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Abstract
In this paper, we investigate the existence of multiple solutions for Kirchhoff-type
equations involving nonlocal integro-differential operators with homogeneous
Dirichlet boundary conditions as follows:

⎧
⎪⎨

⎪⎩

M(
∫

R2n
|u(x)–u(y)|p
|x–y|n+sp dx dy)(–�)spu = λ|u|q–2u + α

α+β
|u|α–2u|v|β , in �,

M(
∫

R2n
|v(x)–v(y)|p
|x–y|n+sp dx dy)(–�)spv =μ|v|q–2v + β

α+β
|v|β–2v|u|α , in �,

u = v = 0, in R
n \ �,

where � is a smooth bounded set inR
n, n > ps with s ∈ (0, 1) fixed, λ,μ > 0 are two

parameters, 1 < q < p < p(τ + 1) < α + β < p∗, p∗ = np
n–sp ,M is a continuous function,

given byM(h) = k + lhτ , k > 0, l,τ ≥ 0, and (–�)sp is the fractional p-Laplacian operator.
We will prove that the problem has at least two solutions by using the Nehari
manifold method and fibering maps.

Keywords: Kirchhoff-type equations; fractional p-Laplacian; concave-convex
nonlinearities; Nehari manifold method; fibering maps

1 Introduction
In this paper, we consider the following Kirchhoff-type problem involving fractional p-
Laplacian and concave-convex nonlinearities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M(
∫

Rn
|u(x)–u(y)|p
|x–y|n+sp dx dy)(–�)s

pu = λ|u|q–u + α
α+β

|u|α–u|v|β , in �,

M(
∫

Rn
|v(x)–v(y)|p
|x–y|n+sp dx dy)(–�)s

pv = μ|v|q–v + β

α+β
|v|β–v|u|α , in �,

u = v = , in R
n \ �,

(.)

where � is a smooth bounded set in R
n, n > ps with s ∈ (, ) fixed, λ,μ >  are two pa-

rameters,  < q < p < p(τ + ) < α + β < p∗, p∗ = np
n–sp is the fractional Sobolev exponent,

M is a special continuous function defined by M(h) = k + lhτ , k > , l, τ ≥ . (–�)s
p is the

fractional p-Laplacian operator given by

(–�)s
pu(x) =  lim

ε→

∫

Rn\Bε (x)

|u(x) – u(y)|p–(u(x) – u(y))
|x – y|n+sp dx dy. (.)
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The Kirchhoff-type equation and system have a broad background in phase transitions,
population dynamics, mathematical finance, etc. There have been a lot of excellent results
related to the existence and multiplicity of solutions for this system. We refer the readers
to [–] for Kirchhoff problems involving the classical Laplace operator and to [, ] for
the p-Laplacian case. For the fractional system, please consult [–] and the references
therein.

In [] and [], the authors discussed the system (or a single equation, that is, u = v)
in the special case of M ≡ . They obtained some interesting results by using the Nehari
manifold method. For the special case p =  of this system, there are many results avail-
able in the existing literature, we refer the interested reader to [, ] for the case of the
classical Laplacian and to [–] for the case of the fractional Laplacian. Moreover, the
authors [] studied bifurcation results for a fractional elliptic equation with critical ex-
ponent. There is also some work for the case that M is not a constant (see, for example,
[]). However, as far as we know, there are few results on the fractional p-Kirchhoff system
with concave-convex nonlinearities. Motivated by the above work, in this paper we con-
sider problem (.) for a more general case M(h) = k + lhτ . We obtained a new multiplicity
result by using the Nehari manifold method and fibering maps.

In order to state our result, we introduce some notations. Suppose s ∈ (, ) and p ∈
[,∞). Let W s,p be a fractional Sobolev space with the norm

‖u‖W s,p(�) = ‖u‖Lp(�) +
(∫

�×�

|u(x) – u(y)|p
|x – y|n+sp dx dy

) 
p

. (.)

Set Q = R
n \ (C� × C�) with C� = R

n \ �. We define

X =
{

u
∣
∣
∣u : Rn →R is measurable, u|� ∈ Lp(�), and

∫

Q

|u(x) – u(y)|p
|x – y|n+sp dx dy < ∞

}

.

The space X is endowed with the norm

‖u‖X = ‖u‖Lp(�) +
(∫

Q

|u(x) – u(y)|p
|x – y|n+sp dx dy

) 
p

. (.)

Let X be the completion of the space C∞
 (�) in X. The space X is a Banach space which

can be endowed with the norm

‖u‖X =
(∫

Q

|u(x) – u(y)|p
|x – y|n+sp dx dy

) 
p

. (.)

It is easy to see that this norm is equivalent to the usual one defined in (.).
As proved in [, ], we have the following results:
(i) X ↪→ Lr(�) is continuous for any r ∈ [, p∗] and compact for any r ∈ [, p∗).

(ii) For α + β ∈ (p, p∗), let S denote the best Sobolev constant for the embedding
X ↪→ Lα+β (�). Then, for u ∈ X, we have

‖u‖Lα+β (�) =
(∫

�

|u|α+β dx
) 

α+β ≤ S– 
p ‖u‖X

= S– 
p

(∫

Q

|u(x) – u(y)|p
|x – y|n+sp dx dy

) 
p

. (.)



Yang and An Boundary Value Problems  (2017) 2017:27 Page 3 of 12

Let E = X × X be the Cartesian product of two spaces, which is a reflexive Banach
space with the norm

∥
∥(u, v)

∥
∥ =

(‖u‖p
X

+ ‖v‖p
X

) 
p

=
(∫

Q

|u(x) – u(y)|p
|x – y|n+sp dx dy +

∫

Q

|v(x) – v(y)|p
|x – y|n+sp dx dy

) 
p

. (.)

Definition . We say that (u, v) ∈ E is a weak solution of problem (.) if for any (φ,ψ) ∈ E
one has

M
(‖u‖X

)
∫

Q

|u(x) – u(y)|p–(u(x) – u(y))(φ(x) – φ(y))
|x – y|n+sp dx dy

+ M
(‖v‖X

)
∫

Q

|v(x) – v(y)|p–(v(x) – v(y))(ψ(x) – ψ(y))
|x – y|n+sp dx dy

=
∫

�

(
λ|u|q–uφ + μ|v|q–vψ

)
dx +

α

α + β

∫

�

|u|α–u|v|βφ dx

+
β

α + β

∫

�

|u|α|v|β–vψ dx. (.)

The main result of this paper is as follows.

Theorem . Let s ∈ (, ), n > sp. If  < q < p < p(τ + ) < α + β < p∗, then there exists
� >  such that for  < λ + μ < � problem (.) has at least two solutions.

Remark  To our best knowledge, there is no similar result of this system for the case
p = .

This paper is organized as follows. In Section , we give some preliminaries of a Nehari
manifold and a variational setting of problem (.). Section  gives the proof of Theo-
rem ..

2 The variational setting
Define a functional I(u, v) : E →R as follows:

I(u, v) =
k
p
∥
∥(u, v)

∥
∥p +

l
σ

∥
∥(u, v)

∥
∥σ –


m

∫

�

|u|α|v|β dx –

q

G(u, v), (.)

where σ = p(τ + ), and m = α + β , and

G(u, v) =
∫

�

(
λ|u|q + μ|v|q)dx.

By a direct computation, we know that I(u, v) ∈ C(E,R) and, for ∀(φ,ψ) ∈ E, there holds

〈
I ′(u, v), (φ,ψ)

〉
= M

(‖u‖X

)
∫

Q

|u(x) – u(y)|p–(u(x) – u(y))(φ(x) – φ(y))
|x – y|n+sp dx dy

+ M
(‖v‖X

)
∫

Q

|v(x) – v(y)|p–(v(x) – v(y))(ψ(x) – ψ(y))
|x – y|n+sp dx dy
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–
∫

�

(
λ|u|q–uφ + μ|v|q–vψ

)
dx –

α

m

∫

�

|u|α–u|v|βφ dx

–
β

m

∫

�

|u|α|v|β–vψ dx. (.)

Then the weak solutions of problem (.) correspond to the critical points of the func-
tional I . Since I is not bounded below on E, we consider it on the Nehari manifold

N =
{

(u, v) ∈ E \ (, )|〈I ′(u, v), (u, v)
〉
= 

}
.

From (.), we have

〈
I ′(u, v), (u, v)

〉
= k

∥
∥(u, v)

∥
∥p + l

∥
∥(u, v)

∥
∥σ –

∫

�

|u|α|v|β dx – G(u, v). (.)

Thus, (u, v) ∈ N if and only if

k
∥
∥(u, v)

∥
∥p + l

∥
∥(u, v)

∥
∥σ –

∫

�

|u|α|v|β dx – G(u, v) = . (.)

Particularly, the following equality holds on N :

I(u, v) = k
(


p

–

q

)
∥
∥(u, v)

∥
∥p + l

(

σ

–

q

)
∥
∥(u, v)

∥
∥σ –

(

m

–

q

)∫

�

|u|α|v|β dx

= k
(


p

–

m

)
∥
∥(u, v)

∥
∥p + l

(

σ

–

m

)
∥
∥(u, v)

∥
∥σ –

(

q

–

m

)

G(u, v). (.)

Define

(u, v) =
〈
I ′(u, v), (u, v)

〉
, ∀(u, v) ∈ E.

Then, for any (u, v) ∈ N ,

〈
′(u, v), (u, v)

〉

= kp
∥
∥(u, v)

∥
∥p + lσ

∥
∥(u, v)

∥
∥σ – m

∫

�

|u|α|v|β dx – qG(u, v)

= k(p – m)
∥
∥(u, v)

∥
∥p + l(σ – m)

∥
∥(u, v)

∥
∥σ – (q – m)G(u, v)

= k(p – q)
∥
∥(u, v)

∥
∥p + l(σ – q)

∥
∥(u, v)

∥
∥σ – (m – q)

∫

�

|u|α|v|β dx. (.)

Thus, it is natural to split N into three parts:

N+ =
{

(u, v) ∈ N :
〈
′(u, v), (u, v)

〉
> 

}
,

N– =
{

(u, v) ∈ N :
〈
′(u, v), (u, v)

〉
< 

}
, (.)

N =
{

(u, v) ∈ N :
〈
′(u, v), (u, v)

〉
= 

}
.

We now derive some properties of N+, N– and N.
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Lemma . I is coercive and bounded below on N .

Proof By Hölder’s inequality and (.), we have

∫

�

λ|u|q dx ≤ λ

(∫

�

 dx
) m–q

m
(∫

�

|u|m dx
) q

m
= λ|�| m–q

m ‖u‖q
m

≤ λ|�| m–q
m S– q

p ‖u‖q
X

≤ λ|�| m–q
m S– q

p
∥
∥(u, v)

∥
∥q.

Similarly,
∫

�

μ|v|q dx ≤ μ|�| m–q
m S– q

p ‖v‖q
X

≤ μ|�| m–q
m S– q

p
∥
∥(u, v)

∥
∥q.

Then

G(u, v) ≤ (λ + μ)|�| m–q
m S– q

p
∥
∥(u, v)

∥
∥q. (.)

It follows from (.) and (.) that

I(u, v) ≥ k
(


p

–

m

)
∥
∥(u, v)

∥
∥p + l

(

σ

–

m

)
∥
∥(u, v)

∥
∥σ

–
(


q

–

m

)

(λ + μ)|�| m–q
m S– q

p
∥
∥(u, v)

∥
∥q. (.)

Since q < p ≤ σ < m, from inequality (.), the functional I is coercive and bounded below
on N . The proof is completed. �

Lemma . There exists � > , given by

� =
k(m – p)

(m – q)|�| m–q
m S– q

p

(
k(p – q)

(m – q)S– m
q

) p–q
m–p

,

such that for any  < λ + μ < � we have N = ∅.

Proof We argue by contradiction. Assume that there exist λ,μ >  with  < λ + μ < �

such that N �= ∅. Then, for (u, v) ∈ N, we have

〈
I ′(u, v), (u, v)

〉
=  and

〈
′(u, v), (u, v)

〉
= .

Then it follows from (.)-(.) that

∥
∥(u, v)

∥
∥ ≤

(
(m – q)(λ + μ)|�| m–q

m S– q
p

k(m – p)

) 
p–q

. (.)

On the other hand, by Young’s inequality, we have
∫

�

|u|α|v|β dx ≤ α

m

∫

�

|u|m dx +
β

m

∫

�

|v|m dx

≤ α

m
S– m

q ‖u‖m
X +

β

m
S– m

q ‖v‖m
X ≤ S– m

q
∥
∥(u, v)

∥
∥m. (.)
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From (.)-(.) and (.) it follows that

k(p – q)
∥
∥(u, v)

∥
∥p ≤ (m – q)S– m

q
∥
∥(u, v)

∥
∥m.

We have

∥
∥(u, v)

∥
∥ ≥

(
k(p – q)

(m – q)S– m
q

) 
m–p

. (.)

By (.) and (.),

λ + μ ≥ k(m – p)

(m – q)|�| m–q
m S– q

p

(
k(p – q)

(m – q)S– m
q

) p–q
m–p

= �,

which contradicts  < λ + μ < �. �

By Lemmas . and ., we write N = N+ + N– for  < λ + μ < �, and I is coercive and
bounded from below on N+ and N–. We define

C+ = inf
(u,v)∈N+

I(u, v), C– = inf
(u,v)∈N–

I(u, v).

As proved in [], we have the following lemma.

Lemma . For  < λ + μ < �, suppose that (u, v) is a local minimizer for I on N . Then,
if (u, v) /∈ N, (u, v) is a critical point of I .

Lemma .
(a) If  < λ + μ < �, then C+ < .
(b) If  < λ + μ < q

p�, then ∃d >  such that C– > d.

Proof (a) Let (u, v) ∈ N+, it follows from (.) and (.) that

∫

�

|u|α|v|β dx <
k(p – q)
m – q

∥
∥(u, v)

∥
∥p +

l(σ – q)
m – q

∥
∥(u, v)

∥
∥σ . (.)

Put (.) into (.),

I(u, v) < –
k(p – q)

mpq
∥
∥(u, v)

∥
∥p –

l(p – q)(m – p)
mpq

∥
∥(u, v)

∥
∥σ < ,

which implies C+ = inf(u,v)∈N+ I(u, v) < .
(b) Let (u, v) ∈ N–. By (.) and (.),

I(u, v) ≥ k(m – p)
pm

∥
∥(u, v)

∥
∥p –

m – q
mq

G(u, v)

≥ k(m – p)
pm

∥
∥(u, v)

∥
∥p –

m – q
mq

(λ + μ)|�| m–q
m S– q

p
∥
∥(u, v)

∥
∥q

=
∥
∥(u, v)

∥
∥q

(
k(m – p)

pm
∥
∥(u, v)

∥
∥p–q –

m – q
mq

(λ + μ)|�| m–q
m S– q

p

)

. (.)
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Combining (.) with (.), we have

I(u, v) ≥
(

k(p – q)

(m – q)S– m
q

) q
m–p

(
k(m – p)

pm

(
k(p – q)

(m – q)S– m
q

) p–q
m–p

–
m – q

mq
(λ+μ)|�| m–q

m S– q
p

)

.

Clearly, if  < λ + μ < �, then there exists d(p, q,α,β , S) >  such that C– = inf(u,v)∈N– I(u,
v) > d. �

For each (u, v) ∈ E, let

η(t) = ktp–q∥∥(u, v)
∥
∥p + ltσ–q‖u, v‖σ – tm–q

∫

�

|u|α|v|β dx. (.)

Then

η′(t) = tp–q–E(t),

where

E(t) = k(p – q)
∥
∥(u, v)

∥
∥p + l(σ – q)tσ–p∥∥(u, v)

∥
∥σ – (m – q)tm–p

∫

�

|u|α|v|β dx.

Define

t∗ =
(

l(σ – q)(σ – p)‖(u, v)‖σ

(m – q)(m – p)
∫

�
|u|α|v|β dx

) 
m–σ

.

It is easy to check that E(t) increases for t ∈ [, t∗) and decreases for t ∈ (t∗,∞), E(t)
achieves its maximum at t∗. Since E(t) →  as t → + and E(t) → –∞ as t → ∞ and
there exists unique tl ,  < t∗ < tl , such that E(tl) = , so η(t) achieves its maximum at tl ,
increasing for t ∈ [, tl) and decreasing for t ∈ (tl,∞). When l = , we have

t =
(

k(p – q)‖(u, v)‖p

(m – q)
∫

�
|u|α|v|β dx

) q
m–p

. (.)

Obviously, E(t) = E(tl) =  and t ≤ tl for l ≥ . Thus

η(tl) ≥ k(m – p)
m – q

tp–q
l

∥
∥(u, v)

∥
∥p ≥ k(m – p)

m – q
tp–q


∥
∥(u, v)

∥
∥p = η(t). (.)

Set

�(t) = (tu, tv) =
〈
I ′(tu, tv)(tu, tv)

〉

= ktp∥∥(u, v)
∥
∥p + ltσ

∥
∥(u, v)

∥
∥σ – tm

∫

�

|u|α|v|β dx – tqG(u, v),

�(t) =
〈
′(tu, tv), (tu, tv)

〉

= kptp∥∥(u, v)
∥
∥p + lσ tσ

∥
∥(u, v)

∥
∥σ – mtm

∫

�

|u|α|v|β dx – qtqG(u, v).
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Then

�(t) = tq(η(t) – G(u, v)
)
. (.)

Lemma . (tu, tv) ∈ N+ (or N–) if and only if �(t) >  (or �(t) < ).

Proof By (.), it is clear that (tu, tv) ∈ N+ (or N–) if and only if (tu, tv) ∈ N and
〈′(tu, tv), (tu, tv)〉 >  (< ) for t > . Note that

�(t) = (tu, tv) =
〈
I ′(tu, tv), (tu, tv)

〉
, �(t) =

〈
′(tu, tv), (tu, tv)

〉
.

Hence, (tu, tv) ∈ N+ if and only if �(t) =  and �(t) > . �

Lemma . For each (u, v) ∈ E \ (, ) and  < λ + μ < �, there exist  < t < tl < t such
that (tu, tv) ∈ N+, (tu, tv) ∈ N–, and

I(tu, tv) = inf
≤t≤tl

I(tu, tv), I(tu, tv) = sup
t≥

I(tu, tv).

Proof Set

�(t) = I(tu, tv)

=
ktp

p
∥
∥(u, v)

∥
∥p +

ltσ

σ

∥
∥(u, v)

∥
∥σ –

tm

m

∫

�

|u|α|v|β dx –
tq

q
G(u, v).

Since  < λ + μ < �, by (.), (.) and (.), we have

G(u, v) ≤ (λ + μ)|�| m–q
m S– q

p
∥
∥(u, v)

∥
∥q ≤ η(t) ≤ η(tl).

Thus, there exist t and t such that  < t < tl < t and η(t) = η(t) = G(u, v). It follows
from (.) that �(t) =  and �(t) = , then (tu, tv) ∈ N and (tu, tv) ∈ N . �(t) =
(t)q+η′(t) > . By Lemma ., one has (tu, tv) ∈ N+. Meanwhile, �(t) = (t)q+η′(t) <
, we obtain (tu, tv) ∈ N–. By a direct calculation, we have � ′

(t) = tq–(η(t) – G(u, v)).
Since � ′

(t) <  for t ∈ [, t) and � ′
(t) >  for t ∈ [t, tl), I(tu, tv) = inf≤t≤tl I(tu, tv). Fur-

thermore, we find that � ′
(t) >  for t ∈ [t, t), � ′

(t) <  for t ∈ [t, +∞) and �(t) ≤ 
for t ∈ [, t]. Since (tu, tv) ∈ N–, by Lemma ., we obtain �(t) > . Then I(tu, tv) =
supt≥ I(tu, tv). �

3 Proof of the main result
Lemma . If  < λ+μ < �, then the functional I has a minimizer (u, v) in N+ satisfying

(i) I(u, v) = C+ < ;
(ii) (u, v) is a solution of problem (.).

Proof Since I is bounded from below on N+, there exists a minimizing sequence {(un,
vn)} ∈ N+ such that

lim
n→∞ I(un, vn) = inf

(u,v)∈N+
I(u, v) = C+.



Yang and An Boundary Value Problems  (2017) 2017:27 Page 9 of 12

Since I(u, v) is coercive and bounded from below on N , then {(un, vn)} is bounded on E.
Then there exists (u, v) ∈ E, up to a subsequence, that we still denote by {(un, vn)}, such
that, as n → ∞,

un ⇀ u, vn ⇀ v, in Lr(�),

un(x) → u(x), vn(x) → v(x), a.e. in �

for any  ≤ r < p∗, and by [], Theorem IV-, there exists l(x) ∈ Lr(Rn) such that

∣
∣un(x)

∣
∣ ≤ l(x),

∣
∣vn(x)

∣
∣ ≤ l(x), a.e. in R

n

for any  ≤ r < p∗. By the dominated convergence theorem,

lim
n→∞

∫

�

(
λ|un|q + μ|vn|q

)
dx =

∫

�

lim
n→∞

(
λ|un|q + μ|vn|q

)
dx

=
∫

�

(
λ|u|q + μ|v|q

)
dx,

and

lim
n→∞

∫

�

|un|α|vn|β dx =
∫

�

|u|α|v|β dx.

By Lemma ., there exists t < tl such that (tu, tv) ∈ N+ and �(t) = 〈I ′(tu, tv),
(tu, tv)〉 = .

Next we show that (un, vn) → (u, v) strongly in E. Suppose otherwise, then

∥
∥(u, v)

∥
∥ < lim inf

n→∞
∥
∥(un, vn)

∥
∥.

As

〈
I ′(tun, tvn), (tun, tvn)

〉
= ktp


∥
∥(un, vn)

∥
∥p + ltσ


∥
∥(un, vn)

∥
∥σ

– tm


∫

�

|un|α|vn|β dx – tq
 G(un, vn),

and

〈
I ′(tu, tv), (tu, tv)

〉
= ktp


∥
∥(u, v)

∥
∥p + ltσ


∥
∥(u, v)

∥
∥σ

– tm


∫

�

|u|α|v|β dx – tq
 G(u, v),

we have

lim
n→∞

〈
I ′(tun, tvn), (tun, tvn)

〉
>

〈
I ′(tu, tv), (tu, tv)

〉
= �(t) = .

That is, 〈I ′(tun, tvn), (tun, tvn)〉 >  for n large enough. Since {(un, vn)} ∈ N+, it is easy
to see that 〈I ′(un, vn), (un, vn)〉 = , and 〈I ′(tun, tvn), (tun, tvn)〉 <  for  < t < . So we have



Yang and An Boundary Value Problems  (2017) 2017:27 Page 10 of 12

t > . On the other hand, I(tu, tv) is decreasing on (, t), So

I(tu, tv) ≤ I(u, v) < lim inf
n→∞ I(un, vn) = C+ = inf

(u,v)∈N+
I(u, v),

which is a contradiction. Hence (un, vn) → (u, v) strongly in E. This implies

I(un, vn) → I(u, v) = inf
(u,v)∈N+

I(u, v) = C+ as n → ∞.

Namely, (u, v) is a minimizer of I on N+, by Lemma ., (u, v) is a solution of prob-
lem (.). �

Lemma . If  < λ + μ < �, then the functional I has a minimizer (u, v) in N– such
that

(i) I(u, v) = C–;
(ii) (u, v) is a solution of problem (.).

Proof Since I is bounded from below on N–, there exists a minimizing sequence {(ūn,
v̄n)} ∈ N– such that

lim
n→∞ I(ūn, v̄n) = C–.

Since I(u, v) is coercive, {(ūn, v̄n)} is bounded on E, up to a subsequence, we still denote it
by {(ūn, v̄n)}, then there exists (u, v) ∈ E such that

ūn ⇀ u, v̄n ⇀ v, in Lr(�)

for any  ≤ r < p∗, and by [], Theorem IV-, and the dominated convergence theorem,

lim
n→∞ G(ūn, v̄n) = G(u, v),

and

lim
n→∞

∫

�

|ūn|α|v̄n|β dx =
∫

�

|u|α|v|β dx.

By Lemma ., there exists unique t such that (tu, tv) ∈ N–. Next we show that
(ūn, v̄n) → (u, v) strongly in E. The proof of this claim is by contradiction. If the claim
were not true, then

∥
∥(u, v)

∥
∥ < lim inf

n→∞
∥
∥(ūn, v̄n)

∥
∥.

Since (ūn, v̄n) ∈ N– and I(ūn, v̄n) ≥ I(tūn, tv̄n) for all t > , then we have

I(tu, tv) < lim inf
n→∞ I(tūn, tv̄n) ≤ lim inf

n→∞ I(ūn, v̄n) = C–,

which is a contradiction. This implies

I(ūn, v̄n) → I(u, v) = inf
(u,v)∈N–

I(u, v) = C– as n → ∞.
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Namely, (u, v) is a minimizer of I on N–, by Lemma ., (u, v) is a solution of prob-
lem (.). �

Proof of Theorem . By Lemmas . and ., we have that for  < λ + μ < �, problem
(.) has two solutions (u, v) ∈ N+ and (u, v) ∈ N– in E. Since N+ ∩ N– = ∅, then these
two solutions are distinct. �
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