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1 Introduction

The asymptotic behavior of Bingham fluid has been studied by many authors, see for in-
stance [1], where the analysis of the Bingham fluid flow variational inequality was carried
out, and where the authors investigated the existence, uniqueness and regularity of the
solution for the steady and in-stationary flows in a reservoir. Existence and extra regu-
larity results for the d-dimensional Bingham fluid flow problem with Dirichlet boundary
conditions were studied in [2, 3].

In [4], the author has addressed the asymptotic behavior of a Bingham fluid in a thin
domain. Unfortunately in this work a complete characterization was not given because
of the difficulty encountered due to the choice of the test functions and of the imposed
boundary conditions.

The authors in [5], studied the same problem, in which only the Dirichlet conditions on
the boundary have been considered.

Along the same lines, the authors in [6] have proved the asymptotic analysis of an
isothermal Bingham fluid in a thin domain with non-linear Tresca boundary conditions.

The asymptotic behavior of a coupled system involving an incompressible Bingham fluid
and the equation of the heat energy, in a three-dimensional bounded domain with Tresca
free boundary friction conditions were investigated in [7].

The numerical solution of the stationary Bingham fluid flow problem were studied in
[8-10]. A variety of work has been done on the mechanical contact with the various laws
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of behavior and various friction boundary conditions close to our problem; however, these
papers were restricted only to the results of existence and uniqueness of the weak solu-
tion under several assumptions. Let us mention for example the work by [11] in which the
authors worked the contact problems with friction and adhesion for electro-elastic-visco-
plastic materials. The existence and stability results of solitary-wave solutions to coupled
non-linear Schrédinger equations with power-type non-linearities arising in several mod-
els of modern physics were studied in [12]. The authors in [13] have studied a symmetric,
non-linear eigenvalue problem arising in earthquake initiation, and proved the existence
of infinitely many solutions. The new variational principles for solving extended Dirichlet-
Neumann problems is given in [14]. The dynamic evolution with frictional contact of an
elastic body was studied in [15]. Other similar problems can be found in monographs such
as [16—21], and the literature quoted there.

In our present work, we further the research of [6, 7] on the asymptotic behavior of a
stationary problem for the isothermal Bingham fluid. However, this time our operator will
be perturbed by a term (# - Vu) in a three-dimensional thin domain Q° with Fourier and
Tresca boundary conditions. This source term plays an essential role in quantum mechan-
ics, where this non-linear term is used to perturb a linear operator to obtain a non-linear
operator which gives applicable results; see [22].

We consider the Dirichlet boundary conditions on T'; UT;, where T'; is the lateral one,
the Fourier boundary condition at the top surface I';, finally, a non-linear Tresca interface
condition at the bottom one w. The weak form of the problem is a variational inequality
and the main difficulty here is to estimate the velocity, the pressure and its gradient.

Our work is organized as follows. In Section 2, the related weak formulation is given
and the existence theorem of weak solutions is proved. In Section 3, we use the change
of variable z = x3/¢, to transform the initial problem posed in the domain ©° into a new
problem posed on a fixed domain €2 independent of the parameter . We find some es-
timates on the velocity and pressure which are independent of the parameter and prove
the convergence theorem by using different inequalities. The limit problem with a specific
weak form of the Reynolds equation, the uniqueness of the limit velocity and pressure are

given in Section 4.

2 Problem statement and variational formulation

We consider a mathematical problem governed to the stationary equations for Bingham
fluid in a three-dimensional bounded domain Q¢ C R* with boundary I'*. This boundary
of the domain is assumed to be composed of three portions: o, the bottom of the domain,
I'{, the upper surface, and I'j, the lateral surface. The fluid is supposed to be incompress-
ible. We impose the Fourier boundary condition at the top surface, a non-linear Tresca
interface condition at the bottom one and Dirichlet boundary conditions on the top and
the lateral parts. The fluid is acted upon by given body forces of density f.

Let w be a fixed bounded domain of R? of equation x3 = 0. We suppose that w has a
Lipschitz continuous boundary and is the bottom of the fluid. The upper surface Fi is
defined by x3 = eh(x'), (x" = (x1,%3)). We introduce a small parameter ¢, which will tend to
zero, and /1 a smooth bounded function such that 0 < &, < h(x') < h*, for all («/,0) € w.

We denote by Q¢ the domain of the flow: Q¢ = {(x',x3) € R3: (x',0) € ,0 < x3 < eh(x')},

by o¢ the deviatoric part and p°® the pressure. The fluid is supposed to be visco-plastic,
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and the relation between o® and D(u°) is given:

e _ e £
th - Utj -p 8‘]’

5 = 2uD(f) + of ‘gg;i;l if D(u®) #0,

|o¢] <af if D) #0,

here a® > 0 is the yield stress, 14 > 0 is the constant viscosity, #° is the velocity field, §; is
the Kronecker symbol, and D(u*) = %(sz +(Vu)T).

For any tensor D = (d;), the notation |D| represents the matrix norm: |D| = /Zi,jdl'jdl'j'
We denote by n = (11, 13, n3) the unit outward normal vector on the boundary I'*. The
normal and the tangential velocity on the boundary w are

& _ & _ & X & _ & _ .
u,=u’-n=u;-n; and up =u; —u,- n.

Similarly, for a regular stress tensor field o®, we denote by o and o the normal and
tangential components of o° on the boundary w given by

& _ & . -~ . .. E _ € . ~€ ..
op=(0°n) n=oj;-ni-n and orp =0, M—0, N

We consider now the following mechanical problem.

Problem 1 Find a velocity field u° : Q° — R3 and the pressure p* such that

—div(c®) +u-Vu=f° inQ°, (2.1)

o) =05 — Py, .

5 = 2uD(uf) + ot ‘gg;g‘ if D(uf) #0, } in Q°, (2.2)

55 <a® if D) #0

div(u’) =0 inQ°, (2.3)
& € l€ £ - 0,

or(w) + lu onTlY, (2.4)

u®-n=0 !

u®*=0 onTljy, (2.5)

u*-n=0 ono, (2.6)
& ké‘ &€ —

|01: | < = U =S on w (2.7)

lofl=k® = 3Jr=>0:u=s-Ar0t,

The law of conservation of momentum is given by equation (2.1). The relation between
o® and D(u®) is given by (2.2), equation (2.3) represents the incompressibility equation,
the boundary condition (2.4) is of Fourier type where [* > 0 is a given scalar, the Dirichlet
boundary conditions on Fi is given by (2.5). Since there is a no-flux condition across w we
have equation (2.6). Condition (2.7) represents a Tresca thermal friction law on @ where
k*® is the friction coefficient.

To get a weak formulation, we introduce the closed convex,

Ve={ve (H(2))’:v=00nTv-n=00nwUT?},
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Vi, ={ve Vv :divv=0},
L3(°) = {qeLZ(QS) :/ qdx = 0}.
QE

By standard calculations, the variational formulation of the problem (Pb;) is given by:
Find uf € V., and p® € L3(2°) such that, for all ¢ € V¥, we have

a(us,go - us) - (pg,div(go)) + ls/; ug(go - us) dt + b(us,go - us) +7°(p) —jg(ug)

> (f* 9 —uf), (2.8)

where

a(s0) =20 [yl (pdive) = [ o divie)dn

ous
b(us,w):/ uf — g dx, (f£,¢)=/ Sfloidx,
Qf Xi Qf
j€(¢)=fkgl¢|dx/+a£ /QE|D(¢)|‘1"-

We introduce some results which will be used in the next. The detailed description can
be found in [23]. We have

|V(u€) |2 < 2/ |D(u8) |2 dx + C(Ff)/ |u5 |2 dr, Korn inequality, (2.9)
Q¢ Qe re
e|2 * g2 *2 2 ou’ ? . ¥ .
|u | <2h'e |u | +2h*e —1 , Poincaré inequality, (2.10)
QF ]"f Qf ax?)
b Lb? 2 . .
ab<n 5t ¥(a,b) € R*,Vn, Young inequality, (2.11)

where C(I'}) = 2| D2#® || c@)(1 + || D1A° ||2C@)~
Theorem 2.1 Let u® be a solution of the variational problem (2.8), then

a(us,u£)+l—€/ |u8’2dr+/k8’u5‘dx’+a‘g/ ’D(us)’dx
2 Jre ® o

8e2*r i

n 112 2
=% [Va 1200 + [ v z_s] 11 20y (2.12)

Proof Choosing ¢ = 0 as test function in inequality (2.8), we get

a(us,u8)+lg |u‘9|2dr +b(u£,u€)+/k8|u£|dx’+a‘9/ |D(u‘°’)|dx§ (fs,ug) (2.13)
w Qf

rf

as (%, u®) < |If°ll2(q¢)ll#° |l 2(qs) and by using the Poincaré inequality (2.10), we obtain

1
b
(f*u’) < vV2eh* ”fg ”LZ(szs)(/rS |”£|2d7> + \/i(gh*) pr HL%Q&)”VMS “LZ(QS)'
1
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By the inequality (2.11), we have

8e**?  eh*7, ..
e [T P

€ & M
)] = 2 9 [+ [ 2

On the other hand

Using the fact that 24} ()—’ = (ue)2 and by the Green formula, we find

zau

1
b(us’us)ziﬁs(uj)zug nldt_/s;g( j) o dx.

As u® € Vi, we obtain b(u*, u°) = 0, and from (2.13)-(2.14), we deduce (2.12).

l—/ |u8|2dr.
2 re
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d

Theorem 2.2 Let u® be a solution of the variational inequality (2.8). We assume that el° = 1

and
crs 1
lsl < o (2.15)
then
o112 3842 h*? 488/’1
19 ey = (2255 + 5 216
Proof We estimate a(u®,u®) and frf |uf|? dt. According to (2.12), we obtain
2 4 2
”Vus ||L2(Q'3) < —a(u’,u") +4C(I) |”8| dt
12 e
1 32e20* deh*
ﬂVuM e LI
IMC 64C(T%) , ., 8C(T¥) .
e e [T
Now, using the inequality (2.15) we deduce (2.16). d

3 Change of the domain and some estimates

In this section, we will use the technique of scaling in ©2° on the coordinate x3, by introduc-

ing the change of the variables z = 2

of e:

Q={(x,z) eR’: (+,0) €ew,0 <z < h(x)}.

. We obtain a fixed domain Q which is independent
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We denote by I' =w U T, UT; its boundary, then we define the following functions in Q:

u; (¥, z) = u; (x',x3) fori=1,2;
w5 (x',z) = e tus (¥, x3); (3.1)

ﬁs(x ,Z)=¢ P (', %3).

Let us assume the following:

-~

k=eks;  f(x,2)=f*(¥,x3) and T=el;  @=ea’.
Let

V:{ae(HI(Q))S:¢:00nFL;¢-n=00anF1},
de:{a € V:div(@) = 0},

)={¢" = (¢}, ¢3) € (H'(R)*: 9" =0 on Ty},
'*eLz(Q),i=1,2and¢*=00nFL},

0
V.- {w* - (eh.v) e @) 2

Z(V) = {¢ € T1(V) : satisfies the condition (D')},

where the condition (D) is given by

/ <¢1* (*',2) % (+') + 93 (+,2) 99 (x’)) dx'dz=0, V6 e Cjw).
Q axl 8x2

Injecting the new data and unknown in (2.8), and after multiplication by & we deduce that
(a8, p°) satisfies the following problem:

it/s S: ¢ d - Asd/d
2 [ ) s e

1<ij<2
2 N N
ou;  ,0u5\ 0
. ; dx'd
+MIZ=1:/Q(8Z +e axi)az(¢ ;) dx' dz
2

AN
2f 20Us %Y ~eN g
5 M LT By —a5)dx' d
+ /Que <8 7% + az)axj(¢3 i5) dx' dz

j=1

ot 0
+ L(ZMSZE)—; —?>£(¢3 — 1) dx’ dz
ot
2
+Z/98u’3xl(¢ dxdz+2/

1<ij<2

5) dx' dz

2 . .
+ Z szﬁsa—bﬁ(ér—ﬁ‘s) dx' dz + | e*i ity (5 — i) dx’ dz
Q 3 0z ! i Q 3 0z 3 3

i=1

+ Z/Titf(x’,h(x/)($i(x’,h(x’)) — W ()1 + |V () d

w
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o [T (o) Gl () = 5 ) 1+ |90 )
+/ 1P| — dx +a/}D(¢)‘dx a/}D }dx dz
2
=N / l £)dx' dz + / efs (s — ) dx' dz, VpeV, (3.2)
i=1 2
where
|D(V)|_[4l<i2j;28 <8xj+8xi> +2; oz o) TP\ ) |

YveV. (3.3)

Now we establish the estimates and convergences for the velocity field #* and the pres-
sure p° in the domain Q.

Theorem 3.1 Assuming that f¢ in (L*(Q2°))3, the friction coefficient k? is a non-negative
function in L*(w), and under the assumption of (2.15), there exists a constant ¢; > 0,1 =0
to 4 independent of € such that

~e |12 A 12 e 112 a2
o Hé@, QPM 00 >§Cm o
izl 9% e 9z LZ(Q i1 * o 29
|| oy <1 Sori=12, 35)
i3] 20 = c2 656
H <c3, fori=1,2, (3.7)
axl H- l
” L < é&cy. (38)
0z

Proof As e |[f5||L2 @)
of the inequality (2.16), we obtain

|[f|| 2@ and passing to the fixed domain 2 in the right member

384/4*2 48h*
2®5[ }Wmm, (3.9)

2

from (3.9), we deduce (3.4) with ¢y = [3831;* W 481" ] |[f||
For getting the estimates (3.5) and (3.6), using the Pomcare inequality in the domain Q:

£ 2
/\ﬁf\zdeZh*/ \a§|2dr’+2h*2/ =i
Q Iy Q

dx'dz, i=1,2,3, (3.10)

9
0z

from (3.4), we have
2 2

ons
dx'dz<cy, i=1,2.

21*? / —L
Q

~E
ous

0z

dx'dz<cy and 2&*h*? /
Q
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On the other hand

/ !&f‘zdt’ <max./1+ ‘Vh(x/)yzf ‘uﬂzdr, fori=1,2, (3.11)

I x'ew re

/F !&B‘Zdt' < ér:}g;(,/l+ |Vh(x’)|2 /I-;’u§|2dt (3.12)
1 1

*2 * ~
from (2.12) and (3.4), we have frf P dt < 22 + [% + %]”f“%z(g).
Then

\us |2 dr < C/(Q,z pc,f‘, h*). (3.13)
i

From (3.10)-(3.13), we deduce %] [|;2) < c1,i=1,2 and ||e#5]|;2(q) < ca.
Choosing ¢ = (& + v, i, 5) in (3.2) and by Cauchy-Schwarz’s inequality, we have

[T o) v
<D/ vi(e) | [ a5 P e v dx/]%
<[ |w<xch<x’>>|2mdx/f
Zdr’)%grlwdr’)%.

As ( fl"l Ak dT’)% < C’ and according to the continuity of the trace application from
HY() in L*(I';), there exists a constant C” independent of ¢ such that (fr1 [ d‘r/)% <

C"NY -
Therefore

u

&
1

<7Tmax 1+ Vh(x/)|2(f
xew I

f T (o, 1)) ¥ (&, () 1+ VA P de’ < C 1l
where C” = C'C"Tmaxy e, /1 + VA2,
By the Holder inequality, we get

~e
oug
8x1

np O] ,
EZ/MTﬂde dz
@ 0

<é¢? ”’:‘i ”L4(Q>

1V Nl 24 (q)-
L2(Q)

Using a Sobolev imbedding [|v||4(q) < clIV]l 1), we obtain

~NE
ous
8x1

8"8
ezfﬁfﬁt/fdx’dz
@ Ox

<ce?|

|4 1110 LZ(Q)”Vf”HHm

In the same way,

~E
ousg
8962 12

<ce? ”ﬁg HHI(Q)

e 00l /
Ezfugﬂde dz
Q ~0x

11l
()
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8141
0z

8'\5
82/ ﬁgﬂl/fdx/dz
Q 0z

< ce?|i 3||H1 @

1Y 1l
Q)

The Cauchy-Schwarz inequality gives

i oy

LZ(Q)) ‘

8961 896}'
NED: )’ Yy
91 || 12()

L2 ) L12(Q)

0z

(

12(Q)

ous
+C‘92””1”Hl(9) a_xi 2Q)”l/f”hrl(sz)
A BAE R 8A6
+C€2||u§||H1(Q) 3_2 LZ(Q)”V/”HI(Q)+cg2||u§”Hl(Q) aileLz(Q)Hl//HHl(Q)

+ C Y ey + @VIRU DO | o g + Il 2@ 1l 20

as [|D(Y)l2@) < 1V | 1) and from (3.4)-(3.6), we deduce

2
11 )

+(2cc1C + c2C+ C") W ey + @VIQUIV ey + I 2@ ¥ ). (3.14)

Bx, 12(Q H

In the same way, if we choose ¢ = (il — V/, it5, i) in (3.14), we obtain

a’\s
/ —rdx' dz
8961
2
<uC
=H (}1 ax, 12(Q H 0z 12(Q >

+(2cc1C + ey C + C") 1Y ey + @V QY (0
+ |lf||L2(Q)||1/f||H1(gz)

Then we get (3.7) for i = 1.
Choosing now b= (af, 45 £ ¥, %5) in (3.14), we obtain (3.7) for i = 2, and we choose

~

¢ = (5, u5, 1§ + ) for getting (3.8). O

4 Convergence results and limit problem
Theorem 4.1 Under the same assumptions as in Theorem 3.1, there exist u* = (u},uz) € V,
and p* € LA(), such that

w; =~ u; (1<i<2)weaklyinV,, (4.1)

l
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ous
sa—ul 0 (1<ij<2) weakly in LX(S), (4.2)
Xj
s,
(4.3)
2 0l - 12
£ T —0 (1<i<?2)weaklyinL*(Q2), (4.4)
etl, — 0 weakly in L*(R), (4.5)
P —p*  weakly in L*(Q2), depend only of x'. (4.6)

For the proof of this theorem, we follow the same steps as in [6].

Theorem 4.2 With the same assumptions of Theorem 3.1, the solution (u*, p*) satisfies the

following relations:
du a , NI AN
N> Bz - u})dx dz—/Qp (x)(_8x1+_8x2>dx dz
A oh(x') dh(x’
‘/p*(x/)[qﬁl(x,h(x’)) a(x) +q§2(x’,h(x’)) (x)]dx/
1) X1 0xo

ST [ ) )

(4.7)

[\
0]~
e
‘§~>
|
<
e
~
<
<
m
=
S

Proof As fw7825t§(x/,h(x’)ﬁg(x’,h(x/)))\/l +|Vh')|>dx’ > 0, then applying lim,_, inf in
the left part of (3.2) and the lim,_,¢ in the right part of (3.2) and from the convergence

results of Theorem 4.1, we obtain
i/ 8—M:8—u;dx/dz+i’l\/‘ up («, h(x'))uf (x/, h(x')) dx’
=1 7€ Iz 9z -1 Yo l l
2 2\ 2
1 ou; ,
/k| ’dx +oz/9( Z(az)) dx' dz

ou; 8¢,
<Z/ 0z Bz

+Zl/ )d),(x h(x ))dx'+/p*(x')a({;£dx/dz

Q z
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AN ;~ ad)l
+/wk|¢|dx +a/9(_;<82>> dx' dz

(9P 09
+/Qp (x)<8x11 8x§>d dz +Z/f 1) dx' dz

(4.8)
as pr (96)3‘7’3 dx' dz = f p (x’)d)g(x h(x'))dx' and d)g = ¢1 Frodes qbz ~,we have
fp( )ﬁdxdz f (x )(¢—+<z3—) (4.9)
Q 0z » ' s ‘
and from (4.8)-(4.9), we deduce (4.7). O

Remark 4.1 If ¢ satisfies the condition (D), the inequality (4.7) is reduced as follows:
Z/ (a‘ﬁl ou )d dz+Zl/ () i(s 1)) - 22 (¥, ()
Z 1
2 a2\ 7
N * /A~ 1 3(]5,‘ /
+/wk(|¢|—|u |) dx +a/9(§i=21<32> ) dx' dz
1 &0\ 2
—a/§2<§;< Bz> ) dx' dz

>Z/f Ydx'dz, ¥pey (V).

(4.10)
Theorem 4.3 The limit functions u* and p* satisfy
prx,x0,2) = p*(x,%0) inQ and p* e H(w), (4.11)
u a;;; + 2% =f, i=1,2inL%(Q). (4.12)

Proof Choosing in (3.2) b = u; fori=1,2, b3 = i £ ¢ with ¢ € H(S2), we obtain

20 ad s
Z/Me ( u3+—)—¢dxdz+/<2,u82 s p) I/fdxa'z
ox; 0z ) dx; Q

0z
: o1l o1t
+;/Qsz*itfa—xjxﬁdx’dz+L84Q§Tjwdx’dz
=/ efsr dx' dz.
Q

By the results of convergence (4.1)-(4.7), we deduce

3
/ p*a—‘/z’ dd'dz=0, Yy € H\(SQ), (4.13)
Q
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then

*

ap
0z

=0 inH Q). (4.14)

Choosing now ¢; = ¢ & v; for i = 1,2, with ¥; € H}(€2) and ¢ = 75 in (3.2) we obtain

out ’
[ )

1<ij<2

2 N
ous o2 ov;
+'ul,2_1:/9<8_z+ 8x> dx' dz + Z/

1<ij<2

dx' dz

 dx' dz

2
= Z/ﬁlp,dx’dz
=1 7€

Using (4.1)-(4.7), and choosing ¥; = 0 and ¥, € Hy(R2), then ¥, = 0 and ¥y € H}(Q), we
obtain

- A 2 dut 2
Ll dx d LTy dz = fir; dx’ dz. 4.15
;Lpaxixz+uizzlfﬂazazxz;/9fwxz (4.15)

By utilizing the Green formula, we obtain (4.12) but in H™1(R).

To prove p* € H'(w), we see from (4.14) that p* does not depend on z, then following
[23], we choose v; in (4.15) such that ¥;(x/, z) = z(z — h(x'))0 (x') with 6 € H}(w), and using
the Green formula, we obtain

3 ~
tf» 09D - / hazo s+ [ )it (1) w0, 0) o = [ Tioa,
where

~

x z dz and f / )) (x z)dz,

i_ /)

SO

h(x)[ug (', (%)) + 24} (', 0) ] - 2hiz; — —h3 =f, i=12inH () (4.16)

0X;

as f; € L2(Q), u} € V, in particular in L?(w), therefore i} and f; are in L*(w). Then from

A 2x
(4.16) we get (4.11). As f; € L* "% in L*(); then (4.12) holds. O

Theorem 4.4 Under the assumptions of the preceding theorems, the traces s*, T* satisfy
the following equality:

e h h ~\ _ - - o
/ —Vp* — =5 ——s; +F|Vodx' + | hii*¢ -ndo=0, VéeH' (), (4.17)
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=
R\
N—
1
c\
=
R\
=7
xR
N
N—
&
g
m
D
&

n
Proof Integrating twice (4.12) between 0 and z, we obtain

2
put(x',2) = us* () + %Vp* +puzt* - F(x/,2). (4.18)
Replacing z by /4, we obtain
h2
put (&, h(x')) = us* () + EVp* + pht* — F(x', h)
50
2

ht* = %F(x’,h(x/)) +85(x') = s*(x) - h—MVp ; (4.19)

integrating (4.18) with respect to z, in the interval (0, 4(x)), we obtain

i (¢ () = hs* () + Lot s e L [ P2y (4.20)
’ TR A '

we set for any function ¢

I B LS ,
(p(x) = h(x,)/(; (P(X,Z)dz, Vx c w,

on the other hand, V¢ € H'(w),

3 ~E / / h(x/) : ai/\lf ai\lg /
/qudlv(u)dx dz:O:/w(b(x)/o Z(a—xi+a—z)dzdx

f e [ o itg(x/,h(x/))—itg(x/,o):|dx/,

we have #5(x/,0) = 0 in Q2. Then

Jo T
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Using the Green formula, we get
2 2
0 ~e , e
Z/I;B—xiuihdx = Z/Bwhui¢~nida.
i=1 i=1
As it — u* in V, and consequently in L?(w), therefore L;t:s — %! in L*(w), we deduce
2 o4 o 2
> / —iithdy =) / Wi - nido, V¢ € H' (), (4.21)
i1 v axi i-1 dw

using (4.19) to eliminate the term containing t* from (4.20). Multiplying now (4.20) by
V¢, then integrating it in w and using (4.21), we obtain (4.16). O

Theorem 4.5 The solution (u*, p*) of our limit problem is unique.

Proof Let (U',p'), (U?, p*) be two solutions of the limit problem (4.10), then

Ul (dd; AU
Z/ ( = )d dz
2
3T [ M) 6 ) - )
=1 v
k(11 - |U|) dx +@ Ly a(z’iz%d/d
[ Rg-pasa [ (53(5) ) avas
N EENTIAN : /
_a/Q(E;:<8—Z> ) dx' dz
2

fi(i-U)dx'dz, Ve (v), (4.22)

and

2 ~
au? (a¢p;, oU?
Z/ (0P U vy
q 0z \ 0z 0z

i=1

* ;j/w U (¥, h(@)) (9 (', h(x)) = UF (¥, h(@))) dd
+/w (161 - |u?]) dx’ +a/9<2;<<’;¢;) )ld »
[(E5()) we

2
= / Jildi-uP)dx' dz, Vhed (V). (4.23)
i=1

Q)
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Taking ¢ = U2 in (4.22) and ¢ = U" in (4.23), we obtain

2
au1 au2 ou!
Z ( )d dz

=1

T [ 1w, o)) (U2 ()~ L (4 ()

=1 Y®

1
R 1S/ au\%\?
2 gyl ;o 1 i /
k(|U| |LI|)dx +Ol/9<22 (82)) dx' dz

/( > (! Uf)z)zdx/dz

2
>> | f / - u})dx dz, (4.24)
i=1

)d dz

(5 -
/w UL, b)) - U (¥, () ) d
k(U] - |u2]) dx +a/9<% 22:(83—?)3 } "

i=1
2 2\ 2
(1 ou? ,
_a/g<§;( %z ) ) dx' dz

2
AU - U?) dx dz. )
z;/Qf(ul U?) dx' dz (4.25)

+
T~

Q)

&Mw

+
T~

By adding the two inequalities (4.24), (4.25), it follows that

2

aul (ou? U} ou? (Ul  au?
Z/ (— >d dz+Z ( —l>dx/dz
P, 0z 0z

2
= 37 [ U3 ) - ) .
i=1 Y®

then 37, [, |2 (U? - UM dx' dz < 0.
Using the Poincaré inequality, we deduce that

|u? - ui (4.26)

so u* is unique.
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The uniqueness of p* in Lj(w) N H'(w) follows then from the specific weak Reynolds

equation (4.17), indeed we have

3 ~ .
/ (h—Vpl - éI,[l(x’, 0) - gul(x’,h(x’)) +1~3>V<fbdx’ +/ hU'¢ -ndo =0
w il

12 2 Y
Vo € H'(w), (4.27)
h3 2 h 2(.7 h 2 () / ™ In / >N
—Vp°'—=-U (x,O)——L[ (x,h(x))+F Vodx' + | hU%¢p-ndo =0
@ 12 2 2 o
Vé € H (). (4.28)

Subtracting (4.28) and (4.27) and using (4.26), we obtain

3
/ il—z(Vpl ~Vp*)Védx' =0,

taking ¢ = p! — p* and by Poincaré’s inequality, we get [|p" — p?||2(,) = O.
This ends the proof of the uniqueness. g

5 Conclusions

In this research, we studied the asymptotic analysis of a non-linear problem in a three-
dimensional thin domain ©° with Fourier and Tresca boundary conditions. Firstly, the
problem statement and variational formulation were formulated. We then have studied
the asymptotic behavior in the one-dimensional case when the domain parameter tends
to zero. In the latter case, the main results concerning the limit of weak problem and its
uniqueness have been obtained.
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