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1 Introduction
Consider the following Liénard equation:

(
φ
(
x′(t)

))′ + f
(
t,x(t)

)
x′(t) + g

(
t,x(t)

)
= e(t), (.)

f , g ∈ Car(R× R,R) are the L-Carathéodory functions, which means that they are mea-
surable in the first variable and continuous in the second variable, and for every  < r < s
there exists hr,s ∈ L[,T] such that |g(t,x(t))| ≤ hr,s for all x ∈ [r, s] and a.e. t ∈ [,T]; and
f , g are the T-periodic functions about t. e ∈ L([,T],R) is T-periodic.
Here let φ :R →R be a continuous function and φ() =  which satisfies:

(A) (φ(x) – φ(x))(x – x) > , ∀x �= x, x,x ∈R.
(A) There exists a function α : [, +∞] → [, +∞], α(s) → +∞ as s → +∞, such that

φ(x) · x ≥ α(|x|)|x|, ∀x ∈R.

It is easy to see that φ represents a large class of nonlinear operators, including φp :R →
R which is a p-Laplacian, i.e., φp(x) = |x|p–x for x ∈ R.
As is well known, the existence of periodic solutions for a p-Laplacian differential equa-

tion was extensively studied (see [–] and the references therein). In recent years, there
also appeared some results on the φ-Laplacian differential equation; see [–]. In [],
Ding et al. investigate the existence of periodic solutions for the Liénard type φ-Laplacian
differential equation (.) with the following assumption:

(H) f (t,u) = f (u), and g(t,u) = g(u), for all t,u ∈R.

However, for the existence of periodic solutions to (.) without (H), the results are scarce.
Thus, it is worthwhile to study (.) in this case.
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In this paper, by using some analysis techniques, we establish some sufficient condition
for the existence and uniqueness of positive T-periodic solutions of (.). The results of
this paper complement the results previously found in [].

2 Main results
For convenience, define

C
T =

{
x ∈ C(R,R): x is T-periodic

}
,

which is a Banach space endowed with the norm ‖ · ‖ defined by ‖x‖ = max{|x|, |x′|}, for
all x, and

|x| = max
t∈[,T]

∣
∣x(t)

∣
∣,

∣
∣x′∣∣

 = max
t∈[,T]

∣
∣x′(t)

∣
∣.

For the T-periodic boundary value problem

(
φ
(
x′(t)

))′ = f̃
(
t,x,x′), (.)

φ is defined as above and f̃ : [,T]×R×R →R is assumed to be Carathéodory.

Lemma . (Manásevich-Mawhin []) Let � be an open bounded set in C
T . If

(i) for each λ ∈ (, ) the problem

(
φ
(
x′))′ = λf̃

(
t,x,x′), x() = x(T), x′() = x′(T)

has no solution on ∂�;
(ii) the equation

F(a) :=

T

∫ T


f̃
(
t,x,x′)dt = 

has no solution on ∂� ∩R;
(iii) the Brouwer degree of F is

deg{F ,� ∩R, } �= ,

then the periodic boundary value problem (.) has at least one periodic solution on �̄.

Lemma . If φ(x) is bounded, then x is also bounded.

Proof Since φ(x) is bounded, there exists a positive constantN such that |φ(x)| ≤ N . From
(A), we have α(|x|)|x| ≤ φ(x) · x ≤ |φ(x)| · |x| ≤ N |x|. Hence, we can get α(|x|) ≤ N for all
x ∈R. If x is not bounded, then from the definition of α, we get α(|x|) >N for some x ∈R,
which is a contradiction. So x is also bounded. �

For the sake of convenience, we list the following assumptions which will be used re-
peatedly in the sequel:
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(H) There exists a positive constant D such that g(t,x) – e(t) <  for x > D and t ∈ R,
g(t,x) – e(t) >  for x ≤  and t ∈ R.

(H) There exists a constant σ >  such that inf(t,u)∈[,T]×R |f (t,u)| ≥ σ > .
(H) There exist positive constants a, b, B such that

∣
∣g(t,x)

∣
∣ ≤ a · |x| + b, for |x| ≥ B and t ∈R.

(H) g is a continuous differentiable function defined onR, and gx(t,x) < , where gx(t,x) =
∂g(t,x)

∂x .

Applying Lemmas .-., we obtain the following.

Theorem . Assume that (H)-(H) hold. Then (.) has positive T-periodic solution if
σ – aT

 > .

Proof Consider the homotopic equation of (.) as follows:

(
φ
(
x′(t)

))′ + λf
(
t,x(t)

)
x′(t) + λg

(
t,x(t)

)
= λe(t). (.)

Firstly, we will claim that the set of all possible T-periodic solutions of (.) is bounded.
Let x(t) ∈ C

T be an arbitrary solution of (.) with period T . As x() = x(T), there exists
t ∈ [,T] such that x′(t) = , while φ() = , and we see

∣∣φ
(
x′(t)

)∣∣ =
∣
∣∣
∣

∫ t

t

(
φ
(
x′(s)

))′ ds
∣
∣∣
∣

≤ λ

∫ T



∣
∣f

(
t,x(t)

)∣∣
∣
∣x′(t)

∣
∣dt + λ

∫ T



∣
∣g

(
t,x(t)

)∣∣dt + λ

∫ T



∣
∣e(t)

∣
∣dt, (.)

where t ∈ [t, t + T].
Consider the equivalent system of (.)

⎧
⎨

⎩
φ(x′(t)) = z(t),

z′(t) = –λf (t,x(t))x′(t) – λg(t,x(t)) + λe(t).
(.)

We first claim that there is a constant ξ ∈R such that

∣∣x(ξ )
∣∣ ≤ D. (.)

In view of
∫ T
 x′(t)dt = , we know that there exist two constants t, t ∈ [,T] such that

x′(t) ≥ , x′(t) ≤ .

From the first equation of (.) and (A), we know

z(t) = φ
(
x′(t)

) ≥ ,

z(t) = φ
(
x′(t)

) ≤ .
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Let t, t ∈ [,T] be, respectively, a global maximum and minimum point of z(t); clearly,
we have

z(t) ≥ , z′(t) = ; (.)

z(t) ≤ , z′(t) = . (.)

From (H) we know f will not change sign for (t,x) ∈ [,T]×R.Without loss of generality,
suppose f (t,x) >  for (t,x) ∈ [,T] × R and upon substitution of (.) into the second
equation of (.), we have

–λg
(
t,x(t)

)
+ λe(t) = λf

(
t,x(t)

)
x′(t).

Since z(t) = φ(x′(t))≥ , from (A), we know that x′(t) ≥ . So, we have

–g
(
t,x(t)

)
+ e(t) = f

(
t,x(t)

)
x′(t)≥ ,

i.e.

g
(
t,x(t)

)
– e(t) ≤ .

From (H), we know that

x(t) > .

Similarly, from (.) we have

g
(
t,x(t)

)
– e(t)≥ ,

and again by (H)

x(t) ≤ D. (.)

Case (): If x(t) ∈ (,D), define ξ = t, obviously, |x(ξ )| ≤ D.
Case (): If x(t) >D, from (.) and the fact that x(t) is a continuous function inR, there

exists a constant ξ between x(t) and x(t) such that |x(ξ )| =D. This proves (.).
Then we have

∣∣x(t)
∣∣ =

∣
∣∣∣x(ξ ) +

∫ t

ξ

x′(s)ds
∣
∣∣∣ ≤ D +

∫ t

ξ

∣∣x′(s)
∣∣ds, t ∈ [ξ , ξ + T]

and

∣∣x(t)
∣∣ =

∣∣x(t – T)
∣∣ =

∣
∣∣
∣x(ξ ) –

∫ ξ

t–T
x′(s)ds

∣
∣∣
∣

≤ D +
∫ ξ

t–T

∣∣x′(s)
∣∣ds, t ∈ [ξ , ξ + T].
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Combining the above two inequalities, we obtain

|x| = max
t∈[,T]

∣
∣x(t)

∣
∣ = max

t∈[ξ ,ξ+T]
∣
∣x(t)

∣
∣

≤ max
t∈[ξ ,ξ+T]

{
D +




(∫ t

ξ

∣
∣x′(s)

∣
∣ds +

∫ ξ

t–T

∣
∣x′(s)

∣
∣ds

)}

≤ D +



∫ T



∣
∣x′(s)

∣
∣ds. (.)

Since x′(t) is T-periodic, multiplying x′(t) and (.) and then integrating it from  to T ,
we have

 =
∫ T



(
φ
(
x′(t)

))′x′(t)dt

= –λ

∫ T


f
(
t,x(t)

)∣∣x′(t)
∣
∣ dt – λ

∫ T


g
(
t,x(t)

)
x′(t)dt + λ

∫ T


e(t)x′(t)dt. (.)

In view of (.), we have
∣∣
∣∣

∫ T


f
(
t,x(t)

)∣∣x′(t)
∣
∣ dt

∣∣
∣∣ =

∣∣
∣∣–

∫ T


g
(
t,x(t)

)
x′(t)dt +

∫ T


e(t)x′(t)dt

∣∣
∣∣.

From (H), we know
∣∣
∣∣

∫ T


f
(
t,x(t)

)∣∣x′(t)
∣
∣ dt

∣∣
∣∣ =

∫ T



∣
∣f

(
t,x(t)

)∣∣
∣
∣x′(t)

∣
∣ dt ≥ σ

∫ T



∣
∣x′(t)

∣
∣ dt.

Set

E =
{
t ∈ [,T] | ∣∣x(t)∣∣ ≤ B

}
, E =

{
t ∈ [,T] | ∣∣x(t)∣∣ ≥ B

}
.

From (H), we have

σ

∫ T



∣∣x′(t)
∣∣ dt ≤

∫

E+E

∣∣g
(
t,x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T



∣∣e(t)
∣∣∣∣x′(t)

∣∣dt

≤
(∫

E

∣∣g
(
t,x(t)

)∣∣ dt
) 


(∫ T



∣∣x′(t)
∣∣ dt

) 

+ a

∫ T



∣∣x(t)
∣∣∣∣x′(t)

∣∣dt

+ b
∫ T



∣
∣x′(t)

∣
∣dt +

∫ T



∣
∣e(t)

∣
∣
∣
∣x′(t)

∣
∣dt

≤ |gB|
(∫ T



∣
∣x′(t)

∣
∣ dt

) 

+ a

(
D +




∫ T



∣
∣x′(t)

∣
∣dt

)∫ T



∣
∣x′(t)

∣
∣dt

+ bT



(∫ T



∣
∣x′(t)

∣
∣ dt

) 

+

(∫ T



∣
∣e(t)

∣
∣ dt

) 

(∫ T



∣
∣x′(t)

∣
∣ dt

) 


≤ aT


∫ T



∣∣x′(t)
∣∣ dt +

(
aDT


 + bT


 + |gB| + |e|

)

×
(∫ T



∣∣x′(t)
∣∣ dt

) 

, (.)

where gB = max|x|≤B |g(t,x(t))|, |gB| = (
∫ T
 |gB| dt)  .
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Since σ – aT
 > , it is easy to see that there is a constantM′

 >  (independent of λ) such
that

∫ T



∣∣x′(t)
∣∣ dt ≤ M′

.

By applying Hölder’s inequality and (.), we have

|x| ≤ D +



∫ T



∣
∣x′(s)

∣
∣ds≤ D +



T




(∫ T



∣
∣x′(s)

∣
∣ ds

) 
 ≤ D +



T



(
M′


) 
 :=M.

In view of (.), we have

∣∣φ
(
x′)∣∣

 = max
t∈[,T]

{∣∣φ
(
x′(t)

)∣∣}

= max
t∈[t,t+T]

{∣
∣∣
∣

∫ t

t

(
φ
(
x′(s)

))′ ds
∣
∣∣
∣

}

≤
∫ T



∣∣f
(
t,x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T



∣∣g
(
t,x(t)

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

≤
(∫ T



∣
∣f

(
t,x(t)

)∣∣ dt
) 


(∫ T



∣
∣x′(t)

∣
∣ dt

) 


+ T



(∫ T



∣∣g
(
t,x(t)

)∣∣ dt
) 


+ T




(∫ T



∣∣e(t)
∣∣ dt

) 


≤ |fM |
(
M′


) 
 + T


 |gM | + T


 |e| :=M′

,

where |fM | = max|x(t)|≤M |f (t,x(t))|.
Thus, from Lemma ., we know that there exists some positive constantM such that,

for all t ∈ R,

∣
∣x′(t)

∣
∣ ≤ M.

SetM =
√
M

 +M
 + ; we have

� =
{
x ∈ C

T (R,R) | |x| ≤ M + ,
∣
∣x′∣∣

 ≤ M + 
}
,

and we know that (.) has no solution on ∂� as λ ∈ (, ) and when x(t) ∈ ∂� ∩R, x(t) =
M +  or x(t) = –M – , from (.) we know thatM +  >D. So, from (H) we see that


T

∫ T



{
g(t,M + ) – e(t)

}
dt < ,


T

∫ T



{
g(t, –M – ) – e(t)

}
dt > .

So condition (ii) is also satisfied. Set

H(x,μ) = μx – ( –μ)

T

∫ T



{
g(t,x) – e(t)

}
dt,

http://www.boundaryvalueproblems.com/content/2014/1/244
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where x ∈ ∂� ∩R, μ ∈ [, ], and we have

xH(x,μ) = μx – ( –μ)x

T

∫ T



{
g(t,x) – e(t)

}
dt > 

and thus H(x,μ) is a homotopic transformation and

deg{F ,� ∩R, } = deg

{
–

T

∫ T



{
g(t,x) – e(t)

}
dt,� ∩R, 

}

= deg{x,� ∩R, } �= .

So condition (iii) is satisfied. In view of Lemma (.), there exists a solution with period T .
Suppose that x(t) is the T-periodic solution of (.). Let t̄ be the global minimum point

of x(t) on [,T]. Then x′(t̄) =  and we claim that

(
φ
(
x′(t̄)

))′ ≥ . (.)

If not, i.e., (φ(x′(t̄)))′ < , then there exists ε >  such that (φ(x′(t)))′ <  for t ∈ (t̄ – ε, t̄ + ε).
Therefore, φ(x′(t)) is strictly decreasing for t ∈ (t̄ – ε, t̄ + ε). From (A), we know that x′(t)
is strictly decreasing for t ∈ (t̄ – ε, t̄ + ε). This contradicts the definition of t̄. Thus, (.)
is true. From (.) and (.), we have

g
(
t̄,x(t̄)

)
– e(t̄)≤ . (.)

In view of (H), (.) implies x(t̄) > . Thus,

x(t)≥ min
t∈[,T]

x(t) = x(t̄) > , for all t ∈ R,

which implies that (.) has at least one positive solution with period T . This completes
the proof. �

Next, we consider f (t,x(t))≡ f (x(t)), then (.) is transformed into

(
φ
(
x′(t)

))′ + f
(
x(t)

)
x′(t) + g

(
t,x(t)

)
= e(t). (.)

Set

F(x) =
∫ x


f (u)du, φ

(
x′(t)

)
= y(t) – F

(
x(t)

)
,

and we can rewrite (.) in the following form:

⎧
⎨

⎩
φ(x′(t)) = y(t) – F(x(t)),

y′(t) = –g(t,x(t)) + e(t).
(.)

Lemma . If (H) holds, then (.) has at most one T-periodic solution in C
T .

http://www.boundaryvalueproblems.com/content/2014/1/244
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Proof Assume that x(t) and x(t) are two T-periodic solutions of (.). Then we obtain

⎧
⎨

⎩
φ(x′

i(t)) = yi(t) – F(xi(t)),

y′
i(t) = –g(t,xi(t)) + e(t), i = , .

(.)

Set

v(t) = x(t) – x(t), u(t) = y(t) – y(t).

It follows from (.) that

⎧
⎨

⎩
φ(x′

(t)) – φ(x′
(t)) = u(t) – [F(x(t)) – F(x(t))],

u′(t) = –[g(t,x(t)) – g(t,x(t))].
(.)

Now, we prove that

u(t) ≤ , for all t ∈R.

In contrast, in view of x,x ∈ C[,T], for t ∈R, we obtain

max
t∈R

u(t) > .

Then there must exist t∗ ∈ R (for convenience, we can choose t∗ ∈ (,T)) such that

u
(
t∗

)
= max

t∈[,T]
u(t) = max

t∈R
u(t) > .

We claim that u′′(t∗) ≤ . In contrast, we obtain u′′(t∗) >  and there exists a constant ε > 
such that u′′(t) >  for t ∈ (t∗ –ε, t∗]. Therefore, u′(t) is strictly increasing for t ∈ (t∗ –ε, t∗],
which implies that

u′(t) < u′(t∗
)
= , for all t ∈ (

t∗ – ε, t∗
)
.

This contradicts the definition of t∗. Thus, we get u′′(t∗) ≤ .
This implies that

⎧
⎪⎪⎨

⎪⎪⎩

u′(t∗) = –[g(t∗,x(t∗)) – g(t∗,x(t∗))] = ,

u′′(t∗) = (–(g(t,x(t)) – g(t,x(t))))′|t=t∗
= –[( ∂g(t∗ ,x(t∗))

∂t – ∂g(t∗ ,x(t∗))
∂t ) + ( ∂g(t∗ ,x(t∗))

∂x x′
(t∗) –

∂g(t∗ ,x(t∗))
∂x x′

(t∗))]≤ .

(.)

Since gx(t,x) < , from (.) and the first equation of (.), we get x(t∗) = x(t∗). Then,
from the second equation of (.), we have

u′′(t∗
)
= –

(
gx

(
t∗,x

(
t∗

))
x′

(
t∗

)
– gx

(
t∗,x

(
t∗

))
x′

(
t∗

))

= –gx
(
t∗,x

(
t∗

))[
x′

(
t∗

)
– x′


(
t∗

)] ≤ . (.)

http://www.boundaryvalueproblems.com/content/2014/1/244
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In view of –gx(t∗,x(t∗)) > , u(t∗) = y(t∗) – y(t∗) > , it follows from (.) that

x′

(
t∗

)
– x′


(
t∗

) ≤ .

From (A), we can see that

φ
(
x′

(
t∗

))
– φ

(
x′

(
t∗

)) ≤ . (.)

From the first equation of (.), we know

φ
(
x′

(
t∗

))
– φ

(
x′

(
t∗

))
= u

(
t∗

)
–

[
F
(
x

(
t∗

))
– F

(
x

(
t∗

))]

= u
(
t∗

)
–

[
F
(
x

(
t∗

))
– F

(
x

(
t∗

))]

= u
(
t∗

)
> ,

which contradicts (.). This contradiction implies that

u(t) = y(t) – y(t) ≤ , for all t ∈R.

By using a similar argument, we can also show that

y(t) – y(t) ≤ .

Therefore, we obtain

y(t) ≡ y(t), for all t ∈R.

Then, from (.), we get

g
(
t,x(t)

)
– g

(
t,x(t)

) ≡ , for all t ∈R.

Again, from gx(t,x) < , we find

x(t) ≡ x(t), for all t ∈R.

Hence, (.) has at most one T-periodic solution in C
T . The proof of Lemma . is now

complete. �

By Lemma . and Theorem ., we get the following.

Theorem . Assume (H)-(H) hold. Then (.) has a unique positive T-periodic solu-
tion if σ – αT

 > .

We illustrate our results with some examples.

Example . Consider the following second-order p-Laplacian Liénard equation:

(
φp

(
x′(t)

))′ +
(
x(t) sin t + 

)
x′(t) –

(
x(t) + sin t – 

)
= ecos t , (.)

where φp(u) = |u|p–u.

http://www.boundaryvalueproblems.com/content/2014/1/244
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Comparing (.) to (.), we see that g(t,x) = –x(t) – sin t + , f (t,x) = x(t) sin t + ,
e(t) = ecos t , T = π . Obviously, we know φp is an homeomorphism for R to R, satisfying
(A) and (A). Moreover, it is easily seen that there exists a constant D =  such that (H)
holds. We have |f (t,x)| = |x(t) sin t + | ≥  = σ , then (H) holds. Choose B > ; we
have |g(t,x)| ≤ |x| + , here a = , b = , then (H) holds and σ – aT

 =  – π
 > . So, by

Theorem ., we find that (.) has a positive periodic solution.

Example . Consider the following second-order φ-Laplacian Liénard equation:

(
φ
(
x′(t)

))′ –
(
x(t) + 

)
x′(t) –

(
x(t) +  cos(t) – 

)
= esin t , (.)

where φ(u) = ue|u| .
Comparing (.) to (.), we see that g(t,x) = –x–  cos t + , f (x) = –(x(t) +

), e(t) = esin t , T = π . Obviously, we get

(
xe|x| – ye|y|)(x – y) ≥ (|x|e|x| – |y|e|y|)(|x| – |y|) ≥ 

and

φ(x) · x = |x|e|x| .

So, we know (A) and (A) hold. We know that gx(t,x) = – < ; then (H) holds. More-
over, it is easily seen that there exists a D =  such that (H) holds. We have |f (x)| =
|–(x(t)+)| ≥  = σ , then (H) holds. ChooseB > ;we have |g(t,x)| ≤ |x|+,
here a = , b = , then (H) holds and σ – aT

 =  – π > . Therefore, by Theo-
rem ., we know that (.) has a unique positive periodic solution.
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