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Abstract
This paper proposes an analytical procedure for the nonlinear singular boundary
value problem that arises in biology and in the study of some diseases. As a first step,
we present a constructive proof of the existence and uniqueness of solution. Then,
we apply the Picard iterative sequence by constructing an integral equation whose
Green’s function is not negative. The convergence of this iterative sequence is then
controlled by an embedded parameter so that it tends to the unique solution.
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1 Introduction
Consider the two-point boundary value problem of the type

y′′(x) + ny′(x) +
m
x

y′(x) = f
(
x, y(x)

)
,  < x ≤ , m > , n ∈ R, (.)

y′() = , Ay() + By′() = C, (.)

which arises in biology and physiology problems. In boundary conditions (.), we have,
in fact, A �= , A and B have the same sign and C ∈ R, but it is supposed, without loss of
generality, A >  and B, C ≥  (if C < , then we can apply y → –y). It is supposed that
f (x, y(x)) is non-singular with respect to the independent variable x ∈ [, ] but it can be
singular with respect to y.

The general form of the nonlinear diffusion problem is given by []


p(x)

(
p(x)g(x, y)y′)′ = F(x, y),  < x ≤ , (.)

y′() = , (.)

y() = h
(
y(), y(), y′()

)
. (.)

If it is supposed

g(x, y) = exp(nx), p(x) = xm, F(x, y) = exp(nx)f (x, y),
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h
(
y(), y(), y′()

)
= –

B
A

y′() +
C
A

,

then boundary value problem (.)-(.) will be attained. Boundary value problem (.)-
(.), in some special cases, with m = , ,  and n =  has been studied in [–].

On the other hand, boundary value problem of the form (.)-(.) involving the govern-
ing ordinary differential equation (.) or slight generalizations of it has been investigated
by Gatica et al. [], Fink et al. [], Baxley [], Baxley and Gersdorff [], Wang and Li
[], Tinio [], Wang [], Ebaid [], Agarwal and O’Regan [] and also by the authors
of [, ]. In these works, the fixed point theory or approximation theory was prevalently
used, and their studies included assumptions that restrict f (x, y) to be of one sign and usu-
ally continuous for y ≥ . Later, in Refs [–], authors started to allow sign-changing
nonlinearities but still they have required f (x, y) to be continuous for y ≥ . We notice
that, in all these works, it has been assumed n =  and they have considered some par-
ticular types of boundary conditions (.) or some specific forms of governing differential
equation (.).

The aim of the present work is to provide some constructive existence and uniqueness
theorems for problem (.)-(.) of the same type as those provided by Ford and Pennline
in [] by the same assumptions considered by them, i.e., f (x, y(x)) is not only allowed to be
sign-changing but it also can be singular with respect to y. Also, we apply the Picard itera-
tive sequence by constructing an integral equation whose Green’s function is not negative.
The convergence of this iterative sequence is then controlled by an embedded parameter
so that it converges to the unique solution.

2 Constructing the integral equation
We subtract ky from both sides of equation (.) so that the differential equation is con-
verted to

y′′(x) + ny′(x) +
m
x

y′(x) – ky(x) = f
(
x, y(x)

)
– ky(x). (.)

Let us now consider the homogeneous type of the above equation, i.e.,

ω′′(x) + nω′(x) +
m
x

ω′(x) – kω(x) = , m > , n ∈R, (.)

with two homogeneous conditions

ω′() = , Aω() + Bω′() = . (.)

Suppose that um(x) and vm(x) are given as follows:

um(x) = e

 x(–

√
k+n–n)Lm–

α

(
x
√

k + n
)
, α = –

m(
√

k + n + n)

√

k + n
, (.)

vm(x) = e

 x(–

√
k+n–n)U

(
β , m,

√
k + nx

)
, β =

m(n +
√

k + n)

√

k + n
, (.)

where Lm–
α is the generalized Laguerre polynomial which is related to hydrogen atom

wave functions in quantum mechanics. Further, U(a, b, z) is the hypergeometric func-
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tion which is a second linearly independent solution to Kummer’s equation and is defined
by

U(a, b, z) =


�(a)

∫ ∞


ta–(t + )b–a–e–tz dt. (.)

Now, we define

u(x) = um(x), (.)

v(x) = vm(x) – Sum(x), S =
Avm() + Bv′

m()
Aum() + Bu′

m()
. (.)

It can be easily seen that u(x) and v(x) are the solutions of Eq. (.) so that u′() = u′
m() = 

and Av() + Bv′() =  hold, respectively. We will give some properties of these functions
in the next section.

Assume that ϕ(x) satisfies

ϕ′′(x) + nϕ′(x) +
m
x

ϕ′(x) – kϕ(x) = , (.)

ϕ′() = , Aϕ() + Bϕ′() = C. (.)

In fact, ϕ(x) can be expressed in terms of u(x) as follows:

ϕ(x) =
Cu(x)

Au() + Bu′()
. (.)

Now, consider differential equation (.) with the homogeneous boundary conditions

y′() = , Ay() + By′() = . (.)

Then, for k �= , Eq. (.) can be converted to an equivalent integral equation by means of
the Green’s function appropriate to the operator on the left-hand side as follows:

y(x) = ϕ(x) +
∫ 


G(x, t)

[
ky(t) – f

(
t, y(t)

)]
dt, (.)

where G(x, t) satisfies

Gxx + nGx +
m
x

Gx – kG = –δ(x – t), (.)

Gx(, t) = , AG(, t) + BGx(, t) = , (.)

where δ(x) is the Dirac delta function. It can be easily discovered from the elementary
theory of differential equations that G(x, t) may be expressed as

G(x, t) =


W (t)

⎧
⎨

⎩
u(x)v(t), x ≤ t,

v(x)u(t), x ≥ t,
(.)
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where u(x) and v(x) are given by Eqs. (.)-(.) and the Wronskian W (t) is defined by

W (t) ≡ v(t)u′(t) – u(t)v′(t)

= vm(t)u′
m(t) – um(t)v′

m(t)

=



e–t(
√

k+n+n)

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

m(
√

k + n + n)U( nm

√

k+n + m
 + , m + ,

√
k + nt)

× Lm–

 m(– n√

k+n –)
(t

√
k + n)

–
√

k + nU( 
 m( n√

k+n + ), m,
√

k + nt)
× Lm

– mn

√

k+n – m
 –(t

√
k + n)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

= W ()en–ntt–m, (.)

where, obviously, W () depends on n, m and k.

3 Some properties of the Green’s function
In this section, we present some properties of the Green’s function as theorems which are
extremely important in the analysis of (.)-(.).

Lemma . Taking into account A > , B ≥ , m >  and n ∈ R, the functions u(x) and
v(x), given by (.)-(.), satisfy the following properties:

• The function v(x) is a positive decreasing function of x ∈ [, ] and unbounded at the
origin.

• Assuming that m, n and k are such that W () is positive, then u(x) is a positive
increasing function of x ∈ [, ].

• Assuming that m, n and k are such that W () is negative, then u(x) is a negative
decreasing function of x ∈ [, ].

Proof It is straightforward from definitions (.)-(.) and Wronskian W (t) at t = . �

Theorem . The Green’s function G(x, t) is always non-negative, i.e.,

∀k, m > ,∀n ∈R,∀x, t ∈ [, ] : G(x, t) ≥ . (.)

Proof Equation (.) can be rewritten as follows:

G(x, t) =
en(t–)tm

W ()

⎧
⎨

⎩
u(x)v(t), x ≤ t,

v(x)u(t), x ≥ t.
(.)

Now, there are two cases.
First, suppose that m, n and k are such that W () is positive, then from Lemma . it

follows that u(x) is a positive function of x ∈ [, ]. On the other hand, v(x) is a positive
decreasing function of x ∈ [, ] from Lemma .. Therefore, we conclude that G(x, t) ≥ .

Second, suppose that m, n and k are such that W () is negative, then from Lemma .
it follows that u(x) is a negative function of x ∈ [, ]. On the other hands, v(x) is a posi-
tive decreasing function of x ∈ [, ] from Lemma .. Therefore, we conclude again that
G(x, t) ≥ . �
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Theorem . The Green’s function G(x, t) is bounded in such a way that

∀k, m > ,∀n ∈R,∀x, t ∈ [, ] : k
∫ 


G(x, t) dt ≤ μ(k) < . (.)

Proof Suppose that ω(x) satisfies differential equation (.), then it is easily seen that

d
dt

[
tmentω′(t)

]
= tm–ent(mω′(t) + ntω′(t) + tω′′(t)

)

= tm–ent(ktω(t)
)

= ktmentω(t), (.)

hence

d
dt

[
tmentω′(t)

W ()en

]
=

ktmentω(t)
W ()en , (.)

therefore

d
dt

[
ω′(t)
W (t)

]
=

kω(t)
W (t)

. (.)

Now, with the help of this last equation, we obviously have

k
∫ 


G(x, t) dt =  +

u(x)v′()
W ()

. (.)

Lemma . confirms that v′() <  and u(x)
W () ≥ , then u(x)v′()

W () < . On the other hand, The-
orem . reveals

∫ 
 G(x, t) dt ≥ , therefore we conclude that

 ≤ μ(k) =  +
u(x)v′()

W ()
< , (.)

and the proof is complete. �

4 The region of existence and uniqueness
Consider a standard Picard sequence iteration as below which is based on Eq. (.)

yn+(x) = ϕ(x) +
∫ 


G(x, t)

[
kyn(t) – f

(
t, yn(t)

)]
dt, n = , , , . . . (.)

or equivalently in the operator form

yn+ = ϕ(x) + T
[
kyn – fn

]
, n = , , , . . . , (.)

where yn = yn(x), fn = f (t, yn(x)), and the operator T : C[, ] → C[, ] is defined as

T
[
z(x)

]
=

∫ 


G(x, t)z(t) dt, x ∈ [, ]. (.)

Now, we show that (.) can converge uniformly in a finite region such as D : [, ] ×
[yL(x), yU (x)] so that it presents the unique solution to boundary value problem (.)-(.)
within it.
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Theorem . Consider boundary value problem (.)-(.) and suppose the following con-
ditions hold:

(a) ∂f
∂y is continuous in D : [, ] × [yL(x), yU (x)] and satisfies  ≤ ∂f

∂y ≤ ND within it.
(b) y(x) = 

 [yL(x) + yU (x)] and yL(x) ≤ yn(x) ≤ yU (x), n = , , , . . . .
(c) The value of k satisfies k ≥ ND

 .
Then the Picard sequence iteration (.) converges uniformly to y(x) which is the unique
solution of boundary value problem (.)-(.) in D.

Proof Define

	yn(x) = yn(x) – yn–(x), (.)

	fn(x) = f
(
x, yn(x)

)
– f

(
x, yn–(x)

)
, (.)

for n = , , , . . . , then by subtracting two successive iterations, we obtain

	yn+ = T
[
k	yn – 	fn

]
, n = , , , . . . . (.)

Applying the mean value theorem to 	fn results in

	yn+ = T
[(

k – ψn
)
	yn

]
, n = , , , . . . , (.)

where

ψn(x) =
∂f
∂y

[
x, yn(x) – θ (x)	yn(x)

]
,  ≤ θ (x) ≤ . (.)

Remembering k ≥ ND
 and  ≤ ∂f

∂y ≤ ND within D, we conclude – ND
 ≤ k – ψn ≤ k, and

then  ≤ |k – ψn| ≤ k. Therefore, Eq. (.) leads to

∣
∣	yn+(x)

∣
∣ ≤ k

∫ 


G(x, t)

∣
∣	yn(t)

∣
∣dt ≤ k‖	yn‖

∫ 


G(x, t) dt, (.)

where

‖y‖ = max
≤x≤

∣
∣y(x)

∣
∣. (.)

Now, the application of Theorem . yields

‖	yn+‖ ≤ μ(k)‖	yn‖. (.)

In other words,

‖	yn+‖ ≤ [
μ(k)

]n‖	y‖, μ(k) < . (.)

Now, we have proved that {yn(x)} is a Cauchy sequence with the norm defined by (.),
then yn(x) converges uniformly to a function y(x) that satisfies integral equation (.)
or equivalently boundary value problem (.)-(.). We prove uniqueness of the solution



Dinmohammadi et al. Boundary Value Problems  (2017) 2017:63 Page 7 of 9

by contradiction. Suppose that y(x) and y(x) are two solutions to (.). Then they easily
satisfy (.). Now, choosing k ≥ ND

 and using the exact previous analysis that leads to
(.), we obtain

‖y – y‖ ≤ μ(k)‖y – y‖, (.)

that is a contradiction because μ(k) < , and this completes the proof. �

5 Solution procedure and illustrative physiology models
According to Theorem ., for a given problem (.)-(.), in order to obtain the solution,
a simpler procedure is to obtain relevant yL(x) and yU (x) and then to apply the following
Picard iterative sequence:

y(x) =


[
yL(x) + yU (x)

]
,

yn+(x) = ϕ(x) +
∫ 


G(x, t)

[
kyn(t) – f

(
t, yn(t)

)]
dt, n = , , , . . . .

(.)

Now, we implement it on two nonlinear singular boundary value problems that arise in
real physiology applications.

Example . Consider the following diffusion problem:

y′′(x) + y′(x) +

x

y′(x) = exp(y) – , (.)

y′() = , y() + y′() = . (.)

Assume yL(x) =  and yU (x) = , therefore y(x) = 
 . Also consider k = exp() because

∂f
∂y = exp(y) ≤ exp() and continuous in D : [, ] × [yL(x), yU (x)]. Now, it can be verified
easily that the assumptions of Theorem . hold. To this aim, from Eqs. (.), (.) and
(.), we obtain

ϕ(x) =
u(x)

u() + u′()
, u(x) = e


 x(–

√
e+–)L

α(x
√

e + ),

α = –
(
√

e +  + )

√

e + 
.

(.)

Simple calculations in Mathematica imply that ϕ(x) is an increasing function and
. ≤ ϕ(x) ≤ .. On the other hand, it holds

∫ 


G(x, t)

[
kyn(t) – f

(
t, yn(t)

)]
dt =

∫ 


G(x, t)

[
kyn(t) +  – exp

(
yn(t)

)]
dt

=
∫ 


kG(x, t)

[
yn(t) +

 – exp(yn(t))
e

]
dt. (.)

If  ≤ yn(x) ≤ , then  ≤ yn(t) + –exp(yn(t))
e ≤ .. Then from Theorem . we have

 ≤
∫ 


G(x, t)

[
kyn(t) – f

(
t, yn(t)

)]
dt ≤ .,
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Figure 1 Approximate profile to the diffusion
problem, Example 5.1.

Figure 2 Approximate solution of the diffusion
problem, Example 5.2.

therefore we conclude  ≤ yn+(x) ≤  from (.). The approximate solution is given in
Figure .

Example . Consider the following problem:

y′′(x) + y′(x) +

x

y′(x) = y, (.)

y′() = , y() + y′() = . (.)

Suppose again yL(x) =  and yU (x) = , thus y(x) = 
 . Moreover, consider k =  because

∂f
∂y =  and continuous in D : [, ] × [yL(x), yU (x)]. Now, indeed all the assumptions of
Theorem . hold because

ϕ(x) =
u(x)

u() + u′()
, u(x) = e


 x(–

√
–)L

α(x
√

),

α = –
(

√
 + )


√


,

(.)

and then . ≤ ϕ(x) ≤ . while it is increasing in [, ]. Moreover, it can be
easily seen that

∫ 


G(x, t)

[
kyn(t) – f

(
t, yn(t)

)]
dt ≡ ;

therefore, obviously,  ≤ yn+(x) ≤  from (.). The analytical approximate solution to this
problem is shown in Figure .
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