual regular Sturm-Liouville prob-
lem [] in the sense that the eigenvalue parameter λ appears in both boundary conditions
and in the first boundary condition is in quadratic form. We first derive asymptotic ap-
proximations for the eigenfunctions of the problem, and then using these approximations
we obtain Green’s function.

One application of the Green’s function is to derive sampling theorems associated with
eigenvalue problems containing an eigenvalue parameter in the boundary condition [].

We suppose without loss of generality that q has a mean value zero, i.e.,

∫ b

a
q(t) dt = . (.)

As an illustration of our results we obtain for a ≤ κ ≤ ξ ≤ b, b′
 �= ,

G(κ, ξ ,λ) = –λ–/ sinλ/(κ – a) cosλ/(b – ξ )
cosλ/(b – a)

+
λ–

cosλ/(b – a)

×
{




(∫
κ

a
q(t) dt

)
cosλ/(κ – a) cosλ/(b – ξ )
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–
[

b′


b′


+



∫ b

ξ

q(t) dt
]

sinλ/(κ – a) sinλ/(b – ξ )

+
b′


b′


tanλ/(b – a) sinλ/(κ – a) cosλ/(b – ξ )

}

+ O
(
λ–η(λ)

)
,

where η(λ) →  as λ → ∞. Similar results hold for a ≤ ξ ≤ κ ≤ b exchanging the role of
κ and ξ .

These types of results with different boundary conditions were obtained before in the
case where q(t) is assumed to be continuous on a finite interval [, ]. In [], the Green’s
functions were derived asymptotically with the error term of exponential type, that is,
for λ = s, G(x, y,λ) = · · · + O( 

|s| exp[t(y – x)]), a ≤ y ≤ x (p.). In our results, we only
assume that q(t) ∈ L[a, b] and find that G(x, y,λ) = · · · + O(λ–η(λ)) where η(λ) →  as
λ → ∞. We use a similar approach as in [] in which the spectral functions associated
with Sturm-Liouville problems were considered on [,∞) with usual boundary condition
not including the eigenparameter for q(t) ∈ L[,∞).

2 Method
We associate with (.) the Riccati equation

v′ = –λ + q – v. (.)

It was shown in [] that if v(t,λ) is a complex-valued solution of (.) and

S(t,λ) := Re
{

v(t,λ)
}

, (.)

T(t,λ) := Im
{

v(t,λ)
}

, (.)

then any nontrivial real-valued solution of (.) can be expressed as

z(t,λ) = c exp

(∫ t

a
S(x,λ) dx

)
cos

{
c +

∫ t

a
T(x,λ) dx

}
, (.)

with

z′(t,λ) = cS(t,λ) exp

(∫ t

a
S(x,λ) dx

)
cos

{
c +

∫ t

a
T(x,λ) dx

}

– c exp

(∫ t

a
S(x,λ) dx

)
sin

{
c +

∫ t

a
T(x,λ) dx

}
T(t,λ). (.)

Here, c and c are constants to be determined.
We suppose that for each t ∈ [a, b] there exist

∣
∣∣
∣

∫ b

t
eiλ/xq(x) dx

∣
∣∣
∣ ≤ A(t)η(λ), (.)

where
(i) A(t) :=

∫ b
t |q(x)|dx is clearly a decreasing function and A(t) ∈ L[a, b],

(ii) η(λ) →  as λ → ∞.
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For q(t) ∈ L[a, b]the existence of the A and η functions may be established, for λ positive
as follows.

We note that, avoiding the trivial case
∫ b

t |q(x)|dx = ,

∣∣
∣∣

∫ b

t
eiλ/xq(x) dx

∣∣
∣∣ ≤

∫ b

t

∣
∣q(x)

∣
∣dx < ∞.

So, if we define

F(t,λ) :=

⎧
⎨

⎩
| ∫ b

t eiλ/xq(x) dx|/ ∫ b
t |q(x)|dx, if

∫ b
t |q(x)|dx �= ,

, if
∫ b

t |q(x)|dx = ,
(.)

then  ≤ F(t,λ) ≤ , and we set η(λ) := supa≤t≤b F(t,λ). Here η(λ) is well defined by (.)
and goes to zero as λ → ∞ [].

Our method of approximating a solution of (.) is similar to that of []. We consider
(.) on [a, b] and set

v(t,λ) := iλ/ +
∞∑

n=

vn(t,λ). (.)

Substitution of (.) into (.) and rearrangement gives

v′
 + iλ/v + v′

 + iλ/v +
∞∑

n=

(
v′

n + iλ/vn
)

= q – v
 –

∞∑

n=

(

v
n– + vn–

n–∑

m=

vm

)

.

We choose the vn so that

v′
 + iλ/v = q,

v′
 + iλ/v = –v

 ,

and for n = , , . . . ,

v′
n + iλ/vn = –

(

v
n– + vn–

n–∑

m=

vm

)

.

Solving for vn, n = , , , . . . ,

v(t,λ) = –e–iλ/t
∫ b

t
eiλ/xq(x) dx, (.)

v(t,λ) = e–iλ/t
∫ b

t
eiλ/xv

 (x,λ) dx, (.)

vn(t,λ) = e–iλ/t
∫ b

t
eiλ/x

(

v
n– + vn–

n–∑

m=

vm

)

dx. (.)
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It is shown in [] that
∑∞

n= vn(t,λ) is uniformly absolutely convergent for all λ ≥ λ and
for all t ∈ [a, b]. It also follows from the choice of vn, n = , , , . . . , that

∑∞
n= v′

n (t,λ) is
uniformly absolutely convergent. The series iλ/ +

∑∞
n= vn(t,λ) is therefore a solution of

(.) and

S(t,λ) = Re
∞∑

n=

vn(t,λ), (.)

T(t,λ) = λ/ + Im
∞∑

n=

vn(t,λ). (.)

The asymptotic forms of S(t,λ) and T(t,λ) are obtained in [] as follows:

S(t,λ) = – sin
(
λ/t + ζt

)
+ O

(
η(λ)

)
(.)

and

T(t,λ) = λ/ – cos
(
λ/t + ζt

)
+ O

(
η(λ)

)
, (.)

where

sin ζt =
∫ b

t
q(x) cos λ/x dx, cos ζt =

∫ b

t
q(x) sin λ/x dx. (.)

Also,

∫ t

a
S(x,λ) dx =


λ/

{
cos

(
λ/t + ζt

)
– cos

(
λ/a + ζa

)}

+ O
(
λ–/η(λ)

)
, (.)

∫ t

a
T(x,λ) dx = λ/(t – a) –


λ/

{
sin

(
λ/t + ζt

)
– sin

(
λ/a + ζa

)
+

∫ t

a
q(x) dx

}

+ O
(
λ–/η(λ)

)
. (.)

The last two equalities are obtained in [].

3 Approximations for the eigenfunctions
In this section we obtain approximations for the solution of (.)-(.). We define two so-
lutions, �(t,λ) and �(t,λ) of (.)-(.) with the initial conditions

�(a,λ) = , � ′(a,λ) = cλ + dλ + e, (.)

and

�(b,λ) = b – b′
λ, �′(b,λ) = b′

λ – b. (.)
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Theorem  Let �(t,λ) and �(t,λ)be the solutions of (.) satisfying (.) and (.), respec-
tively. Then we find

�(t,λ) =


cos{cot–[ T(a,λ)
–cλ–dλ–e+S(a,λ) ]} exp

(∫ t

a
S(x,λ) dx

)

× cos

{
cot–

[
T(a,λ)

–cλ – dλ – e + S(a,λ)

]
+

∫ t

a
T(x,λ) dx

}

and
(i) if b′

 �= ,

�(t,λ) =
(b – b′

λ) exp(–
∫ b

t S(x,λ) dx)
cos{tan– F(b,λ)} cos

{
tan– F(b,λ) –

∫ b

t
T(x,λ) dx

}
,

where

F(b,λ) :=


T(b,λ)

[
S(b,λ) +

b′
λ – b

b′
λ – b

]
,

(ii) if b′
 = ,

�(t,λ) =
b exp(–

∫ b
t S(x,λ) dx)

cos{cot– F(b,λ)} cos

{
cot– F(b,λ) –

∫ b

t
T(x,λ) dx

}
,

where

F(b,λ) :=
bT(b,λ)

–b′
λ + b + bS(b,λ)

.

Proof of Theorem  From (.), (.) and (.), we have

�(a,λ) = c cos c = , (.)

� ′(a,λ) = cS(a,λ) cos c – c sin cT(a,λ) = cλ + dλ + e. (.)

From (.), we obtain

c =


cos c
. (.)

Using this equation in (.),

c = cot–
[

T(a,λ)
–cλ – dλ – e + S(a,λ)

]
. (.)

Hence

c =


cos{cot–[ T(a,λ)
–cλ–dλ–e+S(a,λ) ]} . (.)

Substituting the values of c and c into (.), we evaluate �(t,λ) as required. In order to
find �(t,λ),
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(i) if b′
 �= , we obtain from (.), (.) and (.)

�(b,λ) = c exp

(∫ b

a
S(x,λ) dx

)
cos

{
c +

∫ b

a
T(x,λ) dx

}

= b – b′
λ, (.)

�′(b,λ) = cS(b,λ) exp

(∫ b

a
S(x,λ) dx

)
cos

{
c +

∫ b

a
T(x,λ) dx

}

– c exp

(∫ b

a
S(x,λ) dt

)
sin

{
c +

∫ b

a
T(x,λ) dx

}
T(b,λ)

= b′
λ – b. (.)

From the last two equalities we have

c =
b – b′

λ

exp(
∫ b

a S(x,λ) dx) cos{tan– F(b,λ)}
, (.)

c = tan– F(b,λ) –
∫ b

a
T(x,λ) dx. (.)

Substituting the values of c and c into (.) proves the result and,
(ii) if b′

 = , we obtain similarly from (.), (.) and (.)

�(b,λ) = c exp

(∫ b

a
S(x,λ) dx

)
cos

{
c +

∫ b

a
T(x,λ) dx

}
= b, (.)

�′(b,λ) = cS(b,λ) exp

(∫ b

a
S(x,λ) dx

)
cos

{
c +

∫ b

a
T(x,λ) dx

}

– c exp

(∫ b

a
S(x,λ) dt

)
sin

{
c +

∫ b

a
T(x,λ) dx

}
T(b,λ)

= b′
λ – b. (.)

Hence from the last two equalities we evaluate

c =
b

exp(
∫ b

a S(x,λ) dx) cos{cot– F(b,λ)}
, (.)

c = cot– F(b,λ) –
∫ b

a
T(x,λ) dx. (.)

Substituting the values of c and c into (.) proves the theorem. �

Theorem  Let �(t,λ) and �(t,λ) be the solutions of (.) satisfying (.) and (.), re-
spectively. Then we find as λ → ∞,

�(t,λ) = cλ/ sinλ/(t – a) –
c

λ

(∫ t

a
q(x) dx

)
cosλ/(t – a) + O

(
λη(λ)

)
,

and
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(i) if b′
 �= ,

�(t,λ) = –b′
λ cosλ/(b – t) – λ/

(
b′

 +
b′




∫ b

t
q(x) dx

)

× sinλ/(b – t) + O
(
λ/η(λ)

)
,

(ii) if b′
 = ,

�(t,λ) = –b′
λ

/ sinλ/(b – t) +
(

b +
b′




∫ b

t
q(x) dx

)

× cosλ/(b – t) + O
(
η(λ)

)
,

where η(λ) is as in (.).

Proof of Theorem  We evaluate the terms in Theorem  as λ → ∞. Firstly, using (.)
and (.) together with the series expansion, we find

T(a,λ)
–cλ – dλ – e + S(a,λ)

=
λ/ – cos(λ/a + ζa) + O(η(λ))

–cλ – dλ – e – sin(λ/a + ζa) + O(η(λ))

=
λ/ – cos(λ/a + ζa) + O(η(λ))

–cλ[ + d
c λ– + e

c λ
– + 

c λ
– sin(λ/a + ζa) + O(λ–η(λ))]

=
[

–

c
λ–/ +


c
λ– cos

(
λ/a + ζa

)
+ O

(
λ–η(λ)

)]

×
[

 –
d
c
λ– –

e
c
λ– –


c
λ– sin

(
λ/a + ζa

)
+ O

(
λ–η(λ)

)
]

= –

c
λ–/ + O

(
λ–η(λ)

)
.

From the last equality we have

cot–
[

T(a,λ)
–cλ – dλ – e + S(a,λ)

]
=

π


+


c
λ–/ + O

(
λ–η(λ)

)
, (.)

and from that

cos

{
cot–

[
T(a,λ)

–cλ – dλ – e + S(a,λ)

]}
= – sin

[

c
λ–/ + O

(
λ–η(λ)

)
]

= –

c
λ–/ + O

(
λ–η(λ)

)
, (.)

sin

{
cot–

[
T(a,λ)

–cλ – dλ – e + S(a,λ)

]}
= cos

[

c
λ–/ + O

(
λ–η(λ)

)]

=  –


c λ– + O
(
λ–/η(λ)

)
, (.)
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and


cos{cot–[ T(a,λ)

–cλ–dλ–e+S(a,λ) ]} =


– 
c λ

–/ + O(λ–η(λ))

= –cλ/ + O
(
λη(λ)

)
. (.)

Using
∫ t

a S(x,λ) dx given by (.) we get

exp

(∫ t

a
S(x,λ) dx

)
=  +


λ/

{
cos

(
λ/t + ζt

)
– cos

(
λ/a + ζa

)}

+ O
(
λ–/η(λ)

)
(.)

and also, using
∫ t

a T(x,λ) dx given by (.),

sin

(∫ t

a
T(x,λ) dx

)
= sin

[
λ/(t – a) –


λ/

∫ t

a
q(x) dx

]

+ O
(
λ–/η(λ)

)
, (.)

cos

(∫ t

a
T(x,λ) dx

)
= cos

[
λ/(t – a) –


λ/

∫ t

a
q(x) dx

]

+ O
(
λ–/η(λ)

)
. (.)

Hence

cos

{
cot–

[
T(a,λ)

–cλ – dλ – e + S(a,λ)
+

∫ t

a
T(x,λ) dx

]}

= – sin

[
λ/(t – a) –


λ/

∫ t

a
q(x) dx

]
–


c
λ–/

× cos

[
λ/(t – a) –


λ/

∫ t

a
q(x) dx

]
+ O

(
λ–/η(λ)

)
. (.)

Substituting the values of (.), (.) and (.) into �(t,λ) as in Theorem  and using
trigonometric expansions, we obtain �(t,λ) as required. In order to find �(t,λ) as λ → ∞:

(i) if b′
 �= , using (.) and (.), we obtain

S(b,λ)
T(b,λ)

=
O(η(λ))

λ/[ + O(λ–/η(λ))]
= O

(
λ–/η(λ)

)
(.)

and

b′
λ – b

(b′
λ – b)T(b,λ)

=
b′

λ – b

b′
λ

/ – bλ/ + O(λη(λ))

=
b′

λ – b

b′
λ

/[ – b
b′


λ– + O(λ–/η(λ))]

=
[

b′


b′

λ–/ –

b

b′

λ–/

]
×

[
 +

b

b′

λ– + O

(
λ–/η(λ)

)
]

=
b′


b′


λ–/ + O

(
λ–η(λ)

)
. (.)
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Substituting the values of (.) and (.) into F(b,λ) as in Theorem (i)), we get

F(b,λ) =
b′


b′


λ–/ + O

(
λ–/η(λ)

)
.

From that

tan– F(b,λ) =
b′


b′


λ–/ + O

(
λ–/η(λ)

)
, (.)

cos
{
tan– F(b,λ)

}
=  –




(
b′


b′



)

λ– + O
(
λ–η(λ)

)
(.)

and

sin
{
tan– F(b,λ)

}
=

b′


b′

λ–/ + O

(
λ–/η(λ)

)
. (.)

From (.), we find

b – b′
λ

cos{tan– F(b,λ)} =
b – b′

λ

 – 
 ( b′


b′


)λ– + O(λ–η(λ))

=
(
b – b′

λ
) ×

[
 +




(
b′


b′



)

λ– + O
(
λ–η(λ)

)
]

= –b′
λ +

[
b –

(b′
)

b′


]
+ O

(
η(λ)

)
. (.)

Using
∫ t

a S(x,λ) dx given by (.) we get

exp

(
–

∫ b

t
S(x,λ) dx

)
=  +


λ/ cos

(
λ/t + ζt

)
+ O

(
λ–/η(λ)

)
(.)

and also, using
∫ t

a T(x,λ) dx given by (.)

∫ b

t
T(x,λ) dx =

∫ b

a
T(x,λ) dx –

∫ t

a
T(x,λ) dx

= λ/(b – t) +


λ/

{
sin

(
λ/t + ζt

)
–

∫ b

t
q(x) dx

}

+ O
(
λ–/η(λ)

)
. (.)

From (.), (.) and (.) we see that

cos

{
tan– F(b,λ) –

∫ b

t
T(x,λ) dx

}

= cos

[
λ/(b – t) –


λ/

∫ b

t
q(x) dx

]

+
b′


b′


λ–/ sin

[
λ/(b – t) –


λ/

∫ b

t
q(x) dx

]

+ O
(
λ–/η(λ)

)
. (.)
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Finally, substituting the values of (.), (.) and (.) into �(t,λ) as in Theorem (i))
and using trigonometric expansions, we complete the proof.

(ii) If b′
 = , the prove is similar to (i). �

4 Approximations for Green’s function
In this section, we obtain asymptotic approximations for Green’s function of (.)-(.).
Let Wt(� ,�) be the Wronskian of �(t,λ) and �(t,λ). We define w(λ) as follows:

w(λ) := Wt(� ,�) = �(t,λ)�′(t,λ) – � ′(t,λ)�(t,λ). (.)

It is well known ([]) that the Green’s function of problem (.)-(.) is

G(κ, ξ ,λ) =

⎧
⎨

⎩

�(κ,λ)�(ξ ,λ)
w(λ) , a ≤ κ ≤ ξ ≤ b,

�(κ,λ)�(ξ ,λ)
w(λ) , a ≤ ξ ≤ κ ≤ b.

(.)

Theorem  For a ≤ κ ≤ ξ ≤ b, we find Green’s function of problem (.)-(.) as λ → ∞:
(i) if ◦′

 �= ,

G(κ, ξ ,λ) = –λ–/ sinλ/(κ – a) cosλ/(b – ξ )
cosλ/(b – a)

+
λ–

cosλ/(b – a)

×
{




(∫
κ

a
q(t) dt

)
cosλ/(κ – a) cosλ/(b – ξ )

–
[

b′


b′


+



∫ b

ξ

q(t) dt
]

sinλ/(κ – a) sinλ/(b – ξ )

+
b′


b′


tanλ/(b – a) sinλ/(κ – a) cosλ/(b – ξ )

}

+ O
(
λ–η(λ)

)
,

(ii) if b′
 = ,

G(κ, ξ ,λ) = –λ–/ sinλ/(κ – a) sinλ/(b – ξ )
sinλ/(b – a)

+
λ–

sinλ/(b – a)

×
{




(∫
κ

a
q(t) dt

)
cosλ/(κ – a) sinλ/(b – ξ )

+
[

b

b′


+



∫ b

ξ

q(t) dt
]

sinλ/(κ – a) cosλ/(b – ξ )

–
b

b′


cotλ/(b – a) sinλ/(κ – a) sinλ/(b – ξ )
}

+ O
(
λ–η(λ)

)
,

where η(λ) is as in (.). Similar results hold for a ≤ ξ ≤ κ ≤ b exchanging the role of
κ and ξ .

Proof of Theorem  (i) For the Wronskian, w(λ), we need � ′(t,λ) and �′(t,λ) which are
obtained from z′(t,λ) given by (.). To obtain the derivation of �(t,λ), we substitute (.)



Coşkun et al. Boundary Value Problems  (2017) 2017:71 Page 11 of 12

and (.) into (.) and evaluate the terms as λ → ∞. Hence

� ′(t,λ) = cλ cosλ/(t – a) +
c


(∫ t

a
q(x) dx

)
λ/ sinλ/(t – a)

+ O
(
λ/η(λ)

)
. (.)

Also substituting (.) and (.) into (.) and evaluating the terms as λ → ∞, we have

�′(t,λ) = –b′
λ

/ sinλ/(b – t) +
[

b′
 +

b′




∫ b

t
q(x) dx

]
λ cosλ/(b – t)

+ O
(
λη(λ)

)
. (.)

Using �(t,λ), �(t,λ) as in Theorem (i)) and (.), (.) in (.), we get

w(λ) = cb′
λ

 cosλ/(b – a) + cb′
λ

/ sinλ/(b – a)

+ O
(
λ/η(λ)

)
. (.)

From this


w(λ)

=


{cb′
λ

 cosλ/(b – a)[ + b′


b′

λ–/ tanλ/(b – a) + O(λ–/η(λ))]}

=


cb′
 cosλ/(b – a)

λ– –
b′


c(b′

) λ–/ sinλ/(b – a)
cos λ/(b – a)

+ O
(
λ–/η(λ)

)
. (.)

Theorem (i) is proved by substituting �(t,λ), �(t,λ) as in Theorem (i)) and (.) into
(.). The other part (ii) can be proved similarly. �

Acknowledgements
The authors would like to thank the referees for invaluable comments and insightful suggestions.

Funding
The current work is partially supported by Karadeniz Technical University.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read carefully and approved the final version of the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 February 2017 Accepted: 2 May 2017

References
1. Levitan, BM, Sargsjan, IS: Sturm-Liouville and Dirac Operators. Kluwer Academic, Dordrecht (1991)
2. Annaby, MH, Tharwat, MM: On sampling theory and eigenvalue problems with an eigenparameter in the boundary

conditions. SUT J. Math. 42(2), 157-176 (2006)
3. Fulton, CT: Two point boundary value problems with eigenvalue parameter contained in the boundary conditions.

Proc. R. Soc. Edinb., Sect. A 77(3-4), 293-308 (1977)
4. Harris, BJ: The form of the spectral functions associated with Sturm-Liouville problems with continuous spectrum.

Mathematika 44(1), 149-161 (1997)
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