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Abstract
We consider the inverse spectral problem for a Sturm-Liouville problem on the unit
interval [0, 1]. We obtain some uniqueness results, which imply that the potential q
can be completely determined even if only partial information is given on q together
with partial information on the spectral data, consisting of the spectrum and
normalizing constants. Moveover, we also investigate the problem of missing both
eigenvalues and normalizing constants in the situation where the potential q is C2k–1

near a suitable point.

1 Introduction
In this paper, we consider the Sturm-Liouville operator L := L(q, h, h) in the Liouville
form

Lu = –u′′ + qu (.)

on the unit interval [, ] associated with the boundary conditions

u′() – hu() = , (.)

u′() – hu() = . (.)

We assume that the potential q ∈ L[, ] is real-valued and h ∈ R ∪ {∞}, h ∈ R, where
h = ∞ singles out the Dirichlet boundary condition u() = . Denote the spectrum of L
by σ (L), which consists of simple real eigenvalues

λ < λ < λ < · · · < λn < · · · .

Given a complex value z, define v(x, z) as a solution of equation Lv = zv. Let z = λn, and
vn(x) := v(x,λn) be the eigenfunction of the operator L associated with the eigenvalue λn.
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Then there are two sorts of norming constants κn and αn corresponding to λn:

κn =
vn()
vn()

and αn =
∫ 

 v
n(x) dx

|vn()| . (.)

In order to distinguish κn and αn, in general, κn is called the ratio, and αn is called the
normalizing constant. Indeed, based on the relation (see [], p.)

κnαn = ω̇(λn) (.)

between κn and αn, where ω(·) is the characteristic function of L defined further by (.),
and ω̇(λ) = dω(λ)/dλ, the pair of sequences � := {λn,αn; n ∈ N} is equivalent to the
pair of sequences � := {λn,κn; n ∈ N}. It is also known [–] that knowing the eigen-
values {λn}n∈N and the normalizing constants {αn}n∈N is equivalent to knowing the sin-
gular measure defined by the spectral function for problem (.)-(.); moreover, the nor-
malizing constants {αn}n∈N can be constructed from the two sequences of eigenvalues,
� := {λn, λ̃n}n∈N , where {λ̃n}n∈N is the spectrum of another operator L(q, h̃, h) with
h �= h̃.

The uniqueness problem of determining the potential q in terms of one of the above-
mentioned three sets of spectral data �j (j = , , ) is well known (see, e.g., [, ]). A com-
prehensive review for the inverse problem in these cases is presented by McLaughlin [].

This paper is related immediately to a earlier paper [] by the second author and Xu
in that it provides some uniqueness results, which imply that the potential q and h can
completely be determined even if only partial information is given on q together with
partial information on the spectral data, consisting of either one full spectrum and a subset
of ratios κn or a subset of pairs of eigenvalues and the corresponding ratios κn. In the
present paper, we consider the same uniqueness problem under the same circumstances
but with the ratios {κn} replaced by normalizing constants {αn}. In other words, we mainly
investigate the uniqueness problem when only partial information on q, on the eigenvalues
{λn}n∈N, and on the normalizing constants {αn}n∈N is available.

Our original motivation for the above works is theorems of Hochstadt-Lieberman []
and Gesztesy-Simon []. Specifically, in , Hochstadt and Lieberman [] proved that
the whole spectrum uniquely determines q when it is already known on [, /]. In
, Gesztesy and Simon [] gave several important generalizations of the Hochstadt-
Lieberman theorem to the case where the L[, ] potential q is known on a larger interval
[, a] with a ∈ [/, ) and the set of common eigenvalues is sufficiently large. Another re-
sult in [] is obtained under the assumption that the potential q belongs to Ck for some
k ∈ N near / so that Ck-smoothness can replace the knowledge of some k +  eigen-
values, that is, k +  eigenvalues may be missing. These results have been generalized and
improved in a variety of ways; see [–]. Our aim here is to realize that, for the ques-
tion of uniqueness for the Sturm-Liouville problem, normalizing constants play an equal
role with eigenvalues. In other words, the number of normalizing constants is, in a sense,
equivalent to the number of eigenvalues.

Here is one of the main results of this paper.

Theorem . Let L be defined by (.) with boundary conditions (.)-(.), and h ∈ R ∪
{∞} and h ∈R. Suppose that, for some k ∈N and ε > , q is Ck–[, ε) when h ∈ R or q
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is Ck[, ε) when h = ∞. Let 	e = {i, i, . . . , il} ⊂N and 	n = {j, j, . . . , jm} ⊂ N satisfy

	e ⊆ 	n, l + m = k + . (.)

Then h, q(n)() for n = , , . . . , (k – ) when h ∈R or for n = , , . . . , k when h = ∞, all
the eigenvalues {λn}n∈N except for n ∈ 	e, and all the normalizing constants {αn}n∈N except
for n ∈ 	n uniquely determine h and q on [, ].

Remark . Under the assumption that σ (L) is known, from (.) it follows that the result
of Theorem . remains valid if the condition of unknown normalizing constants {αji}k+

i=

is replaced with the condition of unknown ratios {κji}k+
i= . This is the same as [], Thm. ..

However, Theorem . here shows that both some eigenvalues and normalizing constants
may be missing.

For any α = {αj}j∈N ⊂C with |α| ≤ |α| ≤ |α| ≤ · · · , set

nα(t) = #
{

j ∈N : |αj| ≤ t
}

for t ≥ . (.)

The following theorem treats the case where partial information is given on the set of the
spectral data � = {λm,αn : m, n ∈N} when q is known a priori on [, a] with a ∈ [, ).

Theorem . Let L be defined by (.) with boundary conditions (.)-(.), and h ∈ R∪
{∞} and h ∈R. Let

Sn ⊆ Se ⊆ σ (L) and 
n = {αj : λj ∈ Sn}.

Then q on [, a] for some a ∈ [, ), h, and two subsets Se and 
n satisfying

nSn (t) + nSe (t) ≥ ( – a)nσ (L)(t) + (a – ) if h ∈R (.)

or

nSn (t) + nSe (t) ≥ ( – a)nσ (L)(t) if h = ∞ (.)

for all sufficiently large t ∈ R uniquely determine h and q on [, ].

Remark . As in the case a = , we have an extension of the same type as in Theorem ..
Explicitly, if h ∈R and q is assumed to be Ck– near x = a, then, instead of condition (.),
we only need the condition

nSn (t) + nSe (t) ≥ ( – a)nσ (L)(t) + a – (k + ). (.)

Remark . Comparing the result of Theorem . with that of [], Thm. ., we can see
that the lack of a certain number of normalizing constants can be reduced to the situation
of lack the same number of eigenvalues.
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This result is related to another paper by the authors [], where we consider an ana-
log of Theorem . for finite tridiagonal (Jacobi) matrices. Moreover, as a particular case
of Theorem ., we have the following corollary, which is parallel with [], Thm. .,
where the problem of the partial information on the subset of the pair of sequences
� := {λn,κn; n ∈ N} is concerned.

Corollary . Under the assumptions of Theorem ., let Sn = Se. Then q on [, a] for some
a ∈ [, ), h, and two subsets 
n and Se satisfying the condition

nSe (t) ≥ ( – a)nσ (L)(t) + (a – )/ if h ∈R (.)

or

nSe (t) ≥ ( – a)nσ (L)(t) if h = ∞ (.)

for all sufficiently large t ∈ R uniquely determine h and q on [, ].

All the results obtained concern mainly with a spectrum with h ∈R∪ {∞} being fixed.
Furthermore, in Section , we generalize these results to more general circumstances as-
sociated with the spectral data of different operators L(q, h,n, h), where h,n are allowed
to belong to different values.

Moreover, note that the case of Dirichlet boundary condition at x =  demands a separate
treatment. Nevertheless, we expect that the method of the paper can be applied in this
case.

The results presented in this paper are based on the uniqueness theorem of the Weyl
m-function developed by Marchenko [] and introduced to deal with inverse problems
with partial information by Gesztesy, Simon, and del Rio [, –]. Our proof in the paper
is based on two multiple zeros of the Wronskian of two Sturm-Liouville problems. At this
point, we note that our proof here is different from that of the results in [] for dealing
with the unique determination problem of q and h in terms of eigenvalues and ratios,
where the known ratios are transformed to known eigenvalues by a particular solution of
the equation Lu = λu such that the Weyl m-function technique can be used.

The paper is organized as follows. In the next section, we recall the uniqueness the-
orem of Marchenko [] and give a proof of Theorem .. The proof of Theorem . is
presented in Section . In Section , we extend Theorem . to a more general case, as-
sociated with different boundary conditions at the endpoint x = , and further establish
some new uniqueness results.

2 Preliminaries and proof of Theorem 1.1
In this section, we first recall the uniqueness theorem of Marchenko and formulate some
asymptotic expansions of m-functions and solutions of Eq. (.), which will be used later
to prove our principal results.

Throughout this paper, by the statement “q on [, a], eigenvalues λn, and normalizing
constants αn determine uniquely q and h” we mean that there are no two distinct poten-
tials q and q on [, ] with the two properties: (i) q = q a.e. on [, a], and (ii) λn and αn

are common eigenvalues and normalizing constants for q and q.
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Unless explicitly stated otherwise, h will be known, and all potentials q, q, and q will
be real valued and in L[, ] for the rest of this paper.

For a real-valued potential q ∈ L[, ], consider the initial-value problem

–u′′ + qu = zu (.)

on [, ] with initial conditions

u–() = , u′
–() = h, (.)

u+() = , u′
+() = h. (.)

Let u– := u–(x, z) and u+ := u+(x, z) be the solutions of problem (.)-(.) and problem (.)
and (.), respectively. If z = λn ∈ σ (L), where the operator L is defined by problem (.)-
(.), then both u–(x,λn) =: u–,n and u+(x,λn) =: u+,n are eigenfunctions of the operator L
corresponding to the eigenvalue λn, and

u+,n = κnu–,n, (.)

where κn = u+,n() = u–
–,n() is the ratio corresponding to the eigenvalue λn; hence, κn �=

,∞. Denote

ω(z) =
[
u+(x, z), u–(x, z)

]
:=

∣
∣
∣
∣
∣
u+(x, z) u–(x, z)
u′

+(x, z) u′
–(x, z)

∣
∣
∣
∣
∣
, (.)

where [u+(x, z), u–(x, z)] is the Wronskian of u+(x, z) and u–(x, z). By Green’s formula for the
Wronskian, [u+, u–] does not depend on x. The function ω(z) is called the characteristic
function of the operator L. It is easy to see from (.) that

αn :=
∫ 



∣
∣u–(x,λn)

∣
∣ dx =


κ

n

∫ 



∣
∣u+(x,λn)

∣
∣ dx, (.)

where αn is the normalizing constant corresponding to λn. The following lemma, which
is proved in [], p., presents the relation among λn, αn, and κn.

Lemma . We have the relation

κnαn = –ω̇(λn) (.)

for all n ∈N, where ω̇(z) = dω/dz, and κn are defined by (.).

We next formulate the main uniqueness theorem in the literature, proved by Marchenko
[]. For the solution u+(x, z) of Eq. (.), the Weyl m+-function is defined by

m+(a, z) =
u′

+(a, z)
u+(a, z)

(.)

for a ∈ [, ). Marchenko’s [] fundamental uniqueness theorem of inverse spectral the-
ory then reads as follows.
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Theorem . m+(a, z) uniquely determines h and q (a.e.) on [a, ].

Consider a problem with boundary condition (.) at x = . We need to know the high-
energy asymptotic behavior of the m+-function with x ∈ [, ). It is known [] that, under
the general hypothesis q ∈ L[, ],

m+(a, z) = i
√

z + o() (.)

uniformly in a ∈ [,  – δ] for δ >  as |z| → ∞ in any sector ε < Arg(z) < π – ε for ε > ,
where

√
z is the square root branch with Im(

√
z) ≥ . It is also known [] that if q is Cn

near a ∈ [, ) for some n ∈N, then m+(a, z) have asymptotic expansions of the form

m+(a, z) = i
√

z +
n+∑

l=

cl(a)


z(l+)/ + o
(


z(n+)/

)

(.)

as |z| → ∞ in any sector ε < Arg(z) < π – ε for ε > . Here cl(a) are the universal functions
of q(a), q′(a), . . . , q(l–)(a) and can be computed recursively as follows:

c(a) = , c(a) = , c(a) = –



q(a),

cj(a) =
i


c′
j–(a) –




j–∑

l=

cl(a)cj–l(a), j ≥ .

Let q be given on [, a] with some a ∈ [, ). Let q and q be two candidates for q ex-
tended to [, ]. Let u,+(x, z) and u,+(x, z) be solutions of Eq. (.) corresponding to q and
q, respectively, where uj,+(x, z) satisfies the initial conditions

uj,+(, z) = , u′
j,+(, z) = hj, j = , , (.)

with h, h ∈ R. It is well known [, ] that for each x ∈ [, ], uj,+(x, z) and u′
j,+(x, z) are

entire functions of z and satisfy the asymptotic expansions

uj,+(x, z) = cos
(√

z( – x)
)

+ O
(
eIm(

√
z)(–x)√z

)
, (.)

u′
j,+(x, z) =

√
z sin

(√
z( – x)

)
+ O

(
eIm(

√
z)(–x)) (.)

as |z| → ∞ for all x ∈ [, ]. For j = , , let

ωj(z) =

{
u′

j,+(, z) – huj,+(, z) if h ∈R,
uj,+(, z) if h = ∞,

(.)

which are the characteristic functions of the operators L(qj, h, hj) =: Lj. Then σ (Lj) =
{λj,n}∞n= are precisely the zeros of ωj(z).

Since the zeros of uj,+(a, ·) and u′
j,+(a, ·) are all real and uniformly bounded below, by

adding (if necessary) a sufficiently large constant to q and q, we may assume that all zeros
of uj,+(a, ·), u′

j,+(a, ·), and ωj(·) are in [,∞). In this case, all these six functions are m-type
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(see [], p.). Therefore, uj,+(a, ·), u′
j,+(a, ·), and ωj(·) are bounded by C exp(C|z|/) for

some constants C, C >  and are of the form (see [])

c
∞∏

n=

(

 –
z

xn

)

for suitable {xn}∞n= ⊂ [,∞).
Let

U+(a, z) =
[
u,+(a, z), u,+(a, z)

]
:=

∣
∣
∣
∣
∣
u,+(a, z) u,+(a, z)
u′

,+(a, z) u′
,+(a, z)

∣
∣
∣
∣
∣

(.)

for a ∈ [, ]. Then we have the following lemma, which plays a key role in this paper.

Lemma . Assume that q = q a.e. on [, a] for some a ∈ [, ). If λ,n = λ,n for some
n ∈N, then U+(a,λ,n) = ; if, in addition, α,n = α,n, then

U̇+(a,λ,n) = , (.)

that is, in this case, λ,n is a two-multiple root of the equation U+(a, z) = .

Proof By the assumption of q = q a.e. on [, a], if h ∈R , then it is easy to see that

U+(a, z) = U+(, z) +
∫ a



∂

∂t
[
u,+(t, z), u,+(t, z)

]
dt

= U+(, z) –
∫ a


(q – q)(t)(u,+u,+)(t, z) dt

= U+(, z)

=

∣
∣
∣
∣
∣
u,+(, z) u,+(, z)

ω(z) ω(z)

∣
∣
∣
∣
∣
. (.)

It follows from (.) and the last identity that if λ,n = λ,n, then ωj(λ,n) =  for j = , , and
therefore U+(a,λ,n) = . Furthermore, since

U̇+(, z) =

∣
∣
∣
∣
∣
u̇,+(, z) u̇,+(, z)

ω(z) ω(z)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
u,+(, z) u,+(, z)

ω̇(z) ω̇(z)

∣
∣
∣
∣
∣
,

substituting z = λ,n into this formula, we have

U̇+(,λ,n) = u,+(,λ,n)ω̇(λ,n) – u,+(,λ,n)ω̇(λ,n).

Note that κj,nαj,n = –ω̇j(λj,n) and κj,n = uj,+(,λj,n) for j = ,  by Lemma . and (.). It is
easy to check that U̇+(,λ,n) = (α,n – α,n)κ,nκ,n =  when, in addition, α,n = α,n. Thus,
from (.) we have that U̇+(a,λ,n) = . Moreover, the same approach can be used to deal
with the case h = ∞. This completes the proof. �

According to the preliminaries, we now prove Theorem ..



Wei and Wei Boundary Value Problems  (2016) 2016:200 Page 8 of 16

Proof of Theorem . We prove the theorem when h ∈R. The case h = ∞ is similar. Let
{λj,n,αj,n}n∈N be the spectral data corresponding to the operators L(qj, h, hj) for j = , .
Without loss of generality, we assume that

λ,n = λ,n for all n ≥ l and α,n = α,n for all n ≥ m.

Let us consider the function H(z) defined by

H(z) =
U+(, z)
ω(z)

m–∏

t=

(z – λ,t)
l–∏

s=m
(z – λ,s). (.)

By Lemma . the cross ratio U+(, z)
∏m–

t= (z – λ,t) ∏l–
s=(z – λ,s) with two-multiple ze-

ros vanishes at each point where ω(z) vanishes, and ω(z) necessarily has two-multiple
zeros since L(q, h, h) has a simple spectrum. Thus, H is an entire function. In addition,
from infθ∈[,π ] |ωj((π (n + 

 ))eiθ )| ≥ πn + O(), for sufficiently large n (see [], p.) and
the fact that the functions uj,+(, z) are m-type we conclude that H(z) satisfies

∣
∣H(z)

∣
∣ ≤ CeC|z|/ .

As a matter of fact, it follows from (.) that the last inequality holds whenever |z| =
(π (n + /)) for n sufficiently large; it then extends to all z by the maximum modulus
principle. Furthermore, since q(j)

 () = q(j)
 () for j = , , . . . , k – , by (.) and (.) we

infer that

∣
∣m,+(, iy) – m,+(, iy)

∣
∣ = o

(|y|–k),
∣
∣uj,+(, iy)

∣
∣ =




eIm(
√

i)|y|/(
 + o()

)
,

∣
∣ωj(iy)

∣
∣ =



|y|/eexp Im(

√
i)|y|/(

 + o()
)

as y (real) → ∞ for j = , . This, together with (.), shows that

∣
∣H(iy)

∣
∣ ≤

∣
∣
∣
∣
(u,+u,+)(, iy)(m,+(, iy) – m,+(, iy))

ω(iy)

∣
∣
∣
∣

×
∣
∣
∣
∣
∣

m–∏

t=

(iy – λ,t)
l–∏

s=m
(iy – λ,s)

∣
∣
∣
∣
∣

=
eIm(

√
i)|y|/ ( + o())o(|y|–k)

|y|eIm(
√

i)|y|/ ( + o())
O

(|y|(k+))

= o()
(
y (real) → ∞)

. (.)

It turns out that |H(iy)| →  as y (real) → ∞ . By [], Prop. B. we obtain H ≡ . We can
multiply H by

ω(z)

∏m–
t= (z – λ,t)

∏l–
s=(z – λ,s)

,
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which has two-multiple zeros and poles, to conclude that U+(z) =  for all z ∈ C. This,
together with (.) and (.), yields m,+(, z) = m,+(, z). By Theorem ., q = q a.e. on
[, ] and h = h. The proof is therefore complete. �

3 Proof of Theorem 1.3
Our goal in this section is to prove Theorem .. We first establish a lemma, which will be
used later to prove the theorem and its generalizations (see Section  for details).

Given a sequence S := {xn}∞n= of positive reals such that  ≤ x ≤ x ≤ · · · and

∞∑

n=


xρ

n
< ∞ for all ρ > ρ, (.)

where ρ ∈ (, ) is fixed, define the function GS by

GS(z) =
∏

xn∈S

(

 –
z

xn

)

. (.)

It is known [], Sects. II. and II. that GS(z) is an entire function with

∣
∣GS(z)

∣
∣ ≤ CeC|z|ρ for all ρ > ρ, (.)

where both C and C are positive constants. It should be noted that (.) holds if and
only if nS(t) ≤ C|t|ρ for all ρ > ρ, where C is a positive constant. Conversely, if GS is
an entire function satisfying (.) with all its zeros {xn}∞n= in [,∞), then its zeros satisfy
(.), and GS has the canonical product expansion (.) (see [] for details). In contrast to
[], Def. B., the function GS(z) is also said to be m-type in a generalized sense. It should
be emphasized here that the above argument may involve the case that xn = xn+ for some
n ∈N.

Lemma . Let σ (L) =: {λj}∞j= be the spectrum of problem (.)-(.), let S := {xn}∞n= with
 ≤ x ≤ x ≤ · · · satisfy (.), and GS be defined by (.). Assume that

nS(t) ≥ Anσ (L)(t) + B (.)

for all sufficiently large t ∈ R, where both A and B are real constants with A > . Then

∣
∣GS(iy)

∣
∣ ≥ C|y|(B+A/)eIm(

√
i)A|y|/

if h ∈R (.)

or

∣
∣GS(iy)

∣
∣ ≥ C|y|BeIm(

√
i)A|y|/

if h = ∞. (.)

Proof Define

Gσ (L)(z) =
∏

λj∈σ (L)

(

 –
z
λj

)

.
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By the definition (.) of GS , we have, by integration by parts,

ln
∣
∣GS(iy)

∣
∣ =

∑

xj∈S




ln

(

 +
y

x
j

)

=



∫ ∞


ln

(

 +
y

t

)

dnS(t)

=
∫ ∞



y

t + ty nS(t) dt
(
since nS() = 

)

=
∫ ∞



y

t + ty nS(t) dt
(
nS(t) =  if t ∈ [, )

)
. (.)

Furthermore, by hypothesis (.) on S of the lemma there are constants t ≥  and C ≥ 
such that

nS(t) ≥
{

Anσ (L)(t) + B if t > t,
Anσ (L)(t) – C if t ≤ t.

Hence, by (.) and (.), noting the relation

y

t + ty = –
d
dt

(



ln

(

 +
y

t

))

,

we deduce that

ln
∣
∣GS(iy)

∣
∣ =

∫ t



y

t + ty nS(t) dt +
∫ ∞

t

y

t + ty nS(t) dt

≥ A
∫ ∞



y

t + ty nσ (L)(t) dt + B
∫ ∞



y

t + ty dt + C

= A ln
∣
∣Gσ (L)(iy)

∣
∣ +

B


ln
(
 + y) + C, (.)

where C = –|B – C| ln(t).
Because σ (L) is the full set of the eigenvalues of the self-adjoint operator L on [, ], we

get that, asymptotically,

∣
∣Gσ (L)(iy)

∣
∣ =



|y|/eIm(

√
i)|y|/(

 + o()
)

if h ∈R

and

∣
∣Gσ (L)(iy)

∣
∣ =




eIm(
√

i)|y|/(
 + o()

)
if h = ∞

as y (real) → ∞. It thus turns out from (.) that there exists a positive constant C such
that (.)-(.) hold. The proof is complete. �

We now are in position to prove Theorem ..

Proof of Theorem . Let {λj,n,αj,n}n∈N be the spectral data corresponding to the operators
L(qj, h, hj) for j = , . We only prove the theorem when h ∈ R. The same approach can
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be used to deal with the case h = ∞. By the hypothesis on Sn and Se define

GSe (z) =
∏

λ,n∈Se

(

 –
z

λ,n

)

, GSn (z) =
∏

λ,n∈Sn

(

 –
z

λ,n

)

.

Since λ,n = nπ + O() (see [], p.), it follows that the functions GSe and GSn are m-type,
and therefore

(GSe GSn )(z) =
∏

λ,n∈Se

(

 –
z

λ,n

)k(n)

(.)

is also m-type, where k(n) =  when λ,n ∈ Se\Sn and k(n) =  when λ,n ∈ Sn. Let us con-
sider the function H(z) defined by

H(z) =
U+(a, z)

(GSe GSn )(z)
, (.)

where U+(a, z) is defined by (.). Then by the hypothesis of Sn ⊆ Se we have from
Lemma . that

U+(a,λ,j) =  if λ,j ∈ Se, U+(a,λ,j) = U̇+(a,λ,j) =  if λ,j ∈ Sn

since q = q on [, a]. This implies that H(z) is an entire function. Recall that

∣
∣uj,+(a, iy)

∣
∣ =




eIm(
√

i)(–a)|y|/(
 + o()

)
, j = , , (.)

and m+(a, iy) = i
√

iy + o() as y (real) → ∞. Thus, by Lemma ., (.), and (.) we have
A = ( – a), B = a – , and

∣
∣H(iy)

∣
∣ ≤

∣
∣
∣
∣
u,+(a, iy)u,+(a, iy)(m,+(a, iy) – m,+(a, iy))

GSe (z)GSn (z)

∣
∣
∣
∣

≤ eIm(
√

i)(–a)|y|/ ( + o())
eIm(

√
i)(–a)|y|/ o()

= o(). (.)

This yields H(z) = , and therefore U+(z) =  for all z ∈ C by the argument of the proof of
Theorem .. Thus, m,+(a, z) = m,+(a, z). By Theorem ., q = q a.e. on [, ] and h = h.
The proof is complete. �

4 Uniqueness results for a more general case
In this section, we extend Theorem . by that the spectral data {λm,αm}m∈N can be se-
lected in terms of different Sturm-Liouville operators L(q, h, h) =: L(h) with h being
different numbers in the boundary condition (.).

It is well known (see []) that Borg proved the famous two-spectra theorem that the
spectra for two boundary conditions of a regular Sturm-Liouville operator uniquely de-
termine the potential q. Later refinements (see, e.g., [, , ]) show that the knowing
eigenvalues associated with a number of different boundary conditions can also determine
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the potential uniquely. In particular, McLaughlin and Rundell [] used fixed jth eigenval-
ues λj(q, h,l, h) with l ∈ N for a countable number of different boundary conditions at
x =  to establish the uniqueness of q. Moreover, Horváth considered the same unique-
ness problem when the known eigenvalues are taken from finite different spectra, which
are corresponding to a finite number of boundary conditions at x = .

In our uniqueness results to be given further, the known eigenvalues and normalizing
constants are of problem (.)-(.) where a countable number of different boundary con-
ditions at x =  may be involved. These results not only generalize the results of [, ,
] but also give some new uniqueness results for the inverse Sturm-Liouville problems
through normalizing constants instead of eigenvalues. It is essential that, roughly speak-
ing, for the unique determination problem of the potentials q and h, the number of nor-
malizing constants is, in a sense, equivalent to the number of eigenvalues.

Given a sequence {h,l}∞l= ⊂R∪ {∞}, we consider the operator L(q, h,l, h) =: L(h,l) for
each h,l and denote by σ (L(h,l)) =: {λm(h,l)}∞m= the spectrum of L(h,l). Throughout this
section, we always assume that the eigenvalue sequence

{
λml (h,l)

}∞
l= =:

{
λ(h,l)

}∞
l= (for simplicity) (.)

is increasing and satisfies the condition

∞∑

l=


|λ(h,l)|ρ < ∞ for all ρ > ρ, (.)

where ρ ∈ (, ) is fixed. In this case, we denote by α(h,l) the normalizing constant corre-
sponding to the eigenvalue λ(h,l) and αm(h,l) corresponding to the (m + )th eigenvalue
λm(h,l) of the operator L(h,l).

We mention some properties of these eigenvalues, which we need further. For their
proofs, we refer to [, ].

Lemma .
(i) If h,l �= h,l , then λ(h,l ) �= λ(h,l ), where λ(h,lj ) are any eigenvalues of L(h,lj ) for

j = , .
(ii) Let m ∈N. Then λm(h) is strictly decreasing in h ∈R for any fixed q and h.

Furthermore, for m ≥ , we have

lim
h→∞

λm(h) = λm–(∞), lim
h→–∞

λm(h) = λm(∞),

where {λm(∞)}∞m= = σ (L(∞)) with h = ∞.

Here is our main result of this section.

Theorem . Let L(q, h,l, h) be defined by (.) associated with boundary conditions
(.)-(.) with h being replaced by h,l , where h,l ∈ R ∪ {∞} for l ∈ N and h ∈ R. Let
Sn ⊆ Se ⊆ ⋃∞

l= σ (L(h,l)) and

Se =
{
λ(h,l)

}∞
l=, 
n =

{
αl(h,l) : λ(h,l) ∈ Sn

}
,

where {λ(h,l)}∞l= are increasing and satisfy (.).
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Then q on [, a] for some a ∈ [, ), {h,l}∞l=, and two sets 
n and Se such that, for some
fixed h ∈R,

nSn∪Se (t) ≥ ( – a)nσ (L(h))(t) – ( – a) (.)

for all sufficiently large t ∈ R uniquely determine h and q on [, ].

Proof Let {λj(h,l),αj(h,l)} for all l ∈N be the pairs of the eigenvalues and its correspond-
ing normalizing constants of the operators L(qj, h,l, hj) for j = , . Since Se,j = {λj(h,l)}∞l=
is an increasing sequence for each j = , , it follows that it is bounded below. By adding
(if necessary) a sufficiently large constant to q and q, we assume that all λj(h,l) are in
[,∞). In this case, let us define

GSe (z) =
∏

λ(h,l)∈Se

(

 –
z

λ(h,l)

)

, GSn (z) =
∏

λ(h,l)∈Sn

(

 –
z

λ(h,l)

)

.

Consider the function H defined by

H(z) =
U+(a, z)

(GSe GSn )(z)
, (.)

where U+(a, z) is defined by (.). Then by the hypothesis on Sn and Se, we have from
Lemma . that

U+
(
a,λ(hn)

)
=  if λ(hn) ∈ Se,

U+
(
a,λ(hn)

)
= U̇+

(
a,λ(hn)

)
=  if λ(hn) ∈ Sn

since q = q on [, a]. This implies that H(z) is an entire function. Recall that

∣
∣uj,+(a, iy)

∣
∣ =




eIm(
√

i)(–a)|y|/(
 + o()

)
, j = , .

Thus, by Lemma ., (.), and (.) we have that A = ( – a), B = a – , and

∣
∣H(iy)

∣
∣ ≤

∣
∣
∣
∣
u,+(a, iy)u,+(a, iy)(m,+(a, iy) – m,+(a, iy))

GSe (iy)GSn (iy)

∣
∣
∣
∣

≤ eIm(
√

i)(–a)|y|/ ( + o())
eIm(

√
i)(–a)|y|/ o() = o(). (.)

This yields H(z) = , and therefore m,+(a, z) = m,+(a, z) for all z ∈ C by the argument of
the proof of Theorem .. By Theorem ., q = q a.e. on [, ] and h = h. The proof is
complete. �

Remark . By the previous argument, if σ (L(h)) is replaced by σ := {m}∞m= in (.),
then the result of Theorem . also holds. In fact, note that

∣
∣
∣
∣
∣
z

∞∏

m=

(

 –
z

m

)∣
∣
∣
∣
∣
z=iy

=
∣
∣
√

iy sin(
√

iy)
∣
∣ =



|y|/eIm(

√
i)|y|/

.

By Lemma . we infer |GSe (iy)GSn (iy)| ≥ eIm(
√

i)(–a)|y|/ . This implies that (.) holds.
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As a particular case of Theorem ., we have the following corollary, which concerns
the uniqueness problem of q and h in terms of eigenvalues and normalizing constants
associated with a (countable) number of different boundary conditions.

Corollary . Under the assumptions of Theorem ., if a = ,

λ(h,l) = λl(h,l), and inf{h,l}∞l= > –∞, (.)

then {h,l}∞l=, {λl(h,l)}∞l= and {αl(h,l)}∞l= except for one uniquely determine h and q on
[, ].

Proof In Theorem ., taking a =  and h := inf{h,l}∞l=, by Lemma . we have

λl(h,l) ≤ λl(h) (.)

for all l ∈ N. In this case, letting Se = {λl(h,l)}∞l= and Sn = {λl(h,l)}∞l= (without loss of
generality), it is easy to verify from Lemma . that {λl(h,l)} are distinct and

∞∑

l=


λl(h,l)ρ

≤ 
λ(h,)ρ

+
∞∑

l=


λl(∞)ρ

< ∞ for all ρ >



and from (.) that nSn∪Se (t) ≥ nσ (L(h))(t) –  for all t > λ(h,). Thus, by Theorem . we
easily obtain the result of Corollary .. �

As another particular case of Theorem ., we also have the following corollary, which
concerns our uniqueness problem in terms of eigenvalues only, associated with a countable
number of different boundary conditions.

Corollary . Under the assumptions of Theorem ., given {h,l, h′
,l}∞l= satisfying

h,l �= h′
,l for all l ∈N, inf

{
h,l, h′

,l
}∞

n= > –∞, (.)

if a = , then {h,l, h′
,l}∞l= and the eigenvalues {λl(h,l),λl(h′

,l)}∞l= except for one, uniquely
determine h and q on [, ].

Proof Without loss of generality, we assume h,l < h′
,l for all l ∈ N. In Theorem ., taking

a =  and h := inf{h,l, h′
,l}∞l=, letting Sn = ∅ and

Se =
{
λ(h,),λ

(
h′

,
)
,λ(h,),λ

(
h′

,
)
, . . .

}

with λ(h′
,) being missing, by Lemma . we see that the sequence Se is strictly increasing

and satisfies

∞∑

l=

(


λl(h,l)ρ
+


λl(h′

,l)ρ

)

≤ 
λ(h,)ρ

+ 
∞∑

l=


λl(∞)ρ

< ∞

for all ρ > /. Moreover, it easy to check that nSe (t) ≥ nσ (L(h))(t) –  for all t > λ(h′
,).

By Theorem . we complete the proof. �
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The corollary is a generalization of the Borg’s two-spectra theorem. In fact, if h,l = h

and h′
,l = h′

 for all l ∈ N, and {λl(h)}∞l= and λl(h′
), except any one of them, are known,

then q on [, ] and h are determined uniquely. Furthermore, this can be also viewed
as a generalization of two-thirds spectra theorem by del Rio, Gesztesy, and Simon [],
Cor. .. However, Corollary . here shows that the known eigenvalues are allowed to
belong to a countable number of different spectra.

Finally, we give a generalization of half-inverse theorem of Hochstadt and Lieberman,
which is involved in a countable number of different boundary conditions.

Corollary . Under the assumptions of Theorem ., if a = /, then {h,l}∞l= and the
eigenvalues {λl(h,l)}∞l= uniquely determine h and q on [, ].

Proof By Lemma . the sequence Se = {λl(h,l)}∞l= is strictly increasing and satisfies

λl–(∞) < λl(h,l) < λl(∞)

for all l ∈N. In this case, it is easy to ensure that (.) holds for λ(h,l) = λl(h,l) and nSe (t) ≥
nσ (L(∞))(t) for all t > ; hence, by Theorem ., h and q on [, ] are uniquely determined.�

It should be noted that if all the h,l = h where h ∈R or h = ∞, then h and q on [, ]
are uniquely determined. This is the half-inverse theorem of Hochstadt and Lieberman.
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