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Abstract
In this paper, we study the existence of positive solutions for a Kirchhoff-type
fractional equation involving a positive potential function that is asymptotically linear
at infinity.
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1 Introduction
In this article, we are concerned with the existence of positive solutions for a class of frac-
tional Kirchhoff-type problems

⎧
⎨

⎩

M(
∫

RN ×RN
|u(x)–u(y)|
|x–y|N+s dx dy)(–�)su = f (x, u) in �,

u =  in R
N \ �,

()

where N > s with s ∈ (, ), � is a bounded domain in R
N with smooth boundary ∂�, M

and f are two continuous functions, and –(–�)s is the fractional Laplace operator defined
as

–(–�)su(x) =
∫

RN

u(x + y) + u(x – y) – u(x)
|y|N+s dy, x ∈R

N . ()

As s → –, problem () becomes the elliptic Kirchhoff equation

–M
(∫

�

|∇u| dx
)

�u = f (x, u), x ∈ �, ()

where � ⊂ R
N is a smooth domain, and u satisfies some boundary conditions; see, for

instance, [, ] for more information about Eq. (). It is easy to find that Eq. () is related
to the stationary analogue of the Kirchhoff equation

utt – M
(∫

�

|∇u| dx
)

�u = f (x, u), x ∈ �, ()
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where M(t) = a + bt for all t ≥  with a, b > ; see, for instance, [] for recent results. It was
proposed by Kirchhoff in  as a generalization of the well-known D’Alembert wave
equation

ρ
∂u
∂t –

(
ρ

λ
+

E
L

∫ L



∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣



dx
)

∂u
∂x = f (x, u)

for free vibrations of elastic strings; see []. Here, ρ , ρ, λ, E, L are all constants. Equation
() received much attention only after Lions [] proposed an abstract framework for this
problem. Equation () models some physical and biological systems where u describes a
process which depends on the average of itself.

When M = , problem () reduces to the fractional Laplacian equation

⎧
⎨

⎩

(–�)su = f (x, u) in �,

u =  in R
N \ �.

()

In recent years, a great attention has been focused on the study of fractional and nonlocal
operators of elliptic type, both for the pure mathematical research and for concrete real-
world applications. The fractional and nonlocal operators appear in many fields such as,
among the others, optimization, finance, phase transitions, stratified materials, anomalous
diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame propaga-
tion, conservation laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic
flows, multiple scattering, minimal surfaces, materials science, and water waves. Just to
mention a few, we recall, for instance, the following papers and the references therein:
[, ] for regularity results, [–] for the existence of solutions, and [–] for multi-
plicity of solutions.

In recent paper, Fiscella and Valdinoci [] studied the following Kirchhoff-type problem
involving an integro-differential operator:

⎧
⎨

⎩

–M(
∫

RN ×RN |u(x) – u(y)|K(x – y) dx dy)LK u = f (x, u) in �,

u =  in R
N \ �,

()

where LK is the integro-differential operator with a singular symmetric kernel K defined
by

LK u(x) =
∫

RN

(
u(x + y) + u(x – y) – u(x)

)
K(y) dy, x ∈R

N ,

where K : RN \ {} → (, +∞) is a singular symmetric kernel function satisfying the prop-
erty

(K) there exist θ >  and s ∈ (, ) such that

θ |x|–(N+s) ≤ K(x) ≤ θ–|x|–(N+s) for any x ∈R
N \ {}.

Clearly, a typical model for K is given by the singular kernel K(x) = |x|–(N+s), which
gives rise to the fractional Laplacian operator –(–�)s. As a result, problem () reduces
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to our problem (). For narrative convenience, in the following context, we always denote
|x|–(N+s) by K(x).

Nyamoradi [] studied problem () in a bounded domain � and obtained three solu-
tions by using a three-critical-point theorem. Nyamoradi and Teng [] also established
the existence of nontrivial solutions for problem () by using the minimal principle and
Morse theory. Xiang et al. [] studied the existence of infinitely many solutions for prob-
lem () by using the fountain theorem. Xiang et al. [] did similar work for the stationary
Kirchhoff problems involving the fractional p-Laplacian. For study of this aspect, we also
refer the interested readers to [, ].

Inspired by the articles mentioned, in this paper, we would like to generalize and correct
Bensedik and Bouchekif ’s work for a class of asymptotically linear elliptic Kirchhoff-type
equations (see []) to our problem ().

The paper is organized as follows. In Section , we give some preliminary facts and some
basic properties, which are needed later, and present our main results. Section  is devoted
to the proofs of our results.

2 Preliminaries and main results
In this section, we give some preliminary results. We briefly recall the related definition
and notes for the functional space X introduced in [].

The functional space X denotes the linear space of Lebesgue-measurable functions from
R

N to R such that the restriction to � of any function g in X belongs to L(�) and the map
(x, y) 	−→ (g(x) – g(y))

√
K(x – y) is in L((RN ×R

N )\ (C�×C�), dx dy) (here C� = R
N \�).

Also, we denote by X the following linear subspace of X:

X :=
{

g ∈ X : g =  a.e. in R
N \ �

}
.

Note that X and X are nonempty since C
(�) ⊆ X by []. Moreover, the space X is

endowed with the norm defined as

‖g‖X = |g|L(�) +
(∫

Q

∣
∣g(x) – g(y)

∣
∣K(x – y) dx dy

) 


, ()

where Q = (RN ×R
N ) \O and O = (C�) × (C�) ⊂R

N ×R
N . We equip X with the norm

‖g‖X =
(∫

Q

∣
∣g(x) – g(y)

∣
∣K(x – y) dx dy

) 


, ()

which is equivalent to the usual one defined in () (see []). It is easy to see that (X,‖·‖X )
is a Hilbert space with scalar product

〈u, v〉X =
∫

Q

(
u(x) – u(y)

)(
v(x) – v(y)

)
K(x – y) dx dy. ()

Denote by Hs(�) the usual fractional Sobolev space with respect to the Gagliardo norm

‖g‖Hs(�) = |g|L(�) +
(∫

�×�

|g(x) – g(y)|
|x – y|N+s dx dy

) 


. ()

Now, we give a basic fact to be used later.
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Lemma . ([]) The embedding j : X ↪→ Lv(�) is continuous for any v ∈ [, ∗] and
compact for v ∈ [, ∗).

Next, we make the assumptions on M and the nonlinearity term f (x, u) as follows:

(M) M is a continuous function on R
+ such that, for some m > , we have

M(t) ≥ m for all t ∈R
+.

(M) There exists m >  such that M(t) = m, t ≥ t, for some t > .
(f) f (x, t) is a continuous function on �̄ ×R such that

f (x, t) ≥  ∀t ≥ , x ∈ �, and f (x, t) =  ∀t ≤ , x ∈ �̄;

(f) t 	→ f (x,t)
t is a nondecreasing function for any fixed x ∈ �;

(f) limt→
f (x,t)

t = p(x); limt→+∞ f (x,t)
t = q(x) �=  uniformly in x ∈ �, where  ≤ p(x),

q(x) ∈ L∞(�) and |p|∞ < mλ, where λ is the first eigenvalue of (–�)s with ho-
mogeneous Dirichlet boundary data.

We observe that problem () has a variational structure. Indeed, it is the Euler-Lagrange
equation of the functional J : X →R defined as follows:

J (u) =



∫

RN ×RN

∣
∣u(x) – u(y)

∣
∣K(x – y) dx dy –

∫

�

F
(
x, u(x)

)
dx.

It is well known that the functional J is Frechét differentiable in X and, for any ϕ ∈ X,

〈
J ′(u),ϕ

〉
=

∫

RN ×RN

(
u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy –

∫

�

f
(
x, u(x)

)
ϕ(x) dx.

Thus, critical points of J are solutions of problem ().
Before stating our results, we need to introduce some notation and establish some im-

portant propositions and lemmas.

Notation . Throughout this paper, we denote by | · |p the Lp norm,  ≤ p ≤ ∞, and
use the notation u± = max{±u, }. The letter C will denote different constants in different
conditions.

Lemma . Assume that  ≤ q(x) ∈ L∞(�) and q(x) �= . Then the eigenvalue problem

⎧
⎨

⎩

(–�)su = λq(x)u in �,

u =  in R
N \ �

has a principal eigenvalue denoted by λ(q) and its associated eigenfunction φ.

Proof Let {un} ⊂ X be a minimizing sequence with
∫

�
q(x)u

n dx = , and thus

λ = lim
n→∞‖un‖

X . ()
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Thus, {un} is bounded in X, and by Lemma . its subsequence, again denoted by {un},
converges to some limit u in L(�; q(x)) that also satisfies

∫

�
q(x)u dx = . In fact, since

‖un – um‖
X + ‖un + um‖

X = ‖un‖
X + ‖um‖

X

for all n, m ∈ N and

‖un + um‖
X ≥ λ

∫

�

q(x)(un + um) dx,

we get

‖un – um‖
X ≤ ‖un‖

X + ‖um‖
X – λ

∫

�

q(x)(un + um) dx. ()

Since by the choice of the sequence {un}, ‖un‖
X

and ‖um‖
X

converge to λ, and
∫

�
q(x)(un + um) dx converges to , the right-hand side of () converges to , and so does

the left-hand side. Hence, {un} is a Cauchy sequence in X, and so it also converges to u in
X. It is easy to verify that ‖|u‖|X

= λ. Therefore, the considered eigenvalue problem has
a principal eigenvalue denoted by λ(q) and its eigenfunction denoted by φ. �

Lemma . Assume that (M) holds. If  ≤ q(x) ∈ L∞(�) and q(x) �= , then the eigenvalue
problem

⎧
⎨

⎩

M(‖u‖
X

)(–�)su = μq(x)u in �,

u =  in R
N \ �

has a principal eigenvalue denoted by μ and its associated positive eigenfunction ψ.

Proof Let

μ := inf∫

� q(x)u dx=
M̂

(‖u‖
X

)
.

Since M satisfies M, according to the proof of Lemma ., we can find a positive ψ ∈ X

that realizes this infimum denoted by μ. �

Now, we give our main results.

Theorem . Assume that (f) and (f) hold and M satisfies (M) and (M). Then if
mλ(q) < , then problem () has a positive solution.

Remark . Here, we have revised the second result of Theorem  in [] since their proof
is not clear under their assumptions.

Theorem . Assume that (f) to (f) hold and M satisfies (M) and (M). Then:
(i) If μ > , then problem () has no solution.

(ii) If μ = , mλ(q) ≥ , and there is a positive solution u ∈ X of problem (), then

f (x, u) = λ(q)q(x)M
(‖u‖

X

)
a.e. in �.
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Remark . This our result is an analogue and some generalization of the first and third
results in Theorem  (see []).

For proving our main results, the following version of the mountain pass theorem is our
main tool, which can be found in [].

Lemma . Let E be a real Banach space and suppose that I ∈ C(E,R) satisfies the con-
dition

max
{

I(), I(u)
} ≤ α < β ≤ inf‖u‖E=ρ

I(u)

for some α < β , ρ >  and u ∈ E with ‖u‖E > ρ . Let c ≥ β be characterized by

c = inf
γ∈�

max
s∈[,]

I
(
γ (s)

)
, where � =

{
γ ∈ C

(
[, ], E

)
;γ () = ,γ () = u

}

is the set of continuous paths joining  and u. Then there exists a sequence {un} ⊂ E such
that

I(un) → c ≥ β and
(
 + ‖un‖E

)∥
∥I ′(un)

∥
∥

E′ →  as n → ∞,

where E′ is the dual of E.

Proposition . Under the assumptions of Theorem ., we have:
(a) There exist ρ,β >  such that J (u) ≥ β for all u ∈ X with ‖u‖X = ρ ;
(b) J (tφ) = –∞ as t → +∞.

Proof It follows from (f) and (f) that, for any ε > , there exists A = A(ε) ≥  such that,
for all (x, s) ∈ � ×R,

F(x, s) ≤ 

(|p|∞ + ε

)
s + Asγ +, ()

where γ ∈ (, N+s
N–s ).

Choose ε >  such that |p|∞ + ε < λ. By (), Lemma ., and the Sobolev inequality we
obtain

J (u) =



M̂
(‖u‖

X

)
–

∫

�

F(x, u) dx

≥ 


M̂
(‖u‖

X

)
–




∫

�

[(|p|∞ + ε
)
u + A|u|γ +]dx

≥ 


(

m –
|p|∞ + ε

λ

)

‖u‖
X – c‖u‖γ +

X
.

So, part (a) holds if we choose ‖u‖ = ρ >  small enough.
To prove (b), we can write, for t sufficiently large,

M̂(t) =
∫ t


M(s) ds =

∫ t


M(s) ds +

∫ t

t

m ds

= M̂(t) – mt + mt ≤ m + mt, with m =
∣
∣M̂(t) – mt

∣
∣.
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Using Fatou’s lemma, for ε >  small enough, we get

lim
t→+∞

J (tφ)
t ≤ lim

t→+∞



(
m

t + m‖φ‖
X

)

– lim
t→+∞

∫

�

F(x, tφ)
t dx

≤ 


m‖φ‖
X –

∫

�

lim
t→+∞

F(x, tφ)
tφ


φ

 dx

≤ 


(m + ε)‖φ‖
X –


λ(q)

‖φ‖
X .

Then

lim
t→+∞

J (tφ)
t ≤ 



(

m + ε –


λ(q)

)

‖φ‖
X <  since mλ(q) < ,

and part (b) is proved. �

Finally, we recall a definition of the compactness condition and a version of the mountain
pass theorem.

Definition . Let (X,‖ · ‖X ) be a real Banach space with its dual space (X∗
,‖ · ‖X∗


) and

J ∈ C(X,R). For c ∈R, we say that J satisfies the (C)c condition stated in [] if for any
sequence {xn} ⊂ X with

J (xn) → c,
∥
∥DJ (xn)

∥
∥

X∗


(
 + ‖xn‖X

) → ,

there is a subsequence {xnk } such that {xnk } converges strongly in X.

3 Proof of the main results

Proof of Theorem . Since mλ(q) < , by Proposition .(a), (b) we can find t large
enough such that J (tφ) < , where φ >  is given in Lemma .. Define

� =
{
γ ∈ C

(
[, ], X

)
;γ () = ,γ () = tφ

}
and c = inf

γ∈�
max
s∈[,]

J
(
γ (s)

)
.

Then, c ≥ β > , and by Lemma . there exists a sequence {un} such that

J (un) =



M̂
(‖un‖

X

)
–

∫

�

F(x, un) dx = c + o() ()

and

(
 + ‖un‖X

)∥
∥J ′(un)

∥
∥

X
→  as n → ∞, ()

which implies that

〈
J ′(un), un

〉
= M

(‖un‖
X

)‖un‖
X –

∫

�

f (x, un)un dx = o(). ()
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Now, we need to show that {‖un‖X} is bounded. Suppose by contradiction that ‖un‖X →
∞ as n → ∞ and let

wn =
√

t

‖un‖X
un. ()

Notice that ‖wn‖X =
√

t. Then there exists a subsequence {wn} such that

wn ⇀ w weakly in X,

wn → w in L(�),

wn → w a.e. in �.

We have

w �= .

Indeed, suppose w = . By (f) and (f) there exist C >  such that |f (x, t)| ≤ C|t| for x ∈ �

and t ≥ . Then from () and () we get

tm ≤ tM
(‖un‖

X

)
=

∫

�

f (x, un)
un

w
n dx + o() ≤ θ

∫

�

w
n dx + o() → ,

which is a contradiction. So w �= .
We claim that the identity

∫

RN ×RN
m

(
w(x) – w(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy –

∫

�

q(x)wϕ dx = 

is true for any ϕ ∈ X. Set pn(x) = f (x, un)u–
n (M(‖un‖

X
))– if un(x) > ; otherwise,

pn(x) = . As before,  ≤ pn(x) ≤ C
m

for all x ∈ �. Then there exists a subsequence {pn}
such that

pn ⇀ h in L(�) with  ≤ h ≤ C
m

.

Since ‖un‖X → +∞ and wn → w a.e. in �, it follows from () that

un → +∞ in � if w(x) >  a.e. in �.

Then by (f) and (M) we obtain

h(x) = q(x)(m)– if w(x) > . ()

Since wn → w in L(�), we have
∫

�

pn(x)wn(x)ϕ(x) dx →
∫

�

h(x)w+ϕ dx

for all ϕ ∈ L(�); then

pnwn ⇀ hw+ in L(�). ()
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Using () and the fact that ‖un‖X → ∞, we get that, for any ϕ ∈ X,

∣
∣
∣
∣

∫

RN ×RN

(
wn(x) – wn(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy –

∫

�

pn(x)wn(x)ϕ dx
∣
∣
∣
∣

=
√

t

‖un‖X M(‖un‖
X

)
→  as n → ∞.

From wn ⇀ w in X and () we get

∫

RN ×RN

(
w(x) – w(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy –

∫

�

h(x)wϕ dx = , ∀ϕ ∈ X.

Taking ϕ = w–, it follows that ‖w–‖X = , and so w = w+ ≥  on �. Then by the strong
maximum principle (see []) we get w(x) >  on �. Thus, by () we have

∫

RN ×RN
m

(
w(x) – w(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy –

∫

�

q(x)wϕ dx = , ∀ϕ ∈ X.

By Lemma ., since mλ(q) < , this is a contradiction. So {un} is bounded in X.
Finally, we show that un → u in X. Indeed, since {un} is bounded in X, we may assume

that there exists u ∈ X such that

un ⇀ u weakly in X,

un → u in L(�),

un → u a.e. in �.

Hence, by () we have

M
(‖un‖

X

)
∫

RN ×RN

(
un(x) – un(y)

)[(
u(x) – un(x)

)
–

(
u(y) – un(y)

)]
K(x – y) dx dy

–
∫

�

f (x, un)(un – u) dx → . ()

By (f) and (f) there exists a constant C >  such that

∣
∣f (x, t)

∣
∣ ≤ C|t|, ∀(x, t) ∈ � ×R.

Consequently,

∫

�

∣
∣f (x, un)(u – un)

∣
∣dx ≤ C

(∫

�

|un| dx
) 


(∫

�

|un – u| dx
) 



≤ C|un – u| →  ()

as n → ∞. From () and () we know

‖un‖X → ‖u‖X as n → ∞.

Hence, un → u in X as n → ∞. �
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Proof of Theorem . If μ > , then problem () has no solution. Indeed, if u ∈ X is a
solution of problem (), then from (f), (f), and (f) we have

M
(‖u‖

X

)‖u‖
X =

∫

�

f (x, u)u dx ≤
∫

�

q(x)u dx.

Then

μ ≤ .

Thus, we have proved (i). Next, we prove (ii). Suppose that μ = . From Lemma . we
have

M
(‖ψ‖

X

)
∫

RN ×RN

(
ψ(x) – ψ(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

=
∫

�

q(x)ψϕ dx ()

for all ϕ ∈ X. If u is a positive solution of problem (), for ψ, we have

M
(‖u‖

X

)
∫

RN ×RN

(
ψ(x) – ψ(y)

)(
u(x) – u(y)

)
K(x – y) dx dy

=
∫

�

q(x)f (x, u)ψ dx. ()

From () and () we get

∫

�

(
f (x, u)

M(‖u‖
X

)
–

q(x)u
M(‖ψ‖

X
)

)

ψ dx = . ()

By condition (M), μ = , and mλ(q) ≥ . Similarly to the proof of case  in Theorem 
(see []), we have

f (x, u) = λ(q)q(x)M
(‖u‖

X

)
u a.e. in �. �
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