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Abstract
Based on the notation of time-dependent attractors, we prove the existence and the
regularity of time-dependent global attractors for a class of nonclassical
reaction-diffusion equations when the forcing term g(x) ∈ H–1(�) and the nonlinear
function satisfies the critical exponent growth, which is weaker than the conditions
used in (Jing and Liu in Appl. Anal. 94(7):1439-1449, 2015).
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1 Introduction
Recently, Conti and Di Plinio et al. [–] presented the notation of time-dependent global
attractors and studied the long-time behavior of the wave equations and oscillation equa-
tions in the topology space equipped with the norm related to the time, respectively. Moti-
vated by these results we investigate the existence and regularity of time-dependent global
attractors for a class of nonclassical reaction-diffusion equations

⎧
⎪⎪⎨

⎪⎪⎩

ut – ε(t)�ut – �u + λu = f (u) + g(x), x ∈ �,

u|∂� = , t ∈ R,

u(x, τ ) = uτ (x), t ≥ τ .

(.)

Here � is a bounded set of Rn (n ≥ ) with smooth boundary ∂�. λ > , τ ∈R, and ε(t) is
a decreasing bounded function satisfying

lim
t→+∞ ε(t) = , (.)

and there exists ν >  such that

sup
t∈R

[∣
∣ε(t)

∣
∣ +

∣
∣ε′(t)

∣
∣
] ≤ ν. (.)
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The nonlinearity f ∈ C(R) with f () = , is assumed to satisfy the following conditions:

lim sup
|s|→∞

f (s)
s

< λ, ∀s ∈R, (.)

∣
∣f ′(s)

∣
∣ ≤ C

(
 + |s| 

n–
)
, ∀s ∈R, (.)

where λ is the first eigenvalue of –� in H
(�), C is a positive constant.

The nonclassical reaction-diffusion equation arises as a mathematical model to de-
scribe physical phenomena, such as non-Newtonian flows, solid mechanics, and heat con-
duction [–]. Aifantis provides a quite general approach for obtaining these equations
(see [, ]).

When ε(t) in (.) is only a positive constant, the long-time behavior of solutions for (.)
has been extensively studied by several authors in [–] and the references therein. For
instance, some authors obtained the existence of global(pullback) attractors of solutions
for both the autonomous case [, , , , ] and the nonautonomous case [, ,
]. Anh and Toan [] investigated the existence and upper semicontinuity of uniform
attractor in H(RN) for this problem; besides, they also considered the case of singularly
oscillating external forces onR

N []. The existence of exponential attractors was obtained
in [, , ]. In the general case of a time dependence, to the best of our knowledge, only
Ding and Liu [] proved the existence and regularity of time-dependent global attractors
of (.) when the force term g ∈ L(�) (� ⊂ R

) and the nonlinear term f satisfies the
following conditions:

(i) lim sup
|s|→∞

f (s)
s

< λ, ∀s ∈ R,

(ii)
∣
∣f ′′(s)

∣
∣ ≤ C

(
 + |s|), ∀s ∈R.

In this paper, following the general lines of the approach used in [–], we investigate the
existence and regularity of the time-dependent attractors for the process U(t, τ ) generated
by (.) under weaker conditions than [].

2 Preliminaries
Without loss of generality, denote H = L(�) with the inner products 〈·, ·〉 and norms ‖ · ‖.
For  ≤ σ ≤ , we define the hierarchy of compactly nested Hilbert spaces

Hσ = D
(
A

σ

)
, 〈w, v〉σ =

〈
A

σ
 w, A

σ
 v

〉
, ‖w‖σ =

∥
∥A

σ
 w

∥
∥.

Then, for t ∈R and – ≤ σ ≤ , we introduce the time-dependent spaces

Hσ
t = Hσ+,

endowed with the time-dependent norms

‖u‖
Hσ

t
= ‖u‖

σ + ε(t)‖u‖
σ+.
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The symbol σ is always omitted whenever zero. In particular, the time-dependent phase
space where we settle the problem is

H–
t = H = L, Ht = H, with ‖u‖

Ht = ‖u‖ + ε(t)‖u‖
 ,

then we have the compact embeddings

Hσ
t �Ht , – ≤ σ < ,

with injection constants independent of t ∈R. Note that the spaces Ht are all the same as
linear spaces; besides, since ε(t) is a decreasing function of t, for every u ∈ H and t ≥ τ ∈R

we have

‖u‖
Ht ≤ ‖u‖

Hτ
≤ max

{

,
ε(τ )
ε(t)

}

‖u‖
Ht .

Hence the norms ‖u‖
Ht

and ‖u‖
Hτ

are equivalent for any fixed t, τ ∈R, but the equivalent
constant blows up when t → +∞.

3 The main results
3.1 A priori estimates
Under the assumptions of (.)-(.), if g ∈ H–(�), then using the standard Galerkin ap-
proximation method ([]), we can obtain the result concerning the existence and unique-
ness of solution for the problem (.); see, for example, [, , ]. Thus, based on the sub-
sequent Lemma . we get the following results.

Lemma . Assume that (.)-(.) hold, for any uτ ∈ Hτ , there is a unique solution u of
(.) satisfying

u ∈ C
(
[τ , t], H

)
.

Furthermore, let ui(τ ) ∈Hτ be two initial conditions such that ‖ui(τ )‖Hτ ≤ R (i = , ) and
denote by ui(t) the corresponding solutions to the problem (.). Then the following estimate
holds:

∥
∥u(t) – u(t)

∥
∥
Ht

≤ eK (t–τ )∥∥u(τ ) – u(τ )
∥
∥
Hτ

, ∀t ≥ τ , (.)

for some constant K = K(R) > .

Proof We only need to prove the estimate (.). Let C be a generic positive constant
depending on R but independent of ui(τ ). We first observe that the energy estimate in
Lemma . below ensures

∥
∥U(t, τ )ui(τ )

∥
∥
Ht

≤ C, i = , . (.)

We write ui(t) = U(t, τ )ui(τ ), u = U(t, τ )u(τ ) – U(t, τ )u(τ ). Then the difference between
the two solutions satisfies

ut – ε(t)	ut – 	u + λu = f (u) – f (u),
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with initial datum u(τ ) = u(τ ) – u(τ ). Multiplying by u in L(�) we obtain

d
dt

‖u‖
Ht + λ‖u‖ +

(
 – ε′(t)

)‖u‖
 = 

〈
f (u) – f (u), u

〉
.

Combining with the embedding H
(�) ↪→ Ln/(n–) (n ≥ ), and according to (.) and

(.), we have


∣
∣
〈
f (u) – f (u), u

〉∣
∣

= 
∫

�

∣
∣
(
f (u) – f (u)

)
u
∣
∣dx = 

∫

�

∣
∣
(
f ′(θu + ( – θ )u

)
u
)
u
∣
∣dx

≤ C
∫

�

(
 + |u| 

n–
)|u| dx ≤ C

[∫

�

(
 + |u| 

n–
) n



] 
n

·
[∫

�

|u|· n
n–

] n–
n

≤ C
(
 + ‖u‖/(n–)

Ln/(n–)

)‖u‖
Ln/(n–) ≤ C‖u‖

 .

Thus, we end up with the differential inequality

d
dt

‖u‖
Ht ≤ C‖u‖

Ht ,

and an application of the Gronwall lemma on [τ , t] completes the proof. �

By means of the Lemma ., a family of maps with t ≥ τ ∈R

U(t, τ ) : Hτ → Ht acting as U(t, τ )uτ = u(t),

define a strongly continuous process on a family of spaces {Ht}t∈R.

Lemma . Assume that (.)-(.) hold. For any uτ ∈Hτ , t ≥ τ , let U(t, τ )uτ be the solu-
tion of (.) with initial value uτ . Then there is a positive constant K, such that

∥
∥U(t, τ )uτ

∥
∥
Ht

≤ K , ∀t ≥ τ .

Proof Multiplying (.) by u + ut in H we obtain

d
dt

[
( + λ)‖u‖ +

(
 + ε(t)

)‖u‖
 – 

〈
F(u), 

〉
– 〈g, u〉]

+ λ‖u‖ +
(
 – ε′(t)

)‖u‖
 – 

〈
f (u), u

〉
– 〈g, u〉 + ‖ut‖ + ε(t)‖ut‖

 = . (.)

Let

E(t) = ( + λ)‖u‖ +
(
 + ε(t)

)‖u‖
 – 

〈
F(u), 

〉
– 〈g, u〉,

I(t) = λ‖u‖ +
(
 – ε′(t)

)‖u‖
 – 

〈
f (u), u

〉
– 〈g, u〉,

it yields

d
dt

E(t) + I(t) ≤ ,



Ma et al. Boundary Value Problems  (2016) 2016:10 Page 5 of 11

namely

E(t) ≤ –
∫ t

τ

I(s) ds + E(τ ),

where

E(τ ) = ( + λ)‖uτ‖ +
(
 + ε(τ )

)‖uτ‖
 – 

〈
F(uτ ), 

〉
– 〈g, uτ 〉.

In view of the condition (.), there are  < ν <  and c ≥ , such that


〈
F(u), 

〉 ≤ ( – ν)‖u‖
 + c, (.)

〈
f (u), u

〉 ≤ ( – ν)‖u‖
 + c, ∀u ∈ H. (.)

Thus, combining with (.), (.), and (.), there exist two positive constants M and M,
such that

E(t) ≥ ( + λ)‖u‖ +
(
 + ε(t)

)‖u‖
 – ( – ν)‖u‖

 – c –

ν
‖g‖

H– –
ν


‖u‖



≥ λ‖u‖ +
(

ν


+ ε(t)

)

‖u‖
 – M,

and

I(t) ≥ λ‖u‖ +
(
 – ε′(t)

)‖u‖
 – ( – ν)‖u‖

 – c –

ν
‖g‖

H– –
ν


‖u‖



≥ λ‖u‖ +
(

ν


+ ε(t)

)

‖u‖
 – M.

So we deduce that

λ
∥
∥u(t)

∥
∥ +

(
ν


+ ε(t)

)
∥
∥u(t)

∥
∥

 – M

≤ –
∫ t

τ

(

λ
∥
∥u(s)

∥
∥ +

(
ν


+ ε(s)

)
∥
∥u(s)

∥
∥

 – M

)

ds + E(τ ).

Therefore, for any K > M, there exists t > τ such that

λ
∥
∥u(t)

∥
∥ +

(
ν


+ ε(t)

)
∥
∥u(t)

∥
∥

 ≤ K .

As a result, if u is a solution of the systems (.), if we let Bt =
⋃

t≥τ U(t, τ )Bτ , where

Bτ =
{

uτ ∈ Bτ (R) : λ‖uτ‖ +
(

ν


+ ε(τ )

)

‖uτ‖
 ≤ K

}

,

then Bt is a bounded time-dependent absorbing set of {U(t, τ )}t≥τ . Moreover, Bt is posi-
tively invariant. �
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On the other hand, from the above discussion, for every R ≥  there exist positive con-
stants μ and t = t(R) such that

λ
∥
∥u(t)

∥
∥ +

(
 + ε(t)

)∥
∥u(t)

∥
∥

 ≤ μ, ∀τ ≤ t – t. (.)

3.2 The time-dependent global attractors and regularity
The main result concerning the asymptotic behavior of problem (.) is contained in the
following theorem.

Theorem . The process U(t, τ ) generated by problem (.) admits an invariant time-
dependent global attractor U = {At}t∈R in Ht . Besides, At is bounded in H

t , with a bound
independent of t.

In order to show that the process is asymptotically compact, we shall exhibit a pullback
attracting family of (non-void) compact sets. For this purpose, we exploit a suitable de-
composition of the process in the sum of a decaying part and of a compact one.

.. The decomposition
Under the conditions (.)-(.), like in [] we write f = f + f, where f, f ∈ C(R) fulfill,
respectively, for some k ≥ ,

∣
∣f(s)

∣
∣ ≤ C

(
 + |s| n+

n–
)
, ∀s ∈R, (.)

f(s)s ≤ , ∀s ∈R, (.)
∣
∣f(s)

∣
∣ ≤ C

(
 + |s|γ )

, ∀s ∈R,  < γ <
n + 
n – 

, (.)

lim sup
|s|→∞

f(s)
s

< λ, ∀s ∈ R. (.)

Since the injection i : L(�) ↪→ H–(�) is dense, we know that for every g ∈ H–(�) and
any η > , there is a gη ∈ L(�) which depends on g and η such that

∥
∥g – gη

∥
∥

H– < η. (.)

Let B = {Bt(R)}t∈R be a time-dependent absorbing set as in Lemma . and let τ ∈ R

be fixed. Then, for any uτ ∈ Bτ (R), we divide U(t, τ )uτ into the sum

U(t, τ )uτ = u(t) = U(t, τ )uτ + U(t, τ )uτ ,

where

U(t, τ )uτ = vη(t), U(t, τ )uτ = wη(t),

respectively, solve the following systems:

⎧
⎨

⎩

vη
t + ε(t)Avη

t + Avη + λvη = f(vη) + g – gη, x ∈ �,

U(τ , τ ) = uτ ,
(.)
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and
⎧
⎨

⎩

wη
t + ε(t)Awη

t + Awη + λwη = f (u) – f(vη) + gη, x ∈ �.

U(τ , τ ) = ,
(.)

In the following, the generic constant C ≥  depends only on B.

Lemma . Under the conditions (.)-(.), there exist two constants δ >  and K > 
such that

∥
∥U(t, τ )uτ

∥
∥
Ht

≤ Ce–δ(t–τ ) + K, ∀t ≥ τ .

Proof Multiplying (.) by vη in H we obtain

d
dt

[∥
∥vη

∥
∥ + ε(t)

∥
∥vη

∥
∥



]
+ λ

∥
∥vη

∥
∥ +

(
 – ε′(t)

)∥
∥vη

∥
∥

 = 
〈
f

(
vη

)
+ g – gη, vη

〉
.

By (.), we have


〈
f

(
vη

)
, vη

〉
= 

∫

�

f
(
vη

)
vη dx ≤ ,

and using the Cauchy and Young inequalities we get


〈
g – gη, vη

〉 ≤ 
∥
∥g – gη

∥
∥

H–

∥
∥vη

∥
∥

H ≤ ∥
∥g – gη

∥
∥

H– +
∥
∥vη

∥
∥

 .

In view of (.) we get  – ε′(t) ≥ ε(t) > , thus we find

d
dt

(
ε(t)

∥
∥vη

∥
∥ +

∥
∥vη

∥
∥



)
+ λ

∥
∥vη

∥
∥ + ε(t)

∥
∥vη

∥
∥

 ≤ η.

Taking δ = min{λ, } > , then

d
dt

∥
∥U(t, τ )uτ

∥
∥
Ht

+ δ
∥
∥U(t, τ )uτ

∥
∥
Ht

≤ η.

Applying the Gronwall lemma on the interval [τ , t] with t ≥ τ , it follows that

∥
∥U(t, τ )uτ

∥
∥
Ht

≤ ‖uτ‖
Hτ

e–δ(t–τ ) + η/δ.

The proof is complete. �

Summing up, the following uniform boundedness holds:

sup
t≥τ

[∥
∥U(t, τ )uτ

∥
∥
Ht

+
∥
∥U(t, τ )uτ

∥
∥
Ht

+
∥
∥U(t, τ )uτ

∥
∥
Ht

] ≤ C. (.)

In order to prove our further result, we also need the condition

lim sup
|s|→∞

f ′(s) < λ, ∀s ∈R. (.)
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Lemma . Under the conditions (.)-(.) and (.), there exists M = M(B) >  such
that

sup
t≥τ

∥
∥U(t, τ )uτ

∥
∥
H/

t
≤ M.

Proof Multiplying (.) by A/wη in H we have

d
dt

[∥
∥wη

∥
∥

/ + ε(t)
∥
∥wη

∥
∥

/

]
+ λ

∥
∥wη

∥
∥

/ +
(
 – ε′(t)

)∥
∥wη

∥
∥

/

= 
〈
f (u) – f

(
vη

)
+ gη, A/wη

〉

= 
〈
f (u) – f

(
vη

)
, A/wη

〉
+ 

〈
f
(
vη

)
, A/wη

〉
+ 

〈
gη, A/wη

〉
.

Using the Young equality, it leads to


〈
f (u) – f

(
vη

)
, A/wη

〉
= 

∫

�

(
f (u) – f

(
vη

))
A/wη dx

≤ 
∫

�

∣
∣f ′(u – θ

(
u – vη

))∣
∣
∣
∣u – vη

∣
∣
∣
∣A/wη

∣
∣dx

≤ C
∫

�

∣
∣wη

∣
∣
∣
∣A/wη

∣
∣dx ≤ C

∥
∥wη

∥
∥
∥
∥A/wη

∥
∥ ≤ C +




∥
∥wη

∥
∥

/.

Since (n–)γ
n+ < , from (.) it follows that


∣
∣
〈
f
(
vη

)
, A/wη

〉∣
∣

≤ C
∫

�

(
 +

∣
∣vη

∣
∣γ

)∣
∣A/wη

∣
∣dx ≤ C

(∫

�

(
 +

∣
∣vη

∣
∣γ

) n
n+

) n+
n

(∫

�

∣
∣A/wη

∣
∣

n
n–

) n–
n

≤ C
(
 +

∥
∥vη

∥
∥γ

Lnγ /(n+)
)∥
∥A/wη

∥
∥

Ln/(n–) ≤ C
(
 +

∥
∥vη

∥
∥γ



)∥
∥A/wη

∥
∥

≤ C
∥
∥wη

∥
∥

/ ≤ C +



∥
∥wη

∥
∥

/,

where we have used the embedding H = D(A 
 ) ↪→ L n

n– with the facts that nγ

n+ ≤ n
n– and

H/ = D(A/) ↪→ L n
n– . Moreover, making use of the embedding H/ ⊂ L/(�), we have


〈
gη, A/wη

〉 ≤ 
∥
∥gη

∥
∥

L/

∥
∥A/wη

∥
∥

L/ ≤ C
∥
∥gη

∥
∥‖wη‖/ ≤ C

∥
∥gη

∥
∥ +



‖wη‖

/.

As a result, we deduce

d
dt

(‖wη‖
/ + ε(t)‖wη‖

/
)

+ λ‖wη‖
/ +

(
 – ε′(t)

)‖wη‖
/ ≤ C.

Using  – ε′(t) ≥ ε(t) > , we conclude

d
dt

(‖wη‖
/ + ε(t)‖wη‖

/
)

+ λ‖wη‖
/ + ε(t)‖wη‖

/ ≤ C.

Taking δ = min{λ, } > , we have

d
dt

∥
∥U(t, τ )uτ

∥
∥
Ht

+ δ
∥
∥U(t, τ )uτ

∥
∥
Ht

≤ C.
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Applying the Gronwall lemma on the interval [τ , t] with t ≥ τ we obtain

∥
∥U(t, τ )uτ

∥
∥
H/

t
≤ ‖uτ‖

H/
τ

e–δ(t–τ ) + C/δ.

The proof is complete. �

.. Existence of the invariant attractor
In line with the Lemma ., we consider a family of K = {Kt}t∈R, where

Kt =
{

u(t) ∈H/
t :

∥
∥u(t)

∥
∥
H/

t
≤ M

}
.

It is clear that Kt is compact since embedding H/
t � Ht is compact; besides, since the

injection constants are independent of t, K is uniform. Finally, Lemma ., Lemma .,
and Lemma . imply that K is pullback attracting; indeed,

δt
(
Bτ (R), Kt

) ≤ Ce–δ(t–τ ), ∀t ≥ τ ,

where δt(B, C) is the Hausdorff semidistance of two nonempty sets B, C.
Hence the process U(t, τ ) is asymptotically compact, which proves the existence of the

unique time-dependent global attractor U = {At}t∈R. The invariance of U follows by the
strong continuity of the process stated in Lemma ..

.. Regularity of the attractor
The minimality of U in K establishes that At ⊂ Kt for all t ∈R. Therefore, we immediately
obtain the following regularity result.

Lemma . At is bounded in H/
t (with a bound independent of t).

To prove that At is uniformly bounded in H
t , as claimed in Theorem ., we argue

as follows. Fix τ ∈ R , for uτ ∈ Aτ , we split the solution U(t, τ )uτ = u(t) into the sum
U(t, τ )uτ + U(t, τ )uτ , where U(t, τ )uτ = vη(t) and U(t, τ )uτ = wη(t), instead of (.)-
(.), solving, respectively,

⎧
⎨

⎩

vη
t + ε(t)Avη

t + Avη + λvη = g – gη, x ∈ �,

U(τ , τ ) = uτ ,
(.)

⎧
⎨

⎩

wη
t + ε(t)Awη

t + Awη + λwη = f (u) + gη, x ∈ �,

U(τ , τ ) = .
(.)

As a particular case of Lemma ., we know that

∥
∥U(t, τ )uτ

∥
∥
H

t
≤ Ce–δ(t–τ ) + η/δ, ∀t ≥ τ . (.)

Lemma . Under the assumptions (.)-(.), the following estimate holds:

sup
t≥τ

∥
∥U(t, τ )uτ

∥
∥
H

t
≤ M

for some M = M(U) > .
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Proof Multiplying (.) by Awη in H we obtain

d
dt

[∥
∥wη

∥
∥

 + ε(t)
∥
∥wη

∥
∥



]
+ λ

∥
∥wη

∥
∥

 +
(
 – ε′(t)

)∥
∥wη

∥
∥

 = 
〈
f (u) + gη, Awη

〉
.

Together with embeddings H(�) ↪→ L(�), Lemma ., and (.), we have


∣
∣
〈
f (u), Awη

〉∣
∣ = 

∫

�

∣
∣f ′(u)∇u · A/wη

∣
∣dx ≤ λ

∫

�

∣
∣∇u · A/wη

∣
∣dx

≤ λ‖∇u‖∥∥A/wη
∥
∥ ≤ C +



∥
∥wη

∥
∥

,


〈
gη, Awη

〉 ≤ 
∥
∥gη

∥
∥
∥
∥Awη

∥
∥ ≤ 

∥
∥gη

∥
∥ +



‖wη‖

.

Therefore, we conclude

d
dt

(∥
∥wη

∥
∥

 + ε(t)
∥
∥wη

∥
∥



)
+ λ

∥
∥wη

∥
∥

 +
(
 – ε′(t)

)∥
∥wη

∥
∥

 ≤ C.

From (.) we have  – ε′(t) ≥ ε(t) > , so we deduce

d
dt

∥
∥U(t, τ )uτ

∥
∥
H

t
+ δ

∥
∥U(t, τ )uτ

∥
∥
H

t
≤ C.

Applying the Gronwall lemma on the interval [τ , t] with t ≥ τ , we obtain

∥
∥U(t, τ )uτ

∥
∥
H

t
≤ ‖uτ‖

H
τ
e–δ(t–τ ) + C/δ.

The proof is complete. �

Proof of Theorem . For all t ∈R, inequality (.) and Lemma . imply that

lim
τ→–∞ δt

(
U(t, τ )Aτ , K 

t
)

= ,

where

K 
t =

{
u(t) ∈H

t :
∥
∥u(t)

∥
∥
H

t
≤ M

}
.

Since U is invariant, this means

δt
(
At , K 

t
)

= .

Hence, At ⊂ K 
t = K 

t ; that is, At is bounded in H
t with a bound independent of t ∈R. �
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