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Abstract
In this paper, we first establish the expression of positive Green’s function for
a second-order impulsive differential equation with integral boundary conditions and
a delayed argument. Furthermore, applying Legget-William’s fixed point theorem and
Hölder’s inequality, we obtain the existence results of at least three positive solutions
under three cases: p = 1, 1 < p < +∞, and p = +∞. We discuss our problem with
impulsive effects and a delayed argument. In this case, our results cover second-order
boundary value problems without impulsive effects and delayed arguments and are
compared with some recent results. Finally, we give an example to illustrate our main
results.
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1 Introduction
Functional differential equations with impulses are characterized by the fact that per sud-
den changing of their state the processes under consideration depend on their prehistory
at each moment of time. They are used in many models of optimal control, physics, chem-
ical technology, population dynamics, biology, biotechnology, industrial robotic, pharma-
cokinetics, etc. [–]. Therefore, the study of impulsive functional differential equations
has gained prominence, and it is a rapidly growing field; see Zhang and Feng [, ], Ni-
eto and López [], Yan and Shen [], Li and Shen [], Feng and Qiu [], Liu [], Liu
[], He and Yu [], Ding, Han, and Mi [], and the references therein. We note that the
difficulties solving such problems are that they have deviating arguments and their states
are discontinuous. So, the results on impulsive functional differential equations are fewer
than those on differential equations without impulses and deviating arguments.

Moreover, boundary value problems with deviating arguments constitute a very inter-
esting and important class of problems. The existence and multiplicity of positive solu-
tions for such problems have received a great deal of attention; see, for example, [–
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] and the references therein. In particular, we would like to mention some results of
Jankowski [], who discussed a three-point boundary value problem for second-order
impulsive differential equations with advanced arguments:

⎧
⎪⎪⎨

⎪⎪⎩

x′′(t) + ω(t)f (x(α(t))) = , t ∈ J ′,

�x′|t=tk = Qk(x(tk)), k = , , . . . , m,

x() = , x() = βx(η),

where J ′ = (, )/{t, t, . . . , tm}, �x′|t=tk = x′(t+
k ) – x′(t–

k ) with x′(t+
k ) and x′(t–

k ) representing
the right- and left-hand limits of x′(t) at t = tk . By employing fixed point index theory the
author obtained the existence of positive solutions.

However, to the best of our knowledge, there are almost no papers on the existence
of three positive solutions for second-order impulsive differential equations with integral
boundary conditions and a delayed argument, especially for Lp-integrable ω; for example,
see [, ] and the references therein.

In this paper, we investigate the existence of three positive solutions for a second-order
boundary value problem with impulsive effects and a delayed argument of the form

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + ω(t)f (t, u(α(t))) = ,  < t < , t �= tk , k = , , . . . , n,

–�u′|t=tk = Ik(u(tk)), k = , , . . . , n,

u′() = , au() + bu′() =
∫ 

 g(t)u(t) dt,

(.)

where f ∈ C(J × R+, R+), ω ∈ Lp[, ] for some  ≤ p ≤ +∞. Ik ∈ C(R+, R+), R+ = [, +∞),
J = [, ], tk (k = , , . . . , n) are fixed points with  = t < t < t < · · · < tk < · · · < tn < tn+ = ,
�u′|t=tk = u′(t+

k ) – u′(t–
k ), a, b > , and α(t) �≡ t on J = [, ]. In addition, ω, f , and g satisfy

the following:

(H) ω ∈ Lp[, ] for some  ≤ p ≤ +∞, and there exists N >  such that ω(t) ≥ N a.e. on J ;
(H) f ∈ C(J × R+, R+), α ∈ C(J , J) with α(t) ≤ t on J , Ik ∈ C(R+, R+);
(H) g ∈ L[, ] is nonnegative with μ ∈ [, a), where μ =

∫ 
 g(s) ds.

Motivated by the results mentioned, in this paper, we study the existence of three posi-
tive solutions for problem (.) by overcoming difficulties arising from the appearances of
α(t) �≡ t, Ik �= , and Lp-integrable ω. The arguments are based upon a fixed point theorem
due to Leggett and Williams, which deals with fixed points of a cone-preserving operator
defined on an ordered Banach space. Another contribution of this paper is to study the
expression and properties of Green’s function associated with problem (.). It is interest-
ing to point out that Green’s function associated with problem (.) is positive, differently
from [].

The organization of this paper is as follows. In Section , we present an expression and
properties of positive Green’s function associated with problem (.). In Section , we state
some necessary definitions and lemmas. In Section , we use Leggett-Williams’ fixed point
theorem to obtain the existence of three positive solutions for problem (.). Finally, in
Section , we give an example to illustrate the main results.
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2 Positive Green’s function and its properties
Lemma . Assume that (H) holds. Then, for any y ∈ C[, ], the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + y(t) = , t ∈ J , t �= tk , k = , , . . . , n,

–�u′|t=tk = Ik(u(tk)), k = , , . . . , n,

u′() = , au() + bu′() =
∫ 

 g(t)u(t) dt

(.)

has a unique solution u given by

u(t) =
∫ 


H(t, s)y(s) ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)
, (.)

where

H(t, s) = G(t, s) +


a – μ

∫ 


G(τ , s)g(τ ) dτ , (.)

G(t, s) =

⎧
⎨

⎩

 – t + b
a ,  ≤ s ≤ t ≤ ,

 – s + b
a ,  ≤ t ≤ s ≤ .

(.)

Proof First, suppose that u is a solution of problem (.). It is easy to see by integration of
problem (.) that

u′(t) – u′() = –
∫ t


y(s) ds –

∑

tk <t
Ik

(
u(tk)

)
. (.)

Integrating again, we get

u(t) = u() + u′()t –
∫ t


(t – s)y(s) ds –

∑

tk <t
Ik

(
u(tk)

)
(t – tk). (.)

Letting t =  in (.) and (.), we find

u() = u() + u′() –
∫ 


( – s)y(s) ds –

∑

tk <

Ik
(
u(tk)

)
( – tk),

u′() = –
∫ 


y(s) ds –

∑

tk <

Ik
(
u(tk)

)
.

(.)

Substituting the boundary condition u′() = , au() + bu′() =
∫ 

 g(t)u(t) dt and (.) into
(.), we obtain

u(t) =

a

∫ 


g(s)u(s) ds +

∫ 


( – s)y(s) ds +

∑

tk <

Ik
(
u(tk)

)
( – tk) +

b
a

∫ 


y(s) ds

+
b
a

∑

tk <

Ik
(
u(tk)

)
–

∫ t


(t – s)y(s) ds –

∑

tk <t
Ik

(
u(tk)

)
(t – tk)

=
∫ 


G(t, s)y(s) ds +

n∑

k=

G(t, tk)Ik
(
u(tk)

)
+


a

∫ 


g(s)u(s) ds, (.)
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where

∫ 


g(s)u(s) ds =

∫ 


g(s)

[∫ 


G(s, τ )y(τ ) dτ +

n∑

k=

G(s, tk)Ik
(
u(tk)

)

+

a

∫ 


g(τ )u(τ ) dτ

]

ds

=

a

∫ 


g(s) ds

∫ 


g(τ )u(τ ) dτ

+
∫ 


g(s)

[∫ 


G(s, τ )y(τ ) dτ +

n∑

k=

G(s, tk)Ik
(
u(tk)

)
]

ds.

Therefore, we have

∫ 


g(s)u(s) ds =

a
a – μ

∫ 


g(s)

[∫ 


G(s, τ )y(τ ) dτ +

n∑

k=

G(s, tk)Ik
(
u(tk)

)
]

ds

and

u(t) =
∫ 


G(t, s)y(s) ds +

n∑

k=

G(t, tk)Ik
(
u(tk)

)

+


a – μ

∫ 


g(s)

[∫ 


G(s, τ )y(τ ) dτ +

n∑

k=

G(s, tk)Ik
(
u(tk)

)
]

ds

=
∫ 


G(t, s)y(s) ds +

n∑

k=

G(t, tk)Ik
(
u(tk)

)

+


a – μ

∫ 



[∫ 


G(τ , s)g(τ ) dτ

]

y(s) ds

+


a – μ

∫ 



[ n∑

k=

G(τ , tk)g(τ )Ik
(
u(tk)

)
]

dτ . (.)

Let

H(t, s) = G(t, s) +


a – μ

∫ 


G(τ , s)g(τ ) dτ . (.)

Then

u(t) =
∫ 


H(t, s)y(s) ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)
. (.)

The proof of sufficiency is complete.
Conversely, let u(t) be a solution of (.). Direct differentiation of (.) implies, for t �= tk ,

u′(t) = –
∫ t


y(s) ds –

∑

tk <t
Ik

(
u(tk)

)
.
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Evidently,

u′′(t) = –y(t),

– �u′|t=tk = Ik
(
u(tk)

)
(k = , , . . . , n),

u′() = , au() + bu′() =
∫ 


g(t)u(t) dt.

The lemma is proved. �

From (.) and (.) we can prove that H(t, s), G(t, s) have the following properties.

Lemma . Let ξ ∈ (, ). If μ ∈ [, a), then we have

H(t, s) > , G(t, s) > , ∀t, s ∈ J . (.)

b
a

≤ G(t, s) ≤ G(s, s) ≤
(

 +
b
a

)

, ∀t, s ∈ J . (.)

ρ ≤ H(t, s) ≤ a
a – μ

G(s, s) ≤ ρ, ∀t, s ∈ J . (.)

G(t, s) ≥ δG(s, s), H(t, s) ≥ aδ

a – μ
G(s, s) ≥ δρ, ∀t ∈ [, ξ ], s ∈ J , (.)

where

δ =
 – ξ + b

a

 + b
a

, ρ =
b

a – μ
, ρ =

a + b
a – μ

. (.)

Proof It is obvious that (.), (.), and (.) hold by the definition of G(t, s) and H(t, s).
Now, we show that (.) also holds.

In fact, for t ∈ [, ξ ] and s ∈ J , we have the following.
Case . If s ≤ t, then

G(t, s)
G(s, s)

=
 – t + b

a

 – s + b
a

≥  – ξ + b
a

 + b
a

.

Case . If t ≤ s, then

G(t, s)
G(s, s)

=
 – s + b

a

 – s + b
a

= .

This shows that

G(t, s) ≥ δG(s, s), ∀t ∈ [, ξ ], s ∈ J .

Similarly, we can prove that

H(t, s) ≥ δH(s, s), ∀t ∈ [, ξ ], s ∈ J .

This gives the proof of Lemma .. �
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Remark . Noticing that (.), it is easy to see that Green’s function associated with
problem (.) is positive.

Remark . By the definition of δ and ρ, we obtain that

 < δ < , ρ > .

3 Preliminaries
In this section, we provide some background materials from the theory of cones in Ba-
nach spaces, and then we state Hölder’s inequality, the Arzelà-Ascoli theorem and Legget-
Williams’ fixed point theorem. The following definitions can be found in the book by
Deimling [] and in the book by Guo and Lakshmikantham [].

Definition . Let E be a real Banach space over R. A nonempty closed set K ⊂ E is said
to be a cone if

(i) c′u + d′v ∈ K for all u, v ∈ P and all c′ ≥ , d′ ≥ .
(ii) u, –u ∈ K implies u = .

Note that every cone K ⊂ E induces an ordering in E given by u ≥ v if and only if v – u ∈ K .

Definition . A map 
 is said to be a nonnegative continuous concave functional on a
cone K of a real Banach space E if 
 : K → R+ is continuous and



(
tx + ( – t)y

) ≥ t
(x) + ( – t)
(y)

for all x, y ∈ K and t ∈ J .

Definition . An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Lemma . (Arzelà-Ascoli) A set M ⊂ C(J , R) is said to be a precompact set if the following
two conditions are satisfied:

(i) All the functions in the set M are uniformly bounded, that is, there exists a constant
r >  such that |u(t)| ≤ r for all t ∈ J , u ∈ M;

(ii) All the functions in the set M are equicontinuous, that is, for every ε > , there is
δ = δ(ε) > , which is independent of the functions u ∈ M, such that

∣
∣u(t) – u(t)

∣
∣ < ε

whenever |t – t| < δ, t, t ∈ J .

Let J ′ = J \ {t, t, . . . , tn}, J = [t, t], Jk = (tk , tk+], k = , , . . . , n, and

PC[, ] =
{

x ∈ C[, ] : x′ ∈ C(tk , tk+), x′(t–
k
)

= x′(tk),∃x′(t+
k
)
, k = , , . . . , n

}
.

Then PC[, ] is a real Banach space with norm

‖u‖PC = max
{‖u‖∞,

∥
∥u′∥∥∞

}
,

where ‖u‖∞ = supt∈J |u(t)|, ‖u′‖∞ = supt∈J |u′(t)|.
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To establish the existence of positive solutions to problem (.), we construct the cone

K =
{

u ∈ PC[, ] : u(t) ≥  on J and min
t∈[,ξ ]

u(t) ≥ δρ

ρ
‖u‖PC , t ∈ J

}

. (.)

It is easy to see that K is a closed convex cone of PC[, ].
Define T : K → PC[, ] by

(Tu)(t) =
∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)
. (.)

It follows from (.) and Lemma . that the following lemma holds.

Lemma . Suppose that (H)-(H) hold. Then u ∈ PC[, ] is a solution of problem (.)
if and only if u is a fixed point of operator T .

Lemma . Suppose that (H)-(H) hold. Then T(K) ⊂ K , and T : K → K is completely
continuous.

Proof For all u ∈ K , Tu ≥  on J , and it follows from (.) and (.) that

(Tu)(t) =
∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)

≤ ρ

(

ω(s)f
(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

, t ∈ J . (.)

It is obvious that

H ′
t(t, s) = G′

t(t, s) =

⎧
⎨

⎩

–,  ≤ s ≤ t ≤ ,

,  ≤ t ≤ s ≤ ,
(.)

and

max
t,s∈J ,t �=s

∣
∣H ′

t(t, s)
∣
∣ = max

t,s∈J ,t �=s

∣
∣G′

t(t, s)
∣
∣ = .

Then

∣
∣(Tu)′(t)

∣
∣ ≤

∫ 



∣
∣H ′

t(t, s)
∣
∣ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

∣
∣H ′

t(t, tk)
∣
∣Ik

(
u(tk)

)

≤
∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
, t ∈ J . (.)

It follows from (.), (.), and ρ >  that

‖Tu‖PC ≤ ρ

(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

. (.)
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By (.), (.), and (.) we have

min
t∈[,ξ ]

(Tu)

= min
t∈[,ξ ]

(∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)
)

≥ δρ

(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

=
δρ

ρ
ρ

(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

≥ δρ

ρ
‖Tu‖PC . (.)

Thus, T(K) ⊂ K .
Next, we prove that T : K → K is completely continuous.
It is obvious that T is continuous.
Let Br = {u ∈ PC[, ]|‖u‖PC ≤ r} be bounded set. Then, for all u ∈ Br , by the definition

of ‖Tu‖∞, ‖Tu′‖∞, and ‖Tu‖PC and by (.) and (.) we have

‖Tu‖∞ = sup
t∈J

∣
∣Tu(t)

∣
∣

≤ ρ

(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

≤ ρ
(‖ω‖L + nB

)

= �,
∥
∥Tu′∥∥∞ = sup

t∈J

∣
∣Tu′(t)

∣
∣

≤
(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

≤ (‖ω‖L + nB
)

= �,

and

‖Tu‖PC = max
{‖Tu‖∞,

∥
∥Tu′∥∥∞

} ≤ max{�,�} = �,

where L = maxt∈J ,u∈K ,‖u‖PC ≤r f (t, u), B = maxu∈K ,‖u‖PC ≤r Ik(u).
Therefore, T(Br) is uniformly bounded.
On the other hand, for all t, t ∈ Jk with t < t, we have

∣
∣(Tu)(t) – (Tu)(t)

∣
∣ =

∣
∣
∣
∣

∫ t

t

(Tu)′(t) dt
∣
∣
∣
∣ ≤ �|t – t| →  (t → t).
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Noting (.), we know that H ′(t, s) is a constant and

∣
∣(Tu)′(t) – (Tu)′(t)

∣
∣ =

∣
∣
∣
∣
∣

∫ 



[
H ′

t(t, s) – H ′
t(t, s)

]
ω(s)f

(
s, u

(
α(s)

))
ds

+
n∑

k=

[
H ′

t(t, tk) – H ′
t(t, tk)

]
Ik

(
u(tk)

)
∣
∣
∣
∣
∣
→  (t → t).

Then T(Br) is equicontinuous. Lemma . shows that T : K → K is completely continuous,
and the lemma is proved. �

Definition . The map β is said to be a nonnegative continuous concave functional on
a cone K of a real Banach space E if β : K → [, +∞) is continuous and

β
(
tx + ( – t)y

) ≥ tβ(x) + ( – t)β(y)

∀x, y ∈ K ,  ≤ t ≤ .

For positive numbers  < c < d, we define the convex sets Kc, K̄c, K(β , c, d) by

Kc =
{

u ∈ K | ‖u‖PC < c
}

, (.)

K̄c =
{

u ∈ K | ‖u‖PC ≤ c
}

, (.)

K(β , c, d) =
{

u | u ∈ K , c ≤ β(u),‖u‖PC ≤ d
}

. (.)

It is easy to see that K(β , c, d) is a bounded closed convex set.

We state the well-known Leggett-William fixed point theorem [].

Lemma . Let K be a cone in a real Banach space E. Suppose that A : K̄l → K̄l is com-
pletely continuous, β(u) be a nonnegative continuous concave functional on K satisfying
β(u) ≤ ‖u‖ for all u ∈ K̄l , and there exist positive numbers  < m < c < d ≤ l such that

(i) {u | u ∈ K(β , c, d),β(u) > c} �= Ø and β(Au) > c for u ∈ K(β , c, d);
(ii) ‖Au‖ < m for ‖u‖ ≤ m;

(iii) β(Au) > c for u ∈ K(β , c, l) and ‖Au‖ > d.
Then, A has at least three fixed points u, u, and u satisfying

‖u‖ < m, c < β(u), ‖u‖ > m, and β(u) < c.

To obtain some of the norm inequalities in our main results, we employ Hölder’s in-
equality.

Lemma . (Hölder) Let e ∈ Lp[a, b] with p > , h ∈ Lq[a, b] with q > , and 
p + 

q = . Then
eh ∈ L[a, b], and

‖eh‖ ≤ ‖e‖p‖h‖q.

Let e ∈ L[a, b] and h ∈ L∞[a, b]. Then eh ∈ L[a, b], and

‖eh‖ ≤ ‖e‖‖h‖∞.
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4 Main results
In this section, we establish the existence of triple positive solutions for problem (.). We
consider the following three cases for w ∈ Lp[, ]: p > , p = , and p = ∞. The case p > 
is treated in the following theorem.

For convenience, we introduce the following notation:

ρ = max

{
a

a – μ
,

a
b

}

, D = ρ‖G‖q‖ω‖p, D = nρ

(

 +
b
a

)

, δ∗ =
δρ

ρ
,

f ∞ = lim sup
u→∞

max
t∈J

f (t, u)
u

, I∞(k) = lim sup
u→∞

Ik(u)
u

, k = , , . . . , n.

Theorem . Assume that (H)-(H) hold. Furthermore, suppose that there exist constants
 < m < c < c

δ∗ ≤ l such that

(H) f ∞ < 
D , I∞(k) < 

D
, k = , , . . . , n;

(H) f (t, u) ≥ c
ξδρN , ∀(t, u) ∈ [, ξ ] × [c, c

δ∗ ];
(H) f (t, u) < m

D , Ik(u) < m
D

, ∀(t, u) ∈ J × [, m], k = , , . . . , n.

Then problem (.) has at least three positive solutions u, u, and u satisfying

‖u‖PC < m, c < β(u), ‖u‖PC > m, and β(u) < c.

Proof Let β(u) = min≤t≤ξ u(t). It is clear that β(u) is a nonnegative continuous concave
functional on the cone K satisfying β(u) ≤ ‖u‖PC for all u ∈ K . By (H) there exist  < γ <


D ,  < γ < 

D
, and ρ ′ >  such that

f (t, u) ≤ γ u, Ik(u) ≤ γu, k = , , . . . , n,∀t ∈ J , u ≥ ρ ′.

Let

η = max
(t,u)∈[,]×[,ρ′]

f (t, u), η = max
u∈[,ρ′]

Ik(u), k = , , . . . , n.

Then

f
(
t, u(t)

) ≤ γ u(t) + η, Ik(u) ≤ γu + η, ∀t ∈ J , u ≥ . (.)

Since  ≤ α(t) ≤ t ≤  on J , it follows from u(t) ≥ ρ ′ on J that

u
(
α(t)

) ≥ ρ ′, ∀t ∈ J . (.)

Set l > max{ Dη

–Dγ
, Dη

–Dγ
, c

δ∗ }.
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Consequently, for any t ∈ J and u ∈ K̄l , (.) and (.) imply

(Tu)(t) =
∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)

≤ a
a – μ

(∫ 


G(s, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

G(t, tk)Ik
(
u(tk)

)
)

≤ a
a – μ

(

‖G‖q‖ω‖p

∫ 


f
(
s, u

(
α(s)

))
ds +

(

 +
b
a

) n∑

k=

Ik
(
u(tk)

)
)

, (.)

∣
∣(Tu)′(t)

∣
∣ ≤

∫ 



∣
∣H ′

t(t, s)
∣
∣ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

∣
∣H ′

t(t, tk)
∣
∣Ik

(
u(tk)

)

≤
∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)

=
∫ 




G(s, s)

G(s, s)ω(s)f
(
s, u

(
α(s)

))
ds +


G(s, s)

n∑

k=

G(s, s)Ik
(
u(tk)

)

≤ a
b

(∫ 


G(s, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

G(s, s)Ik
(
u(tk)

)
)

≤ a
b

(

‖G‖q‖ω‖p

∫ 


f
(
s, u

(
α(s)

))
ds +

(

 +
b
a

) n∑

k=

Ik
(
u(tk)

)
)

. (.)

It follows from (.) and (.) that

‖Tu‖PC ≤ ρ

(

‖G‖q‖ω‖p

∫ 


f
(
s, u

(
α(s)

))
ds +

(

 +
b
a

) n∑

k=

Ik
(
u(tk)

)
)

≤ ρ‖G‖q‖ω‖p
(
γ ‖u‖PC + η

)
+ ρ

(

 +
b
a

)

n
(
γ‖u‖PC + η

)

≤ ρ‖G‖q‖ω‖p(γ l + η) + ρ

(

 +
b
a

)

n(γl + η)

<
l


+
l


= l, (.)

which implies that Tu ∈ Kl .
Hence, we have shown that if (H) holds, then the operator T : K̄l → K̄l is completely

continuous.
Next, we verify that {u | u ∈ K(β , c, c

δ∗ ),β(u) > c} �= Ø and β(Tu) > c for all u ∈ K(β , c, c
δ∗ ).

Take u(t) = δ∗+
δ∗ c, for t ∈ J . Then

u ∈
{

u | u ∈ K
(

β , c,
c
δ∗

)

,β(u) > c
}

,

which shows that
{

u | u ∈ K
(

β , c,
c
δ∗

)

,β(u) > c
}

�= Ø.
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Since  ≤ α(t) ≤ t ≤ ξ on [, ξ ], it follows from c ≤ u(t) ≤ c
δ∗ on J that

c ≤ u
(
α(t)

) ≤ c
δ∗ , ∀t ∈ [, ξ ].

Then, it follows from (H) that

β(Tu) = min
t∈[,ξ ]

(Tu)

= min
t∈[,ξ ]

∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)

≥ min
t∈[,ξ ]

∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds

≥ δρ

∫ 


ω(s)f

(
s, u

(
α(s)

))
ds

>


δρ

∫ 


ω(s)f

(
s, u

(
α(s)

))
ds

≥ 

δρ

∫ ξ


N

c
ξδρN

ds

= c. (.)

This implies that condition (i) of Lemma . holds.
Since  ≤ α(t) ≤ t ≤ ξ on [, ], it follows from  ≤ ‖u(t)‖PC ≤ m on J that

 ≤ ∥
∥u

(
α(t)

)∥
∥

PC ≤ m, ∀t ∈ [, ].

Then, for u ∈ K̄m, it follows from (H) and (.) that

‖Tu‖PC ≤ ρ

(∫ 


‖G‖q‖ω‖pf

(
s, u

(
α(s)

))
ds +

(

 +
b
a

) n∑

k=

Ik
(
u(tk)

)
)

= ρ‖G‖q‖ω‖p

∫ 


f
(
s, u

(
α(s)

))
ds + ρ

(

 +
b
a

) n∑

k=

Ik
(
u(tk)

)

< ρ‖G‖q‖ω‖p

∫ 



m
D

ds + ρ

(

 +
b
a

) n∑

k=

m
D

=
m


+
m


= m. (.)

This implies that condition (ii) of Lemma . holds.
Finally, we assert that if u ∈ K(β , c, l) and ‖Tu‖PC > c

δ∗ , then β(Tu) > c.
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Suppose that u ∈ K(β , c, l) and ‖Tu‖PC > c
δ∗ . Then it follows form (.) that

β(Tu) = min
t∈[,ξ ]

(Tu)

= min
t∈[,ξ ]

[∫ 


H(t, s)ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

H(t, tk)Ik
(
u(tk)

)
]

≥ δρ

ρ
‖Tu‖PC

= δ∗‖Tu‖PC > c. (.)

This implies that condition (iii) of Lemma . holds.
To sum up, the hypotheses of Lemma . hold. Therefore, an application of Lemma .

implies that problem (.) has at least three positive solutions u, u, and u satisfying

‖u‖PC < m, c < β(u), ‖u‖PC > m and β(u) < c.

The following results deal with the case p = ∞. �

Corollary . Assume that (H)-(H) hold. Then problem (.) has at least three positive
solutions u, u, and u satisfying

‖u‖PC < m, c < β(u), ‖u‖PC > m, and β(u) < c.

Proof Let ‖G‖‖ω‖∞ replace ‖G‖q‖ω‖p and repeat the previous argument.
Finally, we consider the case of p = . Let

(H ′
) f ∞ < 

D′ , I∞(k) < 
D′


, k = , , . . . , n;

(H ′
) f (t, u) < m

D′ , Ik(u) < m
D′


, ∀(t, u) ∈ J × [, m], k = , , . . . , n, where D′ = ρ‖ω‖, D′

 =
ρn. �

Corollary . Assume that (H)-(H), (H ′
), (H), and (H ′

) hold. Then problem (.) has
at least three positive solutions u, u, and u satisfying

‖u‖PC < m, c < β(u), ‖u‖PC > m, and β(u) < c.

Proof Set l′ > max{ D′η
–D′γ ′ ,

D′
η

–D′
γ

, c
δ∗ }, where  < γ ′ < 

D′ . If u ∈ K̄l′ , then, by assumption
(H ′

), from (.) and (.) we obtain

f
(
t, u

(
α(t)

)) ≤ γ ′u
(
α(t)

)
+ η.
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Then, for u ∈ K̄l′ , it follows from (.) and (.) that

‖Tu‖PC ≤ ρ

(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

≤ ρ‖ω‖

∫ 


f
(
s, u

(
α(s)

))
ds + ρ

n∑

k=

Ik
(
u(tk)

)

≤ ρ‖ω‖

∫ 



(
γ ′u

(
α(s)

)
+ η

)
ds + ρn(γu + η)

≤ ρ‖ω‖
(
γ ′‖u‖PC + η

)
+ ρn

(
γ‖u‖PC + η

)

≤ ρ‖ω‖
(
γ ′l′ + η

)
+ ρn

(
γl′ + η

)

<
l′


+

l′



= l′,

which implies that Tu ∈ Kl′ .
Hence, we have shown that if (H ′

) holds, then the operator T : K̄l′ → K̄l′ is completely
continuous.

If u ∈ K̄m, then it follows from (.) and (H ′
) that

‖Tu‖PC ≤ ρ

(∫ 


ω(s)f

(
s, u

(
α(s)

))
ds +

n∑

k=

Ik
(
u(tk)

)
)

≤ ρ‖ω‖

∫ 


f
(
s, u

(
α(s)

))
ds + ρ

n∑

k=

Ik
(
u(tk)

)

< ρ‖ω‖

∫ 



m
D′ ds + ρ

n∑

k=

m
D′



=
m


+
m


= m.

Similarly to the proof of Theorem ., we can get Corollary .. �

Remark . Comparing with Jankowski [], the main features of this paper are as fol-
lows.

(i) A Green function, especially, a positive Green function, is available.
(ii) We consider integral boundary conditions.

(iii) ω(t) is Lp-integrable, not only ω(t) ∈ C[, ] on t ∈ J .

5 An example
To illustrate how our main results can be used in practice, we present an example.
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Example . Let ξ = 
 , n = , t = 

 , p = . Consider the following boundary value prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + ω(t)f (t, u(α(t))) = ,  ≤ t ≤ , t �= 
 ,

–�u′|t= 


= I(u( 
 )),

u′() = , u() + u′() =
∫ 

 tu(t) dt,

(.)

where α ∈ C(J , J), α(t) ≤ t on J , and ω(t) = 

|t– 
 | 


, α(t) = t, I(u) = u

 , g(t) = t, a = b = ,

f (t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩




√√


 m, t ∈ J , u ∈ [, m],



√√


 m × c–u
c–m + 

√
√


c × u–m
c–m , t ∈ J , u ∈ [m, c],


√

√


c, t ∈ J , u ∈ [c, c
δ∗ ],


√

√


c +
√

t(u – c
δ∗ ), t ∈ J , u ∈ [ c

δ∗ ,∞).

Thus, it is easy to see by calculating that ω(t) ≥ N =
√√


 for a.e. t ∈ J and

μ =
∫ 


g(t) dt =




, ρ =
b

a – μ
= ,

δ =
 – ξ


=




, ρ =
a + b
a – μ

= ,

ρ = max

{
a

a – μ
,

a
b

}

= max{, } = , δ∗ =
δρ

ρ
=




.

Therefore, it follows from the definitions of ω, f , and g that (H)-(H) hold.
On the other hand, it follows from ω(t) = 

|t– 
 | 


and G(t, t) =  – t + b

a that

‖ω‖ =
[∫ 



(


|t – 
 | 



)

dt
] 


=

√


√




=

√
√


,

‖G‖ =
[∫ 



(

 – t +
b
a

)

dt
] 


=

√



.

Thus, we have

D = ρ‖G‖‖ω‖ = 

√
√


, D = nρ

(

 +
b
a

)

= ,


D

=



√√



,


D

=



.

Choosing  < m < c < 
 c ≤ l, we have

f ∞ = lim sup
u→∞

max
t∈J

f (t, u)
u

=  <



√√



=


D

, I∞() =



<




=


D
,
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f (t, u) = 

√
√


c >



√
√


c =
c

ξδρN
, ∀(t, u) ∈

[

,



]

×
[

c,



c
]

,

f (t, u) =



√√



m <




√√



m =

m
D

, I(u) =
u


≤ m


<
m


=
m

D
,

∀(t, u) ∈ [, ] × [, m],

which show that (H), (H), and (H) hold.
By Theorem ., problem (.) has at lest three positive solutions u, u, and u satisfying

‖u‖PC < m, c < β(u), ‖u‖PC > m, and β(u) < c.
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