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Abstract
The 2D incompressible Boussinesq system with partial or fractional dissipation have
recently attracted considerable attention. In this paper, we study the Cauchy problem
for the 2D Boussinesq system in a periodic domain with fractional vertical dissipation
in the subcritical case, and we prove the global well-posedness of strong solutions.
Based on this, we also discuss the existence of the global attractor.
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1 Introduction
This paper studies the D incompressible Boussinesq system with fractional vertical dis-
sipation. The model reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + ν�α
V u + u · ∇u + ∇P = θe, e = (, ),

div u = ,

θt + κ�
β

V θ + u · ∇θ = F(x),

u(x, ) = u(x), θ (x, ) = θ(x),

(.)

where � := [, L] is the periodic domain. u = (u, u) is the velocity vector field, ui = ui(x, t)
(i = , ), (x, t) ∈ � × R+; θ (x, t) and P(x, t) denote the scalar temperature and pressure of
the fluid, respectively. The constant ν >  is the viscosity, and κ >  is the thermal diffu-
sivity. e = (, ) is the unit vector in the vertical direction, and the unknown function θe

is the buoyancy force. F(x) is a time-independent forcing term. For the sake of simplicity,
we denote �V :=

√
–∂

x , the vertical dissipation, �H :=
√

–∂
x , the horizontal dissipation,

� :=
√

–
 =
√

�
V + �

H , the square root of the negative Laplacian. When ν =  and κ = ,
(.) reduces to the inviscid D Boussinesq equations. If θ is identically zero, (.) degener-
ates to the D incompressible Euler equations. In this paper, we assume that the exponents
α and β satisfy

α,β ∈
(




, 
)

. (.)
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As suggested by Jiu et al. in [], we classify the parameters α and β into three categories:
() the subcritical case, α + β > ;
() the critical case, α + β = ;
() the supercritical case, α + β < .
Throughout this paper, ‖ · ‖Lp , ‖ · ‖W s,p , and ‖ · ‖L∞ denote the norms of Lp(�), W s,p(�),

and L∞(�), respectively. When p = , we denote the norms ‖ · ‖L and ‖ · ‖W s, by ‖ · ‖ and
‖ · ‖Hs , respectively.

In the past decades, there were a lot of literature about the mathematical theory of
the Boussinesq equations (.). In the case when ν and κ are positive constants, Can-
non and DiBenedetto [] studied the Cauchy problem for the Boussinesq system, and
further proved the existence of a unique global in time weak solution. Furthermore, they
established the regularity of the solutions when initial data are smooth. In [], the global
well-posedness was established (see also []) for this case. In contrast, in the case when
ν = κ = , the global regularity problem turns out to be extremely difficult and remains
open. For this case, we only have the local existence and uniqueness results due to []
and []. Recently, there were many works devoted to the study of the Boussinesq system
with partial viscosity or diffusivity (i.e., the zero diffusivity case, ν >  and κ = , or the
zero viscosity case, ν =  and κ > ). Actually, Chae [], and Hou and Li [] independently
proved the global well-posedness; see also [, ] for the global well-posedness in the crit-
ical spaces and [, ] for the case of bounded domain. More precisely, Chae [] showed
the global existence for (u, θ) ∈ H × H while Hou and Li [] proved the same result for
initial data in H × H. Zhao [] generalized the case in [] to a bounded domain with
typical physical boundary conditions u ·n|∂� =  and θ |∂� = θ , where n is the unit outward
normal to ∂� and θ >  is a constant, and further proved that there exists a unique global
smooth solution with smooth initial data. Jin and Fan [] proved a global uniform regular-
ity in the vanishing viscosity limit in a domain � = (–∞, +∞) × (, ) with a slip boundary
condition. Hu, Kukavica and Ziane [] proved that for the initial data (u, θ) ∈ H × H,
there exists a global in time solution (u, θ ) which is a locally in time bounded function
in H × H, and in [], proved the persistence of regularity holds, i.e., the solution (u, θ )
exists and belongs to Hs × Hs– for data (u, θ) ∈ Hs × Hs–, where  < s < .

When ν and κ depend on the temperature, Lorca and Boldrini [] proved the global
existence of strong solutions for small initial data, and in [], obtained the global ex-
istence of weak solutions and the local existence of strong solutions for general initial
data. Recently, Wang and Zhang [] proved the global well-posedness. Sun and Zhang
[] obtained the existence of global strong solutions to the initial boundary value prob-
lem. Li, Pan and Zhang [, ] proved the existence of a unique global smooth solution
to the initial boundary value problem of D inviscid heat conductive Boussinesq equa-
tions with nonlinear heat diffusion over a bounded domain with smooth boundary. More-
over, Huang [] addressed the well-posedness of the D (Euler)-Boussinesq equations
with zero viscosity positive diffusivity in the polygonal-like domains with Yudovich’s type
data and in [] proved the global well-posedness of strong solutions and existence of
the global attractor to the initial and boundary value problem in a periodic channel with
non-homogeneous boundary conditions for the temperature and viscosity and thermal
diffusivity depending on the temperature.

One main focus of recent research on the D Boussinesq equations has been on the
global regularity issue when only fractional dissipation is present. Adhikari, Cao and Wu
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[] aimed at the global regularity of classical solutions to the D Boussinesq equations
with vertical dissipation and vertical thermal diffusion, and in [], further studied the
global regularity issue concerning the D Boussinesq equations with vertical dissipation
and vertical thermal diffusion. Cao and Wu [] established the global in time existence
of classical solutions to the D anisotropic Boussinesq equations with vertical dissipation.
Danchin and Paicu [] studied the D Boussinesq system with horizontal viscosity in
only one equation, they proved the global existence issue for possibly large initial data.
Hmidi, Keraani and Rousset [] investigated an Euler-Boussinesq system which couples
the incompressible Euler equation with velocity and a transport model with fractional
diffusion for the temperature. Jia, Peng and Li [] proved the generalized D Boussi-
nesq equation has a global and unique solution in suitable functional space. Jiu, Miao,
Wu and Zhang [, ] established the global regularity to the D incompressible Boussi-
nesq equations with general critical dissipation. Jiu, Wu and Yang [] studied solutions
of the D incompressible Boussinesq equations with fractional dissipation in the periodic
box T

 = [, π ]. KC, Regmi, Tao, and Wu [, ] studied the global (in time) regularity
problem concerning the two-dimensional incompressible Boussinesq equations. Larios,
Lunasin, and Titi [] established the global existence and uniqueness theorems for the
two-dimensional non-diffusive Boussinesq system with anisotropic viscosity acting only
in the horizontal direction. Miao and Xue [] proved the global well-posedness results
for the rough initial data of a class of Boussinesq-Navier-Stokes systems. Stefanov and Wu
[] proved the global regularity problem on the two-dimensional incompressible Boussi-
nesq equations with fractional dissipation. Using energy methods, the Fourier localization
technique, and Bony’s paraproduct decomposition, Xiang and Yan [] showed the global
existence of the classical solutions to the Boussinesq equations with fractional diffusion.
Wu and Xu [] are concerned with the global well-posedness and inviscid limits of several
systems of Boussinesq equations with fractional dissipation. Xu [] proved the existence,
the uniqueness and the regularity of solutions to the Boussinesq equations for an incom-
pressible fluid in R

, with diffusion modeled by fractional Laplacian. Xu and Xue []
considered the Yudovich type solutions of the D inviscid Boussinesq system with critical
and supercritical dissipation, and gave a refined blowup criterion in the supercritical case.
Yang, Jiu and Wu [] examined the global regularity issue on the D Boussinesq equa-
tions with fractional Laplacian dissipation and thermal diffusion, and further established
the global well-posedness for the D Boussinesq equations with a new range of fractional
powers of the Laplacian. Ye and Xu [] studied the Cauchy problem to the D incom-
pressible Boussinesq equations with fractional dissipation, and in [] proved the global
regularity of the smooth solutions of the D Boussinesq equations with a new range of
fractional powers of the Laplacian. Using the Fourier localization method, Fang, Qian and
Zhang [] obtained the local and global well-posedness and gave some blowup criterion
with the velocity or the temperature for the D incompressible generalized Boussinesq
system with the general supercritical dissipation.

In this paper, we prove the existence of global attractor for the solution operator S(t) to
the Boussinesq system (.) in the space Hs × Hs, where s ≥ . First, we show the global
existence of weak solutions to the Boussinesq system (.), that is, solutions satisfying Def-
inition ..
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Definition . Let

H =
{

u ∈ L(�) : ∇ · u = ,
∫

�

u dx =
∫

�

u dx = 
}

and

H =
{

θ ∈ L(�) :
∫

�

θ dx = 
}

.

Suppose F(x) ∈ H–β and (u, θ) ∈ H × H. Then the pair (u, θ ) is said to be a global weak
solution of the Boussinesq system (.), if for any T ∈ (, +∞), and u ∈ C([, T]; H) ∩
L(, T ; Hα), θ ∈ C([, T]; H) ∩ L(, T ; Hβ ), such that for any φ = (φ,φ) ∈ C∞(�), and
for any ψ ∈ C∞

 (�), we have

d
dt

∫

�

uφ dx –
∫

�

u(u · ∇φ) dx + ν

∫

�

(
�α

V u
)(

�α
V φ

)
dx =

∫

�

θeu dx,

d
dt

∫

�

θψ dx –
∫

�

(
�

β

V θ
)(

�
β

V ψ
)

dx =
∫

�

F(x)ψ dx.

We omit the details for this part and refer the reader to [].
The following is the main result of this paper.

Theorem . Let s ≥ , and assume that (u, θ) ∈ Hs ×Hs, and F(x) ∈ Hs–β ∩Lp, where p ∈
(, +∞). Then there exists a unique strong solution (u(t), θ (t)) of the Boussinesq system (.),
such that, for any  < T < +∞,

(
u(t), θ (t)

) ∈ C
(
[, T]; Hs) (.)

and

(ut , θt) ∈ L(, T ; Hs–α
) ∩ L(, T ; Hs–β

)
. (.)

The main goal in this paper is to prove the existence of the global attractor for the Boussi-
nesq system (.), so we have the following theorem.

Theorem . Let s ≥ , and F(x) ∈ Hs–β ∩ Lp, where p ∈ [, +∞). Then, for all t ∈ [, +∞),
the solution operator {S(t)} of the Boussinesq system (.):

S(t)(u, θ) =
(
u(t), θ (t)

)

defines a semigroup in the space Hs × Hs.
Moreover, the following statements are valid:
() for any (u, θ) ∈ Hs × Hs, t 	→ S(t)(u, θ) is a continuous function from R+ into

Hs × Hs;
() for any fixed t > , S(t) is a continuous and compact map in Hs × Hs;
() {S(t)} possesses a global attractor A in the space Hs × Hs. The global attractor A is

compact and connected in Hs × Hs and is the maximal bounded attractor and the
minimal invariant set in Hs × Hs in the sense of the set inclusion relation.
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2 Preliminaries
In this section, we state some important inequalities and facts which will be used in the
proof of Theorem .. First, we introduce the Kate-Ponce and commutator inequalities
from []; see also [, , ].

Lemma . ([]) Suppose that f , g ∈ C∞
c (�). Let s >  and  < r ≤ p, p, q, q ≤ +∞ such

that 
r = 

p
+ 

p
= 

q
+ 

q
with the restriction p, q �= +∞. Then we have

∥
∥�s(fg)

∥
∥

Lr ≤ C
(∥
∥�sf

∥
∥

Lp ‖g‖Lp + ‖f ‖Lq
∥
∥�sg

∥
∥

Lq

)
, (.)

where C >  is a constant.

Lemma . ([]) Suppose that f , g ∈ C∞
c (�). Let s >  and  < p, p, q, q ≤ +∞ such

that 
 = 

p
+ 

p
= 

q
+ 

q
. Then we have

∥
∥�s(f · ∇g) – f · (�s∇g

)∥
∥

L ≤ C
(∥
∥�sf

∥
∥

Lp ‖∇g‖Lp + ‖∇f ‖Lq
∥
∥�sg

∥
∥

Lq

)
, (.)

where C >  is a constant.

In order to achieve that, the solution operators {S(t),∀t ≥ } are continuous in the space
Hs × Hs with respect to t. We recall the following lemma, which is a particular case of a
general interpolation theorem in [].

Lemma . Let V , H , V ′ be three Hilbert spaces such that

V ⊂ H = H ′ ⊂ V ′,

where H ′ is the dual space of H and V ′ is the dual space of V .
If a function u belong to L(, T ; V ) and its derivative u′ belongs to L(, T ; V ′), then u is

almost everywhere equal to a function continuous from [, T] into H .

Lemma . has been proved in []. Therefore, here we omit the proof.

3 Proof of Theorem 1.2
3.1 Uniform estimates
In this subsection, we prove the existence of absorbing ball whose proof will be done in
a series of lemmas, and consists of a priori estimates on an arbitrary time interval [, T].
In the following, we denote by C a positive constant which is independent of time t and
dependent of the initial data u and θ. First of all, we will prove the existence of absorbing
ball in Land Lp for θ .

Lemma . Under the assumptions of Theorem ., there exists T = T(‖θ‖) > , for all
t ≥ T, we have

∥
∥θ (t)

∥
∥ ≤ C (.)
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and

∫ t+

t

∥
∥�

β

V θ
∥
∥ dτ ≤ C. (.)

Proof Throughout this paper, we let λ be the first eigenvalue of �V . By the results
from [], we can get

∥
∥θ (t)

∥
∥ ≤ e–κλ

β
 t

(

‖θ‖ –
‖F(x)‖

κλ
β


)

+
‖F(x)‖

κλ
β


. (.)

Hence, (.) immediately implies the estimate (.) for a uniform bound for some T > 
large enough.

Furthermore, taking the L inner product of (.) with θ , and integrating in time, we
have

∥
∥θ (t + )

∥
∥ + κ

∫ t+

t

∥
∥�

β

V θ
∥
∥ dτ ≤ ∥

∥θ (t)
∥
∥ +

‖F(x)‖

κλ


. (.)

Therefore, the time average estimate (.) follows from (.). For all p ∈ [, +∞), similar
to [], we deduce the following equation:

∥
∥θ (t)

∥
∥

Lp ≤ e
–κλ

β
 t

p

(

‖θ‖Lp –
p‖F(x)‖Lp

κλ
β


)

+
p‖F(x)‖Lp

κλ
β


, (.)

which gives the uniform Lp estimate and absorbing ball in Lp for θ whenever θ ∈ Lp(�)
for all p ∈ [, +∞). �

In the next lemma, we shall prove the existence of an absorbing ball in L for u.

Lemma . Under the assumptions of Theorem ., there exists T = T(‖u‖,‖θ‖) > ,
for all t ≥ T, we have

∥
∥u(t)

∥
∥ ≤ C (.)

and

∫ t+

t

∥
∥�α

V u
∥
∥ dτ ≤ C. (.)

Proof Taking the L inner product of (.) with u, we have




d
dt

‖u‖ + ν
∥
∥�α

V u
∥
∥ =

∫

θe · u dx

≤
∣
∣
∣
∣

∫

�–α
V θ · �α

V u dx
∣
∣
∣
∣

≤ 
ν

∥
∥�–α

V θ
∥
∥ +

ν


∥
∥�α

V u
∥
∥. (.)
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It follows that

d
dt

‖u‖ + ν
∥
∥�α

V
∥
∥ ≤ 

ν

∥
∥�–α

V θ
∥
∥. (.)

Since u and θ have mean zero, using the Poincaré inequality, we get

d
dt

‖u‖ + νλα
 ‖u‖ ≤ 

νλα


‖θ‖. (.)

Integrating in time, and using (.), we can obtain the following:
(i) in the case that νλα

 �= κλ
β
 ,

∥
∥u(t)

∥
∥ ≤ e–νλα

 t‖u‖ +


νλα


∣
∣
∣
∣
e–νλα

 t – e–κλ
β
 t

νλα
 – κλ

β


∣
∣
∣
∣

(

‖θ‖ –
‖F(x)‖

κλ
β


)

+
‖F(x)‖

κλ
β
 νλα


, (.)

(ii) in the case that νλα
 = κλ

β
 ,

∥
∥u(t)

∥
∥ ≤ e–νλα

 t‖u‖ +
e–νλα

 tt
νλα



(

‖θ‖ –
‖F(x)‖

κλ
β


)

+
‖F(x)‖

κλ
β
 νλα


. (.)

Hence, (.) and (.) immediately imply the estimate (.) uniform bound for some
T >  large enough.

Furthermore, integrating (.) in time, we have

∥
∥u(t + )

∥
∥ + νλα



∫ t+

t
‖u‖ dτ ≤ ∥

∥u(t)
∥
∥ +


νλα


‖θ‖. (.)

Therefore, from (.) and (.), we can get the time average estimate (.). This completes
the proof. �

Now we will prove the existence of an absorbing ball in L for ω. We are in a position to
give the estimates ‖∇u‖ and ‖�α

V ω‖.

Lemma . Under the assumptions of Theorem ., there exists T = T(‖ω‖,‖θ‖) > ,
for all t ≥ T, we have

∥
∥∇u(t)

∥
∥ ≤ C (.)

and
∫ t+

t

∥
∥�α

V ω
∥
∥ dτ ≤ C. (.)

Proof In order to complete the proof, we need to use vorticity formulation together with
the Biot-Savart law. Taking the curl of equation (.), we have

ωt + ν�α
V ω + u · ∇ω = θx (.)
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and

u = ∇⊥
–ω, (.)

where ω = ∂x u – ∂x u and ∇⊥ = (–∂x , ∂x ). By the Biot-Savart law (see e.g. [, ]), we
have

‖u‖
H ≤ C‖ω‖, ‖u‖

H ≤ C‖ω‖
H ≤ C‖∇ω‖, (.)

where the Poincaré inequality is employed for the last inequality.
Taking the L inner product of (.) with ω, we obtain




d
dt

‖ω‖ + ν
∥
∥�α

V ω
∥
∥ =

∫

�Hθ · ω dx

≤
∣
∣
∣
∣

∫

�H�–α
V θ · �α

V ω dx
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

�–α
V θ · �H�α

V ω dx
∣
∣
∣
∣

≤ C
∥
∥�–α

V θ
∥
∥ +

ε


∥
∥�H�α

V ω
∥
∥. (.)

It follows that

d
dt

‖ω‖ + ν
∥
∥�α

V ω
∥
∥ ≤ C

∥
∥�–αθ

∥
∥ + ε

∥
∥�H�α

V ω
∥
∥. (.)

Using the Poincaré inequality, we get

d
dt

‖ω‖ +
(
νλα

 – ελα
 λ


)‖ω‖ ≤ 

νλα


‖θ‖, (.)

where λ be the first eigenvalue of �H . Taking ε < ν

λ


and by the variant of uniform Gron-
wall lemma (see [], Lemma .), (.) and (.), it is easy to obtain the uniform esti-
mate (.).

Furthermore, integrating (.) in time, we have

∥
∥ω(t + )

∥
∥ +

(
νλα

 – ελα
 λ


)
∫ t+

t
‖ω‖ dτ ≤ ∥

∥ω(t)
∥
∥ +


νλα


‖θ‖. (.)

Therefore, we can get (.). Similar to Lemma ., and using the Sobolev embedding
theorem, we can get a uniform estimate ‖u‖Lp and time average estimate of ‖�+α

V u‖,
that is, for all p ∈ (, +∞) and for any t ≥ T,

∥
∥u(t)

∥
∥

Lp ≤ C(p),
∫ t+

t

∥
∥�+α

V u
∥
∥ dτ ≤ C, (.)

where the constant C(p) >  only depends on p. Now, we complete the proof. �

Now, let us focus on the existence of an absorbing ball in Hs for (u, θ ).
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Lemma . Under the assumptions of Theorem ., there exists T = T(‖ω‖,‖θ‖) > ,
for all t ≥ T, we have

∥
∥u(t)

∥
∥

Hs ≤ C,
∥
∥θ (t)

∥
∥

Hs ≤ C (.)

and

∫ t+

t

∥
∥�s+α

V u
∥
∥ dτ ≤ C,

∫ t+

t

∥
∥�

s+β

V θ
∥
∥ dτ ≤ C. (.)

Proof Taking the L inner product of (.) with �sθ , we obtain




d
dt

∥
∥�sθ

∥
∥ + κ

∥
∥�

s+β

V θ
∥
∥ + κ

∥
∥�

β

V �s
Hθ

∥
∥

=
∫

F(x) · �sθ dx –
∫

u · ∇θ · �sθ dx

≤
∣
∣
∣
∣

∫

�sF(x) · �sθ dx
∣
∣
∣
∣ –

∫

u · ∇θ · �sθ dx

≤ 

∥
∥�sF(x)

∥
∥ +



∥
∥�sθ

∥
∥ –

∫

u · ∇θ · �sθ dx. (.)

Since u is divergence free, u · ∇θ = ∇ · (uθ ) and by Lemma ., we have

∣
∣
∣
∣–

∫

u · ∇θ · �sθ dx
∣
∣
∣
∣

=
∣
∣
∣
∣–

∫

∇ · (uθ ) · �sθ dx
∣
∣
∣
∣

≤ ∥
∥�s+βθ

∥
∥
∥
∥�s+–β (uθ )

∥
∥

≤ C
∥
∥�s+βθ

∥
∥
(∥
∥�s+–β u

∥
∥

Lp ‖θ‖Lq +
∥
∥�s+–βθ

∥
∥

Lp ‖u‖Lq
)
, (.)

where β > , p, q > , satisfying β < β and 
p

+ 
q

= 
 . In order to determine β, p,

and q, we first let  max{ – α,  – β} < r <  ≤ s, by the Sobolev embedding theorem, this
implies that

θ ∈ Hs ⊂ Hr ⊂ Lq ,

where q is chosen such that


q

=
 – r


< min{α,β} –




.

By (.) and (.), for t > max{T, T}, from (.) we can infer that

∣
∣
∣
∣–

∫

u · ∇θ · �sθ dx
∣
∣
∣
∣ ≤ C

∥
∥�s+βθ

∥
∥
∥
∥�s+–β u

∥
∥

Lp + C
∥
∥�s+βθ

∥
∥
∥
∥�s+–βθ

∥
∥

Lp

= I + I. (.)
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Hence, we set s+– 
p

–β = s+β, that is, β = 
 + 

q
< min{α,β}, then, by the Sobolev em-

bedding theorem, we know that Hs+– 
p

–β (�) ↪→ Hs+–β,p (�), and I can be estimated as

I ≤ C
∥
∥�s+βθ

∥
∥
∥
∥�s+β u

∥
∥

≤ C
∥
∥�s+βθ

∥
∥

β
β

∥
∥�sθ

∥
∥– β

β
∥
∥�s+αu

∥
∥

β
α

∥
∥�su

∥
∥– β

α , (.)

where we have used the interpolation inequality for the tuples (s, s + β, s + β) and (s, s +
α, s + α). By the Young inequality, we get

I ≤ C
∥
∥�s+βθ

∥
∥

β
β

∥
∥�sθ

∥
∥– β

β
∥
∥�s+αu

∥
∥

β
α

∥
∥�su

∥
∥– β

α

≤ ε
∥
∥�s+βθ

∥
∥ + C(ε)

∥
∥�sθ

∥
∥ + ε

∥
∥�s+αu

∥
∥ + C(ε)

∥
∥�su

∥
∥. (.)

Similar to I, we can deduce I as follows:

I ≤ ε
∥
∥�s+βθ

∥
∥ + C(ε)

∥
∥�sθ

∥
∥. (.)

Taking the L inner product of (.) with �su, we obtain




d
dt

∥
∥�su

∥
∥ + ν

∥
∥�s+α

V u
∥
∥ + ν

∥
∥�α

V �s
Hu

∥
∥

=
∫

θe · �su dx –
∫

u · ∇u · �su dx

≤
∣
∣
∣
∣

∫

�sθ · �su dx
∣
∣
∣
∣ –

∫

u · ∇u · �su dx

≤ 

∥
∥�sθ

∥
∥ +



∥
∥�su

∥
∥ –

∫

u · ∇u · �su dx. (.)

Similar to (.), for t > max{T, T}, we have

∣
∣
∣
∣–

∫

u · ∇u · �su dx
∣
∣
∣
∣ ≤ C

∥
∥�s+α u

∥
∥
∥
∥�s+–α (u ⊗ u)

∥
∥

≤ C
∥
∥�s+α u

∥
∥
∥
∥�s+–α u

∥
∥

Lp ‖u‖Lq

≤ C
∥
∥�s+α u

∥
∥
∥
∥�s+–α u

∥
∥

Lp , (.)

where α > , p, q > , satisfying α < β and 
p

+ 
q

= 
 . If, we set s +  – 

p
– α = s + α,

so that α = 
 + 

q
=  – 

p
, and we choose q large enough such that α < α, then by the

Sobolev embedding theorem, we know that Hs+– 
p

–α (�) ↪→ Hs+–α,p (�), and as we use
the interpolation inequality for the tuples (s, s + α, s + α) and the Young inequality, we
arrive at

∣
∣
∣
∣–

∫

u · ∇u · �su dx
∣
∣
∣
∣ ≤ C

∥
∥�s+α u

∥
∥

≤ C
∥
∥�s+αu

∥
∥

α
α

∥
∥�su

∥
∥– α

α

≤ ε
∥
∥�s+αu

∥
∥ + C(ε)

∥
∥�su

∥
∥. (.)
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Finally, summing the differential inequalities (.) and (.) together, and inserting
(.)-(.) and (.) into the resulting inequality, we obtain, for t > max{T, T, T},

d
dt

(∥
∥�su

∥
∥ +

∥
∥�sθ

∥
∥) + ν

∥
∥�s+α

V u
∥
∥ + ν

∥
∥�s

H�α
V u

∥
∥ + κ

∥
∥�

s+β

V θ
∥
∥ + κ

∥
∥�s

H�
β

V θ
∥
∥

≤ C
(∥
∥�sF(x)

∥
∥ +

∥
∥�su

∥
∥ +

∥
∥�sθ

∥
∥) + ε

∥
∥�s+βθ

∥
∥ + ε

∥
∥�s+αu

∥
∥. (.)

Using the Poincaré inequality, we get

d
dt

(∥
∥�su

∥
∥ +

∥
∥�sθ

∥
∥) +

(
νλ

(s+α)
 + νλα

 λs
 – ελ

(s+α)


)‖u‖

+
(
κλ

(s+β)
 + κλ

β
 λs

 – ελ
(s+β)


)‖θ‖

≤ C
(∥
∥�sF(x)

∥
∥ +

∥
∥�su

∥
∥ +

∥
∥�sθ

∥
∥), (.)

where λ be the first eigenvalue of �.

Starting with s = s() = , and taking ε < min{ν λ
(s+α)
 +λα

 λs


λ
(s+α)


,κ λ
(s+β)
 +λ

β
 λs


λ

(s+β)


}, then, for t >

T := max{T, T, T}, by the Poincaré inequality and (.), (.), we have

∫ t+

t

∥
∥�s()

V u
∥
∥ dτ ≤ C,

∫ t+

t

∥
∥�s()

V θ
∥
∥ dτ ≤ C. (.)

Hence, applying the uniform Gronwall lemma to (.) and using (.), for t > T + , we
can obtain

∥
∥�s()

V u(t)
∥
∥ dτ ≤ C,

∥
∥�s()

V θ (t)
∥
∥ dτ ≤ C. (.)

Furthermore, integrating (.) and by (.), for t > T + , we find that

∫ t+

t

∥
∥�s()+α

V u
∥
∥ dτ ≤ C,

∫ t+

t

∥
∥�

s()+β

V θ
∥
∥ dτ ≤ C. (.)

Then we iterate with s = s() = s() + max{α,β}. For t > T + , from (.) we can get

∫ t+

t

∥
∥�s()

V u
∥
∥ dτ ≤ C,

∫ t+

t

∥
∥�s()

V θ
∥
∥ dτ ≤ C. (.)

Applying the uniform Gronwall lemma to (.) again, and (.), for t > T + , we can
obtain

∥
∥�s()

V u(t)
∥
∥ dτ ≤ C,

∥
∥�s()

V θ (t)
∥
∥ dτ ≤ C, (.)

and

∫ t+

t

∥
∥�s()+α

V u
∥
∥ dτ ≤ C,

∫ t+

t

∥
∥�

s()+β

V θ
∥
∥ dτ ≤ C. (.)

Therefore, with a bootstrapping argument, for any given real number s ≥ , (.) and
(.) are proved.
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In addition, for fixed T > , and taking ε < min{ν λ
(s+α)
 +λα

 λs


λ
(s+α)


,κ λ
(s+β)
 +λ

β
 λs


λ

(s+β)


}, we also can
get

∫ T



∥
∥�s+αu

∥
∥ dτ < ∞,

∫ T



∥
∥�s+βθ

∥
∥ dτ < ∞. (.)

By (.), given (u, θ) ∈ Hs × Hs, for some t >  large enough, the solution (u(t), θ (t)) of
the system (.) belongs to the space Hs × Hs for some s = s + max{α,β}. By the Sobolev
compactness embedding theorem in [], the inclusion map Hs ×Hs 	→ Hs ×Hs is com-
pact. Thus, for any s ≥ , the solution operator S(t) defined by S(t)(u, θ) = (u(t), θ (t)) is a
compact operator in the space Hs × Hs for some t >  large enough. �

3.2 Continuity
This subsection mainly includes two parts, the first part to prove (u, θ ) ∈ C(, T ; Hs),
which is to show that the solution operator {S(t),∀t > } of Boussinesq system (.) are
continuous in the space Hs × Hs with respect to t. In part two, we simultaneously prove
uniqueness and continuity of S(t) from Hs × Hs to itself for any fixed T > . The proof will
be done in a series of lemmas as follows.

Lemma . Under the assumptions of Theorem ., the solutions of Boussinesq system (.)
satisfy (u, θ ) ∈ C(, T ; Hs).

Proof For any fixed T > , from Lemma . we can ensure that

u ∈ L(, T ; Hs+α
)

(.)

and

θ ∈ L(, T ; Hs+β
)
. (.)

Hence, by (.) and (.) we can obtain

(
�su,�sθ

) ∈ L(, T ; Hα
) × L(, T ; Hβ

)
. (.)

For any (ϕ,ψ) ∈ Hα × Hβ , applying the differential operator �s to (.) and (.), and
then taking the L inner product with ϕ and ψ , respectively, we can obtain

∫

�sut · ϕ dx +
∫

�s(u · ∇u) · ϕ dx + ν

∫

�s�α
V u · ϕ dx =

∫

�sθe · ϕ dx (.)

and
∫

�sθt · ψ dx +
∫

�s(u · ∇θ ) · ψ dx + κ

∫

�s�
β

V θ · ψ dx =
∫

�sF(x) · ψ dx. (.)

By the Cauchy-Schwarz inequality, from (.) and (.) we can know that

∫

�sut · ϕ dx ≤ ∥
∥�s–α(u · ∇u)

∥
∥‖ϕ‖Hα + ν

∥
∥�s+αu

∥
∥‖ϕ‖Hα +

∥
∥�s–αθ

∥
∥‖ϕ‖Hα (.)
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and
∫

�sθt · ψ dx ≤ ∥
∥�s–β (u · ∇θ )

∥
∥‖ψ‖Hβ + ν

∥
∥�s+βθ

∥
∥‖ϕ‖Hβ

+
∥
∥�s–βF(x)

∥
∥‖ψ‖Hβ . (.)

Since u is divergence free, we now estimate ‖u · ∇u‖ and ‖u · ∇θ‖
∥
∥�s–α(u · ∇u)

∥
∥ =

∥
∥�s–α∇ · (u ⊗ u)

∥
∥

≤ ∥
∥�+s–α(u ⊗ u)

∥
∥

≤ C‖u‖Lp
∥
∥�+s–αu

∥
∥

Lq , (.)

where 
p

+ 
q

= 
 and q = 

–α
. By Lemma ., we know that, for p = 

α– , u ∈
C(, +∞; Lp ). Since


q

+
s + α – ( + s – α)


=




,

and by the Sobolev embedding theorem, we get

∥
∥�+s–αu

∥
∥

Lq ≤ C
∥
∥�s+αu

∥
∥. (.)

Inserting (.) and (.) to (.), we obtain

∥
∥�sut

∥
∥

H–α ≤ C
(‖u‖Lp + ν

)∥
∥�s+αu

∥
∥ + C

∥
∥�s+βθ

∥
∥. (.)

Similarly, for the term u · ∇θ , we find that

∥
∥�s–β (u · ∇θ )

∥
∥ =

∥
∥�s–β∇ · (uθ )

∥
∥

≤ ∥
∥�+s–β (uθ )

∥
∥. (.)

If we chose  max{ – α,  – β} < r <  ≤ s, we can get

u ⊂ Hs ⊂ Hr ⊂ Lp , θ ⊂ Hs ⊂ Hr ⊂ Lp ,

where


p

=
 – r


<




, p =


β – 
.

By Lemmas . and ., we know that

u ∈ C
(
, +∞; Lp

)
, θ ∈ C

(
, +∞; Lp

)
. (.)

Applying Lemma ., we obtain

∥
∥�+s–β (uθ )

∥
∥ ≤ C‖u‖Lp

∥
∥�+s–βθ

∥
∥

Lq + C‖θ‖Lp
∥
∥�+s–βu

∥
∥

Lq , (.)
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where 
p

+ 
q

= 
 and 

p
+ 

q
= 

 . We now choose q∗ > , such that


q∗ +

s + α – ( + s – β)


=



.

Since 
q

= r
 , we get


q∗ =




( – α – β) <



·  max{ – α,  – β} <



r =


q
,

hence, we know that

q < q∗.

By the Poincaré inequality and the Sobolev embedding theorem, we can get

∥
∥�+s–βu

∥
∥

Lq ≤ C
∥
∥�+s–βu

∥
∥

Lq∗ ≤ C
∥
∥�s+αu

∥
∥. (.)

From 
p

+ 
q

= 
 , we deduce that


q

+
 + β – ( + s – β)


=




,

by the Sobolev embedding theorem, we can easily get

∥
∥�+s–βθ

∥
∥

Lq ≤ C
∥
∥�s+βθ

∥
∥. (.)

Inserting (.) and (.)-(.) into (.), we obtain

∥
∥�sθt

∥
∥

H–β ≤ C‖θ‖Lp
∥
∥�s+αu

∥
∥ + C

(‖u‖Lp + κ
)∥
∥�s+βθ

∥
∥ + C

∥
∥�s–βF(x)

∥
∥. (.)

By utilizing estimates (.), (.) and (.), from (.) and (.), we find

∫ T



∥
∥�sθt

∥
∥

H–β ≤ +∞ (.)

and

∫ T



∥
∥�sut

∥
∥

H–α ≤ +∞, (.)

respectively. By Lemma ., we thus complete the proof. �

Lemma . Under the assumptions of Theorem ., the solutions of Boussinesq system (.)
is unique and the operator S(t) : Hs × Hs 	→ Hs × Hs is continuous for any fixed T > .

Proof Suppose there are two solutions (u, θ, P) and (u, θ, P) to the Boussinesq system
(.) with two initial data (u

 , θ
 ) and (u

, θ
 ), respectively. Setting ũ = u – u, θ̃ = θ – θ,



Su Boundary Value Problems  (2016) 2016:105 Page 15 of 21

and P̃ = P – P, then (ũ, θ̃ , P̃) satisfies

⎧
⎨

⎩

ũt + u · ∇ũ + ũ · ∇u + ν�α
V ũ + ∇P̃ = θ̃e,

θ̃t + u · ∇ θ̃ + ũ · ∇θ + κ�
β

V θ̃ = .
(.)

Taking the L inner product of (.) with �sũ, we get




d
dt

∥
∥�sũ

∥
∥ + ν

∥
∥�s+α

V ũ
∥
∥ + ν

∥
∥�α

V �s
Hũ

∥
∥

=
∫

θ̃e · �sũ dx –
∫

u · ∇ũ · �sũ dx –
∫

ũ · ∇u · �sũ dx

= I + I + I. (.)

Using the interpolation inequality and the Young inequality, we can get

I ≤
∣
∣
∣
∣

∫

�sθ̃e · �sũ dx
∣
∣
∣
∣ ≤ 


∥
∥�sθ̃

∥
∥ +



∥
∥�sũ

∥
∥. (.)

To deal with I, we can get

I ≤
∣
∣
∣
∣

∫

�s(u · ∇ũ) · �sũ dx
∣
∣
∣
∣

=
∣
∣
∣
∣

∫
(
�s(u · ∇ũ) – u · ∇(

�sũ
)) · �sũ dx

∣
∣
∣
∣, (.)

where
∫

u · ∇(�sũ) · �sũ dx = . Since ∇ and � commute, we obtain

∣
∣
∣
∣

∫
(
�s(u · ∇ũ) – u · ∇(

�sũ
)) · �sũ dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
(
�s(u · ∇ũ) – u · (�s∇ũ

)) · �sũ dx
∣
∣
∣
∣

≤ C
∥
∥
(
�s(u · ∇ũ) – u · (�s∇ũ

))∥
∥
∥
∥�sũ dx

∥
∥. (.)

Applying Lemma ., we can obtain

∥
∥
(
�s(u · ∇ũ) – u · (�s∇ũ

))∥
∥

≤ C
(‖∇u‖Lp

∥
∥�sũ

∥
∥

Lp +
∥
∥�su

∥
∥

Lq ‖∇ũ‖Lq
)

≤ C
(‖�u‖Lp

∥
∥�sũ

∥
∥

Lp +
∥
∥�su

∥
∥

Lq ‖�ũ‖Lq
)
. (.)

From (.), we know that  – α < α, then, choosing p = 
α

, p = 
–α

, q = 
–α

, and q = 
α

,
and using the Sobolev embedding inequalities, we can get

‖�u‖Lp ≤ C
∥
∥�–αu

∥
∥ ≤ C

∥
∥�s+αu

∥
∥, (.)

∥
∥�sũ

∥
∥

Lp ≤ C
∥
∥�s+αũ

∥
∥, (.)

∥
∥�su

∥
∥

Lq ≤ C
∥
∥�s+αu

∥
∥, (.)
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and

‖�ũ‖Lq ≤ C
∥
∥�–αũ

∥
∥ ≤ C

∥
∥�s+αũ

∥
∥. (.)

From (.)-(.), and using the Young inequality, we obtain

I ≤ C
∥
∥�s+αu

∥
∥
∥
∥�s+αũ

∥
∥
∥
∥�sũ

∥
∥

≤ C(ε)
∥
∥�s+αu

∥
∥∥∥�sũ

∥
∥ + ε

∥
∥�s+αũ

∥
∥. (.)

Simply applying the Cauchy-Schwarz inequality, we can get

I ≤
∣
∣
∣
∣–

∫

ũ · ∇u · �sũ dx
∣
∣
∣
∣

≤ C(ε)
∥
∥�s–α(ũ · ∇u)

∥
∥ + ε

∥
∥�s+αũ

∥
∥. (.)

Applying Lemma . again, we obtain

∥
∥�s–α(ũ · ∇u)

∥
∥ ≤ C

(∥
∥�s–αũ

∥
∥

Lp
‖�u‖Lp + ‖ũ‖Lq

∥
∥�+s–αu

∥
∥

Lq

)
. (.)

Similarly, we choose p = 
–α

, p = 
α

, q = 
α– , and q = 

–α
, and we use the Sobolev

embedding inequalities, to get

∥
∥�s–αũ

∥
∥

Lp ≤ C
∥
∥�sũ

∥
∥, (.)

‖�u‖Lp ≤ C
∥
∥�–αu

∥
∥ ≤ C

∥
∥�s+αu

∥
∥, (.)

‖ũ‖Lq ≤ C
∥
∥�–αũ

∥
∥ ≤ C

∥
∥�sũ

∥
∥, (.)

and

∥
∥�+s–αu

∥
∥

Lq ≤ C
∥
∥�s+αu

∥
∥. (.)

By (.)-(.) we obtain

I ≤ C(ε)
∥
∥�sũ

∥
∥∥∥�s+αu

∥
∥ + ε

∥
∥�s+αũ

∥
∥. (.)

Inserting (.), (.) and (.) to (.), we can obtain




d
dt

∥
∥�sũ

∥
∥ + ν

∥
∥�s+α

V ũ
∥
∥ + ν

∥
∥�α

V �s
Hũ

∥
∥

≤ C
(∥
∥�s+αu

∥
∥ +

∥
∥�s+αu

∥
∥ + 

)∥
∥�sũ

∥
∥ +



∥
∥�sθ̃

∥
∥ + ε

∥
∥�s+αũ

∥
∥. (.)

Using the Poincaré inequality, we get




d
dt

∥
∥�sũ

∥
∥ +

(
νλ

(s+α)
 + νλα

 λs
 – ελ

(s+α)


)‖ũ‖

≤ C
(∥
∥�s+αu

∥
∥ +

∥
∥�s+αu

∥
∥ + 

)∥
∥�sũ

∥
∥ +



∥
∥�sθ̃

∥
∥. (.)
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Taking the L inner product of (.) with �sθ̃ , we get




d
dt

∥
∥�sθ̃

∥
∥ + κ

∥
∥�s+α

V θ̃
∥
∥ + κ

∥
∥�α

V �s
H θ̃

∥
∥ = –

∫

u · ∇ θ̃ · �sθ̃ dx

–
∫

ũ · ∇θ · �sθ̃ dx. (.)

Let J = –
∫

u · ∇ θ̃ · �sθ̃ dx and J = –
∫

ũ · ∇θ · �sθ̃ dx. Then using the interpolation
inequality and the Young inequality, we can get

J ≤
∣
∣
∣
∣–

∫

u · ∇ θ̃ · �sθ̃ dx
∣
∣
∣
∣

=
∣
∣
∣
∣�

s
(∫

u · ∇ θ̃

)

· �sθ̃ dx
∣
∣
∣
∣

=
∣
∣
∣
∣

(

�s
(∫

u · ∇ θ̃

)

– u · ∇(
�sθ̃

)
)

· �sθ̃ dx
∣
∣
∣
∣

=
∣
∣
∣
∣

(

�s
(∫

u · ∇ θ̃

)

– u · (�s∇ θ̃
)
)

· �sθ̃ dx
∣
∣
∣
∣

≤ C
∥
∥
∥
∥�s

(∫

u · ∇ θ̃

)

– u · (�s∇ θ̃
)
∥
∥
∥
∥

∥
∥�sθ̃

∥
∥, (.)

where we have used
∫

u · ∇(�sθ̃ ) · �sθ̃ dx =  and also the fact that ∇ and � commute.
Applying Lemma ., we can obtain

∥
∥
∥
∥�s

(∫

u · ∇ θ̃

)

– u · (�s∇ θ̃
)
∥
∥
∥
∥

≤ C
(‖∇u‖Lp

∥
∥�sθ̃

∥
∥

Lp +
∥
∥�su

∥
∥

Lq ‖∇ θ̃‖Lq
)

≤ C
(‖�u‖Lp

∥
∥�sθ̃

∥
∥

Lp +
∥
∥�su

∥
∥

Lq ‖�θ̃‖Lq
)
. (.)

Choosing p = 
β

and p = 
–β

, and using the Sobolev embedding inequality, we can obtain

‖�u‖Lp ≤ C
∥
∥�–βu

∥
∥ ≤ C

∥
∥�s+αu

∥
∥ (.)

and

∥
∥�sθ̃

∥
∥

Lp ≤ C
∥
∥�s+β θ̃

∥
∥. (.)

Let γ = min{α,β}, q = 
–γ

, and q = 
γ

, we can obtain

∥
∥�su

∥
∥

Lq ≤ C
∥
∥�s+γ u

∥
∥ ≤ C

∥
∥�s+αu

∥
∥ (.)

and

‖�θ̃‖Lq ≤ C
∥
∥�–γ θ̃

∥
∥ ≤ C

∥
∥�s+γ θ̃

∥
∥ ≤ C

∥
∥�s+β θ̃

∥
∥. (.)
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Using (.) and (.), and the Young inequality, we can get

J ≤ ∥
∥�s+αu

∥
∥
∥
∥�s+β θ̃

∥
∥
∥
∥�sθ̃

∥
∥

≤ C(ε)
∥
∥�s+αu

∥
∥∥∥�sθ̃

∥
∥ + ε

∥
∥�s+β θ̃

∥
∥. (.)

Similar to I, we can deduce J as follows:

J ≤
∣
∣
∣
∣–

∫

ũ · ∇θ · �sθ̃ dx
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�s–β(ũ · ∇θ) · �s+β θ̃ dx
∣
∣
∣
∣

≤ C(ε)
∥
∥�s–β (ũ · ∇θ)

∥
∥ + ε

∥
∥�s+β θ̃

∥
∥. (.)

Applying Lemma . again, we can obtain

∥
∥�s–β (ũ · ∇θ)

∥
∥ ≤ C

(∥
∥�s–β ũ

∥
∥

Lp ‖�θ‖Lp + ‖ũ‖Lq
∥
∥�+s–βθ

∥
∥

Lq

)
. (.)

Choosing p = 
–β

, p = 
β

, q = 
β– , q = 

–β
, and using the Sobolev embedding in-

equality, we can get

∥
∥�s–β ũ

∥
∥

Lp ≤ C
∥
∥�sũ

∥
∥, (.)

‖�θ‖Lp ≤ C
∥
∥�–βθ

∥
∥ ≤ C

∥
∥�s+βθ

∥
∥, (.)

‖ũ‖Lq ≤ C
∥
∥�–β ũ

∥
∥ ≤ C

∥
∥�sũ

∥
∥, (.)

and

∥
∥�+s–βθ

∥
∥

Lq ≤ C
∥
∥�s+βθ

∥
∥. (.)

From (.)-(.), and using the Young inequality, we obtain

∥
∥�s–β (ũ · ∇θ)

∥
∥ ≤ C

∥
∥�sũ

∥
∥∥∥�s+βθ

∥
∥, (.)

hence, inserting (.) into (.), we can get

J ≤ C(ε)
∥
∥�sũ

∥
∥∥∥�s+βθ

∥
∥ + ε

∥
∥�s+β θ̃

∥
∥. (.)

Then, inserting (.) and (.) into (.), we can obtain




d
dt

∥
∥�sθ̃

∥
∥ + κ

∥
∥�

s+β

V θ̃
∥
∥ + κ

∥
∥�

β

V �s
H θ̃

∥
∥

≤ C
(∥
∥�sũ

∥
∥∥∥�s+βθ

∥
∥ +

∥
∥�sθ̃

∥
∥∥∥�s+αu

∥
∥) + ε

∥
∥�s+β θ̃

∥
∥. (.)

Using the Poincaré inequality, we get




d
dt

∥
∥�sθ̃

∥
∥ +

(
κλ

(s+β)
 + κλ

β
 λs

 – ελ
(s+β)


)‖θ̃‖

≤ C
(∥
∥�sũ

∥
∥∥∥�s+βθ

∥
∥ +

∥
∥�sθ̃

∥
∥∥∥�s+αu

∥
∥). (.)



Su Boundary Value Problems  (2016) 2016:105 Page 19 of 21

Together with (.) and (.) this enables us to deduce that

d
dt

(∥
∥�sũ

∥
∥ +

∥
∥�sθ̃

∥
∥) + 

(
νλ

(s+α)
 + νλα

 λs
 – ελ

(s+α)


)‖ũ‖

+ 
(
κλ

(s+β)
 + κλ

β
 λs

 – ελ
(s+β)


)‖θ̃‖

≤ C
(∥
∥�s+αu

∥
∥ +

∥
∥�s+αu

∥
∥ +

∥
∥�s+βθ

∥
∥ + 

)(∥
∥�sũ

∥
∥ +

∥
∥�sθ̃

∥
∥). (.)

Taking ε < min{ν λ
(s+α)
 +λα

 λs


λ
(s+α)


,κ λ
(s+β)
 +λ

β
 λs


λ

(s+β)


}, using the Gronwall inequality, and by (.),

for all t ∈ [, T], we immediately get

∥
∥�sũ

∥
∥ +

∥
∥�sθ̃

∥
∥ + 

(
νλ

(s+α)
 + νλα

 λs
 – ελ

(s+α)


)
∫ t


‖ũ‖ dτ

+ 
(
κλ

(s+β)
 + κλ

β
 λs

 – ελ
(s+β)


)
∫ t


‖θ̃‖ dτ

≤ (∥
∥�sũ

∥
∥ +

∥
∥�sθ̃

∥
∥)

exp

{

C
∫ t



(∥
∥�s+αu

∥
∥ +

∥
∥�s+αu

∥
∥ +

∥
∥�s+βθ

∥
∥ + 

)
dτ

}

≤ (∥
∥�sũ

∥
∥ +

∥
∥�sθ̃

∥
∥)eCT . (.)

By the Riesz lemma, since ‖�sũ‖ and ‖�sθ̃‖ go to zero, for almost every t, ‖�sũ‖ and
‖�sθ̃‖ converge to zero. By Lemma . we know that ‖�sũ‖ and ‖�sθ̃‖ are continuous in
t, then ‖�sũ‖ and ‖�sθ̃‖ converge to zero for all t, which implies that, for any T ≥ ,

e–CT(∥
∥�sũ

∥
∥ +

∥
∥�sθ̃

∥
∥) ≤ ∥

∥�sũ
∥
∥ +

∥
∥�sθ̃

∥
∥ = , (.)

i.e., ũ = , θ̃ = , u = u, and θ = θ. So we complete the proof. �
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